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ABSTRACT

We present calculations of cross sections for fine-structure excitation in collisions of carbon and silicon ions in
the 2P state with atomic hydrogen in the ground state. The results are based on accurate calculations of CH+ and
SiH+ molecular potentials, including electronic core correlation and relativistic effects. We find that the energy
dependence of the excitation cross sections is largely determined by shape resonances. Our work improves on the
results of previous calculations with less accurate potentials. Analytical expressions for the cooling efficiency of
C+(2P1=2) and Si+(2P1=2) are given for the temperature interval 15–2000 K.

Subject headinggs: ISM: atoms — ISM: molecules — scattering

1. INTRODUCTION

Fine-structure excitations of atoms and ions in collisions with
atomic hydrogen provide the dominant cooling mechanisms of
diffuse interstellar clouds at low temperatures (Dalgarno &
Rudge 1964; Dalgarno & McCray 1972). Inelastic collisions of
carbon and silicon ions with hydrogen atoms are especially im-
portant due to high abundances of these ions. The open-shell
structure of the hydrogen atom and the ions leads to strong inter-
actions, and the binding energies of the CH+ and SiH+molecules
are large. Many partial waves contribute to the cross sections for
C+-H and Si+-H scattering, and the collision complex may be
trapped in shape and Feshbach resonances. The collision com-
plex may emit a photon, thereby forming a stable molecule
through radiative association, or it can decay back into the
fragments leading to an elastic or inelastic collision.

The cross sections for inelastic collisions of carbon ions with
hydrogen, Cþ(2P1=2)þ H ! Cþ(2P3=2)þ H, have been calcu-
lated byWofsy et al. (1971) and Launay&Roueff (1977), and for
collisions of silicon ions with hydrogen, Siþ(2P1=2)þ H !
Siþ(2P3=2)þ H, by Roueff (1990). These calculations employed
the best available ab initio interaction potentials. However,
because of computational restrictions, the potentials under-
estimated the dissociation energy for some states by up to 50% in
comparison with experimental measurements (Helm et al. 1982;
Carlson et al. 1980), and the calculated equilibrium distances
(Req) of the molecules were too large. For example, Req for the
1� state of SiH+ was 4.7 a.u., compared to the measured Req ¼
3:536 a.u. (Douglas & Lutz 1970). The uncertainties of the
potentials were larger than the collision energies at low temper-
atures (10–1000 K). In addition, fine-structure excitation rates at
low temperatures are affected by scattering resonances that are
sensitive to details of the interaction potentials. No further cal-
culations of the fine-structure relaxation rates for C+ and Si+ have
been reported after the work of Launay & Roueff (1977). In this
paper we explore the sensitivity of the fine-structure excitation
cross section to details of the interaction potentials, and we
calculate the rate coefficients for fine-structure excitation in C+-H
and Si+-H collisions over a wide range of temperatures. We also

examine the dynamics of ion-atom collisions at ultralow colli-
sion energies (10�9 1 K) at which elastic and inelastic scatter-
ing may be characterized by threshold laws. Several studies of
neutral atom collisions at subkelvin temperatures have been
carried out, but this is the first calculation of ion-atom collisions
at ultralow kinetic energies other than an investigation of rota-
tional quenching of molecular ions by closed-shell atoms (Bodo
et al. 2002).

2. POTENTIAL ENERGY CURVES

The interaction of the hydrogen atom in the 2S state with an
ion in the 2P state, such as C+ or Si+, gives rise to four molecular
states of 1�þ, 1�, 3�þ, and 3� symmetries. The spin-orbit
interaction and rotational coupling split these four states into
12 states. At large interatomic distances these states separate
into twomanifolds of states corresponding to the spin-orbit split
2P3=2 and

