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ABSTRACT

A new theory of quasars is presented in which the matter of thin accretion disks around black holes is supplied
by stars that plunge through the disk. Stars in the central part of the host galaxy are randomly perturbed to highly
radial orbits, and as they repeatedly cross the disk they lose orbital energy by drag, eventually merging into the
disk. Requiring the rate of stellar mass capture to equal the mass accretion rate into the black hole, a relation
between the black hole mass and the stellar velocity dispersion is predicted of the form MBH / �

30=7
� . The

normalization depends on various uncertain parameters, such as the disk viscosity, but is consistent with ob-
servation for reasonable assumptions. We show that a seed central black hole in a newly formed stellar system
can grow at the Eddington rate up to this predicted mass via stellar captures by the accretion disk. Once this mass
is reached, star captures are insufficient to maintain an Eddington accretion rate, and the quasar may naturally
turn off as the accretion switches to a low-efficiency advection mode. The model provides a mechanism to deliver
mass to the accretion disk at small radius, probably solving the problem of gravitational instability to star
formation in the disk at large radius. We note that the matter from stars that is incorporated into the disk has an
average specific angular momentum that is very small or opposite to that of the disk, and we discuss how a
rotating disk may be maintained as it captures this matter if a small fraction of the accreted mass comes from
stellar winds that form a disk extending to larger radius. We propose several observational tests and con-
sequences of this theory.

Subject headings: black hole physics — galaxies: formation — galaxies: nuclei — quasars: general

1. INTRODUCTION

The basic model for how quasars are able to emit their pro-
digious radiative luminosities from a very small region of space
has been in place for a long time (Lynden-Bell 1969): a massive
black hole in the center of a galaxy accretes from a thin gaseous
disk, converting�10% of the rest mass of the gas into the radi-
ation that is emitted. The gas in the disk is heated by viscous
processes as it accretes, providing energy for radiating the con-
tinuumoptical–ultraviolet emission from the hot, optically thick
surface of the disk (Shakura & Sunyaev 1973; Pringle 1981).

Black holes have now been detected in the centers of many
galaxies and found to correlate strongly with the presence of a
spheroidal stellar component, either the bulge of a spiral gal-
axy or an elliptical galaxy (e.g., Kormendy & Richstone 1995;
Richstone et al. 1998; Magorrian et al. 1998). The mean mass
density in the universe of nuclear black holes (i.e., black holes
found in galactic nuclei and presumed to be responsible for
galactic nuclear activity such as the quasar phenomenon), �BH,
should be related to the integrated emission from all active
galactic nuclei (AGNs) over the past history of the universe
according to

�

1� �
�BHc

2 ¼
Z

e(z)(1þ z) dz; ð1Þ

where e(z) dz is the present energy density in radiation coming
from AGNs in the redshift range from z to zþ dz and � is the

mean radiative efficiency of accretion (Soltan 1982). This rela-
tion is consistent with present observations with � ’ 0:1 (e.g.,
Barger et al. 2001; Aller & Richstone 2002; Yu & Tremaine
2002; Haehnelt 2004), implying that accretion of gas from
thin disks likely played the dominant role in the growth of
nuclear black holes. In addition, observations have shown that
the black hole mass, MBH, is tightly related to the stellar ve-
locity dispersion, ��, as MBH / �a

� , where a is in the range 4–
4.5 (Gebhardt et al. 2000; Ferrarese & Merritt 2000; Merritt &
Ferrarese 2001; Tremaine et al. 2002). This relation suggests
that there is some connection between the accretion activity of
the black hole (which determines its final mass) and the stellar
system that surrounds it.
The formation and growth of nuclear black holes from an

accretion disk pose a number of outstanding problems: How is
the large amount of mass that must be fed to the black hole
funneled from the typical sizes of galaxy spheroids (�1 kpc)
into the tiny region in the center of a galaxy where the mass is
dominated by the central black hole (�1 pc) and into the inner
accretion disk where most of the energy of AGNs is radiated
(�10�2 to 10�5 pc)? What prevents this gas from turning into
stars well before coming close to the central accretion disk, as
normally occurs in galactic gaseous disks and in galaxies with
an irregular distribution of gas? Once the gas is in the accretion
disk, what happens when the disk becomes self-gravitating in
its outer parts (e.g., Shlosman & Begelman 1987; Goodman &
Tan 2004) and hence unstable to form stars? Why is the black
hole mass tightly related to the velocity dispersion of the stel-
lar system around it, when the physical scales of these compo-
nents are so vastly different?
Another possibility for the growth of black holes is by the