2P1=2 terms of the C+ or Si+ ion.
Experiments on CH+ and SiH+ include spectroscopy of the

singlet states (Carlson et al. 1980; Sarre et al. 1989; Carrington
& Softley 1986) and the study of Feshbach resonances just
above the dissociation threshold (Hechtfischer et al. 2002). The-
oretical analysis of the CH+ absorption cross section (Carrington
& Softley 1986; Williams & Freed 1986; Hechtfischer et al.
2002) showed that the resonances arise as a result of the break-
down of the Born-Oppenheimer approximation. In order to
reproduce quantitatively the experimental results and identify
the resonances, the potential energy curves had to be drastically
modified (Hechtfischer et al. 2002). Apparently high-precision
ab initio results did not provide interaction potentials that ac-
curately describe the resonances in the spectrum just above the
dissociation limit. We found that including electronic core cor-
relation and relativistic effects in the potential energy calcula-
tions for CH+ gives the dissociation energies and vertical ex-
citation frequencies within 50 cm�1 of the experimental data
(Barinovs & van Hemert 2004). The positions of the resonances
in the photodissociation spectrum computed with these poten-
tials differ by only a fewwavenumbers from the experimental re-
sults for excitation by radiation at 30,000 cm�1, and the relative
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magnitudes of the resonances are close to the measured values
(Hechtfischer et al. 2002). Compared to the potentials used in
the previous calculation of fine-structure excitation by Launay
& Roueff (1977), our 1�þ, 1�, and 3� potentials are about
2000 cm�1 deeper, which is about 5% of the depth for the 1�þ

and 3� states and 25% for the 1� state.
The long-range part of an ion-neutral atom potential is de-

termined by the polarization interaction resulting in a strong
attraction at large separation. Therefore, we compute the ab initio
interaction potentials for the CH+ (Barinovs & van Hemert
2004) and SiH+ molecules over a wide range of interatomic
distances. The details of the CH+ potential calculations are given
elsewhere (Barinovs & van Hemert 2004). The interaction po-
tentials for the SiH+ molecule were computed using the same
method as that for CH+ but with a smaller basis set. In order to
correlate properly the inner-shell electrons and describe the in-
teraction energy at large distances, the basis sets cc-pCV5Z and
aug-pCV5Z were combined to construct the basis set for silicon.
The aug-cc-pVQZ basis was used for hydrogen. The Douglas-
Kroll relativistic correction was calculated using state-averaged
CASSCF with inner shells doubly occupied, followed by a
configuration interaction (CI) calculation. In the CI calculation,
both the first shell and the second shell were doubly occupied.
Calculations were carried out with the MOLPRO package of
programs (Werner et al. 2003).

Figure 1 presents a comparison of our potentials for SiH+

with those of Hirst (1986). The potentials we obtained are in
better agreement with the experimental data. For the 1� state
the calculated equilibrium distance is req ¼ 3:538 a.u., com-
pared to the experimental value req ¼ 3:536 a.u. (Douglas &
Lutz 1970), and the calculated value of the dissociation energy
is D0 ¼ 1180 cm�1 compared to the well depthDe ¼ 733 cm�1

of the potential of Hirst (1986) and the experimental value of
D0 ¼ 1230 � 210 cm�1. Our calculation of the 1� potential
yields the vibrational frequencies corresponding to �G1=2 ¼
359:6 cm�1 whereas the experimental �G1=2 ¼ 388:67 cm�1

(Carlson et al. 1980).

3. DYNAMICAL CALCULATIONS

The method of our scattering calculations is based on the
work of Reid & Dalgarno (1969), Mies (1973), Reid (1973),
and Krems et al. (2004). The total Hamiltonian of the C+(2P)-

H(2S) or Si+(2P)-H(2S) system can be written in atomic units in
the form

Ĥ ¼ � 1

2�R

@ 2

@R2
Rþ l2

2�R2
þ V̂el þ V̂so; ð1Þ

where R is the interatomic distance, l is the angular momentum
describing the rotation of the vector R, V̂el is the electrostatic
interaction potential between the ion and the hydrogen atom,
and V̂so is the operator describing the spin-orbit interaction in
the ion. We have neglected the interatomic magnetic dipole
interaction. The total wave function  JM , corresponding to a
given value of the total angular momentum J and its space-fixed
projection M, is represented by a close coupling expansion,