direct capture of stars that are randomly perturbed into high-
eccentricity orbits. Zhao et al. (2002) found that this mech-
anism leads to a relation MBH ’ (108 M�)(��=200 km s�1)5
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(t0=14 Gyr), where t0 is the total time during which stars can be
captured by the black hole. This is valid if one makes the ap-
proximation of a full loss cylinder,3 i.e., one assumes that when
stars are captured their orbits are immediately replenished by
relaxation processes.

The slope of this relation is in good agreement with the ob-
servations (see also Merritt & Poon 2004). However, in this
model black holes do not grow by gas accretion, so the similarity
of the black hole mass density and the energy density from
quasars at present is not accounted for. In addition, black holes
would grow over a timescale too long to account for their pres-
ence at the high redshifts at which quasars are observed. More-
over, the relation MBH / �5

� holds only for black hole masses
MBHk 108 M�, which can swallow normal stars whole without
tidally disrupting them, as discussed by Zhao et al. (2002).

We propose a different idea in this paper. Black holes grow
during the quasar epoch by accreting gas from a thin accretion
disk in the standard way. At the same time, stars from the stellar
system around the black hole are captured into the accretion
disk when their orbits become highly eccentric and they plunge
through the disk. Even though the stars are slowed down by
only a small fraction of their velocity owing to the drag force
at every disk crossing, repeated crossings result in their final
merger into the disk. The capture of stars by an accretion disk,
discussed by Ostriker (1983), Syer et al. (1991), Artymowicz
et al. (1993), and Zurek et al. (1994), can have a much higher
cross section than direct capture by the black hole, shorten-
ing the time required for the black hole to grow. The growth of
black holes from a gaseous disk that is continuously replenished
with matter from plunging stars can also solve the problem of
how matter is transported from the galactic system to the very
small central accretion disk and provides a way to connect the
final mass of the black hole after accretion stops with the ve-
locity dispersion of the surrounding stellar system.

Delivering mass to the accretion disk by means of stars that
are randomly scattered into the loss cylinder implies that the
structure of the disk should change in an important way owing
to the addition of energy and angular momentum to the disk
as the plunging stars dissipate their kinetic energy during disk
crossings and the angular momentum of the stars is incorpo-
rated into the disk. The issue of the global angular momentum
is discussed in x 5. In this paper we generally assume a steady
state disk structure ignoring the effects of the stars, leaving for
later work a fully self-consistent model in which the effect of
the plunging stars added to the disk is taken into account.

Themodel is presented in detail in x 2, where the condition for
stars to be captured by the disk is described and a resultingMBH-
� relation is inferred. In x 3 we discuss how the generic problem
of self-gravity of the disk may be solved in our model, and in x 4
we comment on the fate of the stars after they are embedded in
the disk. In x 5 we describe the total disk angular momentum
problem and propose a solution. Finally, in x 6 we discuss the
predictions of the model and present the conclusions.

2. BLACK HOLE GROWTH FROM COLLISIONS
OF STARS WITH THE ACCRETION DISK

Before going into the detailed description of our model, it is
useful to give an overview of our goals in this section. We start

by reviewing steady state accretion disk models, deriving the
surface density profile. We then infer the condition required
for a typical main-sequence star to be captured by the disk as
it slows down in multiple disk crossings. As shown below, cap-
tured stars are eventually destroyed and their matter is dispersed
within the disk. This leads us to a rate at which mass is being
delivered to the disk by the plunging stars. We then require
that this mass delivery rate from stars into the disk is equal
to the mass accretion rate of the disk gas into the black hole,
which is given in terms of the quasar luminosity and the ef-
ficiency at which the accreted mass is converted to radiation.
This requirement ensures that the disk can remain in a steady
state, capturing the mass it needs to continue fueling the black
hole, and leads to a relation between the black hole mass and
the velocity dispersion of the stellar system.