 JM ¼
X
l

X
j

X
jA

F JM
jl jH jA

(R)jJMjljH jAi; ð2Þ

with the function jJMjljH jAi defined in the Appendix.
Substitution of expansion (2) in Schrödinger’s equation re-

sults in a system of coupled differential equations,

d 2

dR2
� l(l þ 1)

R2
þ 2�E

� �
FJ

jl jH jA
(R) ¼

2�
X
j 0l 0j 0

A

UJ
jl jH jA; j 0l 0jH j 0

A
FJ
j 0l 0jH j 0

A
(R); ð3Þ

with the coupling matrix U given by the sum of the matrices
Vel þ Vso in the basis of equation (2). The matrix U is indepen-
dent ofM, so the subscriptM has been omitted from equation (3).
The matrix of the spin-orbit interaction operator V̂so is di-

agonal in the basis jJMjljH jAi with the matrix elements �jA

corresponding to the asymptotic energies of the ion,

hJMjljH jAjV̂sojJMj0l 0jH j0Ai ¼ �jj 0�ll 0�jA j 0
A
�jA : ð4Þ

We adopt�jA¼1=2 ¼ 0 for both ions,�jA¼3=2 ¼ 63:42 cm�1 for
the carbon ion, and �jA¼3=2 ¼ 287 cm�1 for the silicon ion. In
order to evaluate the matrix of the electronic interaction poten-
tial V̂el, we use the formalism described by Krems et al. (2004).
Explicit expressions for the matrix elements are given in the
Appendix. The solution of the close coupled equation (3) at a
fixed total energy E with the scattering boundary conditions

Fig. 1.—Ab initio electronic potentials for SiH+. The solid curves show the
potentials used in the present calculation, and the dashed curves show the
potentials of Hirst (1986).

Fig. 2.—Excitation cross sections for the Cþ(2P1=2)þ H ! Cþ(2P3=2)þ H
reaction. The solid curve represents the results of the present calculation, and
the dashed curve represents the results of Launay & Roueff (1977).

BARINOVS ET AL.538 Vol. 620



(Arthurs & Dalgarno 1960) yields the scattering S-matrix from
which the cross sections and rate coefficients for inelastic col-
lisions can be computed using standard relations.

4. RESULTS

Figure 2 presents the cross section �(E ) for the excitation of
Cþ(2P1=2) as a function of the collision energy. Our calculation
gives a larger cross section than that of Launay &Roueff (1977)
at collision energies above 300 cm�1. The energy dependence
of the cross section shows many resonance peaks that were not
observed by Launay & Roueff because of the sparse energy grid
they used. The peaks in the cross section are due to shape res-
onances. Feshbach resonances occur at energies lower than the
energy of the spin-orbit splitting and would be apparent in the
elastic cross sections.

The cooling efficiency for the excitation is given by

L(T ) ¼ �3=2R(T );

where R(T ) is the excitation rate coefficient,

R(T ) ¼ 8kT

��

� �1=2
1

(kT )2

Z
�(E )E exp

�E

kT

� �
dE:

Values of L(T ) for temperatures up to 2000 K are listed in Table 1
and compared in Figure 3 with the results of Launay & Roueff
(1977). At low temperatures the two calculations agree well, but
above 300 K we obtain a higher cooling efficiency.

In Figure 4 we compare the cross sections for the Siþ(2P1=2) !
Siþ(2P3=2) excitation with those of Roueff (1990). The cooling
efficiencies are listed in Table 1 and compared in Figure 5 with the
results of Roueff (1990). Our cooling efficiencies are about 10%
higher.

The cooling efficiencies may be represented as functions of
temperature by the expressions

L(T ) ¼ exp (� 91:2=T )(16þ 0:344
ffiffiffiffi
T

p
� 47:7=T )

; 10�24 ergs cm3 s�1

TABLE 1

The Calculated Cooling Efficiencies L(T ) and Quenching Rate Coefficients Q(T )

L

(10�24 ergs cm3 s�1)

Q

(10�10 cm3 s�1)
T

(K) C+(2P1=2!3=2) Si+(2P1=2!3=2) C+(2P3=2!1=2) Si+(2P3=2!1=2)

20................................... 0.16 0.00 5.96 4.52

40................................... 1.75 0.00 6.79 4.83

60................................... 3.96 0.06 7.19 5.04

80................................... 5.97 0.34 7.42 5.22

100................................. 7.67 0.99 7.58 5.39

120................................. 9.09 2.03 7.72 5.55

140................................. 10.29 3.40 7.84 5.70

160................................. 11.33 5.04 7.96 5.84

180................................. 12.24 6.87 8.06 5.98

200................................. 13.04 8.83 8.17 6.10

300................................. 16.04 19.17 8.63 6.66

400................................. 18.09 28.92 9.02 7.12

600................................. 20.92 45.30 9.67 7.91

800................................. 22.93 58.38 10.20 8.58

1000............................... 24.51 69.23 10.66 9.17

1500............................... 27.45 90.80 11.58 10.49

2000............................... 29.63 108.92 12.31 11.74

Fig. 3.—Cooling efficiency for C+(2P1=2) in collisions with hydrogen. The
solid curve represents the results of the present calculation, and the dashed
curve represents the results of Launay & Roueff (1977).

Fig. 4.—Excitation cross sections for the Siþ(2P1=2)þH ! Siþ(2P3=2)þ H
reaction. The solid curve represents the results of the present calculation, and
the dashed curve represents the results of Roueff (1990).
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for the Cþ(2P1=2) ! Cþ(2P3=2) excitation and

L(T ) ¼ exp (� 413=T )(43:5þ 1:78
ffiffiffiffi
T

p
þ 0:005T )

; 10�24 ergs cm3 s�1

for the Siþ(2P1=2) ! Siþ(2P3=2) excitation. The analytical ex-
pressions reproduce the calculated cooling rate coefficients with
a relative deviation within 1% at temperatures between 15 and
2000 K. The excitation rate coefficients can be found as

R(T ) ¼ 7:938 ; 1013L(T ) cm3 s�1

for the Cþ(2P1=2) ! Cþ(2P3=2) transition and

R(T ) ¼ 1:75 ; 1013L(T ) cm3 s�1

for the Siþ(2P1=2) ! Siþ(2P3=2) transition. The temperature-
dependent quenching rate coefficientsQ(T ) for the Cþ(2P3=2) !
Cþ(2P1=2) and Si

þ(2P3=2) ! Siþ(2P1=2) de-excitation can be ob-
tained from the excitation rate coefficients as

Q(T ) ¼ 1
2
e�3=2=kTR(T ):

Values of Q(T ) are listed in Table 1.

Because of the widespread interest in scattering processes in
ultracold gases, we extended our study of C+-H collisions to zero
energy. Figure 6 depicts the individual partial-wave contributions
to the total cross section for fine-structure relaxation of C+(2P3=2)
in the energy interval between 10�10 and 10�1 cm�1. The cross
sections follow the Wigner threshold law (Wigner 1948; Krems
2002) for inelastic scattering. The s-wave cross section is in-
versely proportional to the collision velocity at energies less than
10�3 cm�1, yielding a finite zero temperature rate coefficient of
2:6 ; 10�10 cm3 s�1. The higher partial waves contribute to the
cross section at collision energies above 5 ; 10�3 cm�1 and even-
tually dominate.
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the Nederlandse Organisatie voorWetenschappelijk Onderzoek
(NWO). R. K. is supported by the Harvard-MIT Center for
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APPENDIX