This still leaves two remaining questions: how the accretion
disk is initially started so that it can gain matter by capturing
stars, and when the mechanism of stellar captures and black
hole growth stops. We propose that when a starburst takes place
in a galactic nucleus, a small seed black hole with an initial
accretion disk (made, for example, by tidally disrupted stars)
naturally grows its accretion disk by capturing stars and main-
tains it at the level required to accrete and shine as a quasar
with a luminosity near the Eddington value. The black hole
grows in mass until it reaches the value determined by our
derived relation with the velocity dispersion of the stars that
were formed around the black hole. After this value is reached,
the rate of star captures is too small to maintain an accretion rate
near the Eddington value. This reduces the surface density of
the disk, further decreasing the star capture rate until, perhaps
when accretion switches from a thin disk to an advection mode,
the quasar turns off and leaves the black hole at a fixed pre-
determined mass. This can then explain the observed MBH-��
relation of the present remnant black holes with the velocity
dispersion of the spheroidal systems around them.

We start by summarizing the standard steady state thin accre-
tion diskmodel, transporting angularmomentum by an effective
viscosity as described in the usual� -model (Shakura&Sunyaev
1973; Pringle 1981). We closely follow Goodman (2003), re-
producing some equations here for completeness. In order to
determine whether a star that plunges through the disk can
be captured, wemust first obtain the disk surface density profile.

2.1. The Surface Density Profile of Steady Accretion Disks

Matter in an accretion disk can move in toward the black hole
as angular momentum is transported out by viscous processes.
We assume a steady state accretion disk of surface density �(r)
at radius r and angular rotation rate � ¼ (GMBH=r

3)1=2, with a
constant accretion rate Ṁ , where viscosity causes the gas to
drift inward at a radial speed vr(r) that is much smaller than the
tangential orbital velocity �r. The viscosity force per unit area
can be imagined as acting on the surface of a cylinder at radius r
that cuts the disk vertically, and it is equal to ��r�0, where � is
the viscosity coefficient, � is the density, and �0 ¼ d�=dr. This
force, integrated vertically, causes a torque on the disk inside
the cylinder of 2�r��r 2�0. Considering a ring of the disk at
radius r, the net torque acting on the ring per unit ring width dr is
d(2���r 3�0)/dr. The angular momentum of the ring per unit
ring width is 2�r��r 2, and conservation of angular momentum
in steady state conditions implies

d �r3�vrð Þ
dr

¼ d ��r3�0ð Þ
dr

: ð2Þ

3 We use the term ‘‘loss cylinder’’ to refer to the region of phase space
from which stars will be captured. At a fixed point in space in a spherical
potential, the shape of this region in velocity space is a narrow cylinder along
the radial velocity axis. This has usually been referred to as ‘‘loss cone’’ in the
literature.
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Integrating this equation and substituting �0 ¼ �3�= (2r) and
vr ¼ �Ṁ=(2�r�) as required by mass conservation in steady
state, we have

�� ¼ Ṁ

3�
1� rint

r

� �1=2� �
; ð3Þ

where rint is an integration constant that depends on an inner
boundary condition. In practice, rint is determined by the rel-
ativistic inner regions of the accretion disk and is negligible in
the outer regions that we are interested in, so we can use

� ¼ Ṁ

3��
: ð4Þ

The viscosity is usually assumed to be related to turbulent
processes and is of the order of the product of the velocity and
size of the largest turbulent eddies. Following Goodman
(2003), the viscosity coefficient is expressed as � ¼ ��bc2s =�,
where cs ¼ ( p=�)1=2 is the isothermal sound speed at the mid-
plane, � is the gas density, � ¼ pgas=p, and pgas and p are the gas
and total pressure, respectively, with p� pgas ¼ prad being the
radiation pressure. If viscosity is produced by magnetorota-
tional instability, the dimensionless viscosity parameter � is
thought to be between 10�3 and 10�1 (Balbus & Hawley 1998).
When radiation pressure dominates, we assume that the vis-
cosity may be proportional to either the total pressure (b ¼ 0) or
the gas pressure (b ¼ 1).

Writing also Ṁ ¼ L=(�c2) ¼ ṁLEdd=c
2, where L is the radi-

ative luminosity of the disk, � is the radiative efficiency, LEdd ¼
4�cGMBH=�e is the Eddington luminosity, �e is the electron-
scattering opacity, and the accretion rate has been conveniently
parameterized as ṁ ¼ L=(�LEdd), we obtain

Ṁ ¼ 4�GMBHṁ

c�e

ð5Þ

and

� ¼ 4GMBHṁ�

3�c�ec2s �
b
: ð6Þ

To proceed further, it is necessary to specify the energy
balance in the disk to compute the midplane temperature, T,
related to the isothermal sound speed by �c2s ¼ (kBT )=(	mp),
where kB is Boltzmann’s constant and 	mp is the mean particle
mass. Assuming that viscous dissipation of the orbital energy
is the dominant heat source, the energy dissipation rate per
unit area of the disk is ��(r�0)2. This must be equal to the
radiative energy emitted per unit area by the two sides of the
disk, 2�T 4

eA, where � is the Stefan-Boltzmann constant. Sub-
stituting � 0 ¼�(3=2)(GMBH)

1=2=r5=2 and using equations (4)
and (5), one finds

�T 4
eA ¼ 3G2M 2

BHṁ

2c�er3
: ð7Þ

The midplane temperature can be approximated by T 4 ’
�(�=2)T 4

eA, where � is the opacity. Hence,

T ¼ 3G 2M 2
BHṁ�̂�

4�cr 3

� �1=4

; ð8Þ

where �̂ ¼ �=�e. Replacing the temperature by the isothermal
sound speed, substituting into equation (6), and using � ¼
(2�5k 4

B)=(15c
2h3), where h is Planck’s constant, we find

� ¼ 4�

3c

2

15�̂(r)

� �1=5
ṁ

hr

� �3=5
GMBH	mp

��e�(r)
b�1

� �4=5
: ð9Þ

The quantity � ¼ pgas=p can be expressed in terms of � and T
using pgas ¼ �kBT=(	mp), prad ¼ 4�T 4=(3c), and � ¼ ��=(2cs)
(since the disk scale height isH ¼ cs=�). Using equations (8) and
(9), one finds

� 4þbð Þ=10

1� �
¼ (45)1=10

�3=40

21=20
m2

Plm
2
e

��2
e	

4m3
pMBH�̂9

 !1=10

; ṁ�4=5 r

RS

� �21=20

: ð10Þ

Here we have used �e ¼ 4��2
e f

2(1þ X )=(3mpm
2
ec

2), where
f ¼ h=(2�), mp is the proton mass, X is the hydrogen abun-
dance by mass, and � e is the fine-structure constant. We also
use the Schwarzschild radius RS ¼ 2GMBH=c

2 and the Planck
mass mPl ¼ ( fc=G )1=2. For characteristic values of the black
hole mass MBH ¼ 108M8 M�, � ¼ 10�2��2, X ¼ 0:7, and
	 ¼ 0:62, the �-parameter is given by

� 4þbð Þ=10

1� �
¼ 4:6�

�1=10
�2 �̂�9=10ṁ�4=5M

�1=10
8

r

103RS

� �21=20

;

ð11Þ

the surface density is

� ¼ 7:6 ;105 ��2�
b�1

� ��4=5
ṁ3=5 M8

�̂

� �1=5

;
103RS

r

� �3=5

g cm�2; ð12Þ

and the midplane temperature is

T ¼ 3:9 ; 104 K
� � �̂

��2�b�1M8

� �1=5

ṁ2=5 103RS

r

� �9=10

K:

ð13Þ

We plot in Figure 1 the contours in the (M, r/RS)-plane at
which � ¼ 0:5 and the surface density and midplane temper-
ature have the characteristic values indicated in the caption,
for the case ṁ ¼ 10 and ��2 ¼ 1. For all black hole masses,
the pressure in the accretion disk is dominated by radiation to
the left of the line � ¼ 0:5 and is dominated by matter to the
right of this line. For the case b ¼ 1, � is independent of �
and, assuming that �̂(r) ’ 1 and � is independent of r, �(r) /
M 4=5

BH=r
3=5. This form of the surface density profile is impor-

tant later for our MBH-�� relation. We also show the contour
for which the opacity due to bound-free transitions is �bf ¼ �e

(implying �̂ ¼ 2 if other opacity mechanisms are negligible).
To the left of this line we have �̂ ’ 1.