The total wavefunction in equation (2) is expressed as

jJMjljH jAi ¼
X
MLH

X
MSH

X
MLA

X
MSA

X
mjH

X
mjA

X
mj

X
ml

jLHMLHijSHMSHijLAMLAijSAMSAijlmli

; hLHMLHSHMSH j jHmjHihLAMLASAMSA j jAmjAih jHmjH jAmjA j jmjih jmjlmljJMi; ðA1Þ

where LH and LA are the electronic orbital angular momenta, SH and SA are the electronic spin angular momenta, and jH and jA are
the total electronic angular momenta of the hydrogen atom (subscript H) and the ion (subscript A). The vector sum of jH and jA
determines the total electronic angular momentum of the diatomic system j. The projections of the corresponding angular momenta
on the space-fixed quantization axis are represented by MLH , MLA , mjH , mjA , mj, and ml. The electronic orbital angular momentum
LH of the ground-state hydrogen is zero, so that jH ¼ SH ¼ 1=2 and there is no spin-orbit interaction in the hydrogen atom in first
order.

Fig. 5.—Cooling efficiency for Si+(2P1=2) in collisions with hydrogen. The
solid curve represents the present results, and the dashed curve represents the
results of Roueff (1990).

Fig. 6.—Low-energy de-excitation cross sections for Cþ(2P3=2)þ H !
Cþ(2P1=2)þ H as functions of the kinetic energy.
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The electronic interaction potential between two arbitrary atoms can be represented in an effective potential form as

V̂el ¼
X
S

X
MS

jSMSihSMS jV̂ S ; ðA2Þ

with V̂ S given by

V̂ S ¼ (4�)1=2
X
k1

X
k2

X
k

V S
k1; k2; k

(R)
X
q1

X
q2

X
q

(�1)k1�k2
k1 k2 k

q1 q2 q

� �
T̂ k1
q1
(LH)T̂

k2
q2
(LA)Ykq(R̂);

ðA3Þ

where T̂ k1
q1
(LH) and T̂

k2
q2
(LA) are the spherical tensors defined in Krems et al. (2004), the symbol in parentheses is a 3j symbol, and the

expansion coefficients VS
k1; k2; k

(R) can be expressed in terms of the Born-Oppenheimer potentials VS
�(R) for atom-atom interactions as

VS
k1; k2; k

(R) ¼
X
L

X
L 0

X
�

VS
�(R)(�1)L�� L k L

�� 0 �

� �
(k1)(k2)(k)(L)(L)½ �1=2

LH LH k1

LA LA k2

L L k

8><
>:

9>=
>;: ðA4Þ

The symbol in curly braces is a 9j symbol, L ¼ LA,� is the projection of L on the interatomic distance, and the shorthand notation (L)
is used for (2Lþ 1). For the Cþ(2P)–H(2S) and Siþ(2P)–H(2S) systems, equation (A4) reduces to two nonzero terms, VS

0;0;0(R) ¼
VS
�(R)þ 2VS

�(R)
� �

=
ffiffiffi
3

p
and VS

0;2;2(R) ¼ �VS
�(R)þ VS

�(R)
� �

2=3ð Þ1=2. Using equations (A2), (A3), and (A4), we evaluate the matrix
elements of the interaction potential V̂el in the basis of equation (2). They have the form

hJMjljA jBjV̂eljJMj0l 0jA j0Bi ¼
X
S

X
k1

X
k2

X
k

V S
k1; k2; k

(R)
X
f

X
f 0

l k l 0

0 0 0

� �

; ( jH)( j
0
H)( jA)( j

0
A)( j)( j

0)(l )(l 0)(S)2(k1)(k2)(k)( f )
2( f 0)2

� �1=2
(�1) fþkþJ�S

;

LH SH jH

LA SA jA

f S j

8><
>:

9>=
>;

LH SH jH

LA SA j0A

f 0 S j0

8><
>:

9>=
>;

LH LH k1

LA LA k2

f f 0 k

8><
>:

9>=
>;

j j0 k

l 0 l J

� 	
j j0 k

f 0 f S

� 	
: ðA5Þ
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