2.2. Changges of Velocity, Orbital Energgy, and Mass
of a PlungginggStar

The orbital angular momentum of a star in the stellar system
around the black hole may be changed by relaxation processes
or a triaxial potential (due to the gravitational contribution of
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stars and the gas disk), and if by chance the orbit becomes
very eccentric, the star may collide with the dense central part
of the accretion disk. The gas drag force during the collision
will then slow down the star by a velocity increment�v, result-
ing in a loss of orbital energy and a corresponding reduction of
the orbital apocenter and period. If the apocenter reduction is
substantial enough, the star will be condemned to plunge re-
peatedly through the disk until its orbit is brought into the disk
plane and circularized (Syer et al. 1991), leaving the star im-
mersed inside the disk. This defines an effective loss cylinder
for the capture of a star by the disk. We now calculate the con-
dition for the star to be captured.

As seen below, the typical radius at which stars are captured
by crossing the disk is r �103RS, where RS is the Schwarzschild
radius of the black hole. The orbital velocity of the star as it
crosses the disk at this radius is �104 km s�1, which is highly
supersonic and much greater than the escape velocity from the
surface of the star. This means that gravitational focusing is
negligible, and hence the response of the disk to the passage of
the star can be ignored for the purpose of computing the ve-
locity change of the star �v.

Under these conditions we assume, as a first approximation,
that �v is simply determined by the absorption of the mo-
mentum of all the disk gas that lies along the path of the star:

�v ¼ �

��

v

sin 

; ð14Þ

where �� ¼ M�=(�R
2
�) is the mean surface density of the star

of mass M� and radius R�, 
 is the angle between the orbital ve-
locity of the star and the plane of the disk at the intersection
point, and v is the relative velocity between the star and the disk
gas moving on a circular orbit. Typically, �� �1011 g cm�2

and ��106 g cm�2 (see Fig. 1), so �v=v �10�5 for each star
passage through the disk.

Apart from reducing their velocity, stars may also lose a
small fraction of their mass at every disk passage. As is dis-
cussed in x 4, stars may survive essentially intact through
many disk passages until they merge inside the disk, but after

this they should be destroyed and their matter should dissolve
into the disk.

A complete analysis of the rate at which stars are captured
by the disk would require computing the probability distri-
bution of �v from a random distribution of orbital inclinations
and pericenter longitudes (see Ostriker 1983 for a calculation
along this line to compute the rate of angular momentum loss
of the disk by star crossings). In this paper we make a more
approximate estimate based on considering a typical star orbit.
We use v ’ (2GMBH=r)

1=2 (neglecting the circular velocity of
the gas in the disk) and assume the case in which the star
crosses the disk at its pericenter. The average value of 1=sin 
,
where 
 is the angle between the plane of the orbit and the
plane of the disk (with probability distribution sin 
 d
), is
then �/2, so the change in the orbital energy per unit mass is

�E ¼ v�v ¼ �

��

�GMBH

rp
; ð15Þ

where rp is the pericenter. Averaging over all possible peri-
center longitudes would not greatly modify this result (for
example, one can easily show that for a pericenter longitude of
90�, the collision of the star with the disk takes place at a
radius 2rp , which reduces the disk surface density by 2�3/5 and
the square of the relative velocity by 1

2
, but then �v is in-

creased by a factor of 2 because there are two equal collisions
per orbit and by another factor of

ffiffiffi
2

p
because the sine of the

angle between the disk plane and the stellar velocity is smaller
by a factor of

ffiffiffi
2

p
).

2.3. The Size of the Reggion from which Stars are Captured

We now consider that we have a stellar system that is
roughly isotropic in the central region of the galaxy where
the gravitational force is dominated by the nuclear black hole.
Among all orbits with a semimajor axis a, the probability dis-
tribution of the orbital pericenter rp is 2(1� rp=a)drp=a (be-
cause an isotropic system in a point-mass potential has a flat
distribution in the square of the eccentricity). Hence, if the
time during which the gas disk is maintained with a roughly

Fig. 1.—Contours of accretion disk parameters � (g cm�2), T (K), Q, �, �̂, and r1c /RS as indicated in each panel. Left: Contours for the case of b ¼ 1, that is, the
disk viscosity is proportional to the gas pressure. Right : Contours for the case of b ¼ 0, that is, the disk viscosity is proportional to the total pressure. All contours are
computed for M�=M� ¼ 1, ��2 ¼ 1, ṁ ¼ 10, and �̂ ¼ 1. We truncate curves to the right of the �̂ ¼ 2 contour, as they are no longer valid in this region.
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constant surface density is tSal (which we identify later with
the Salpeter time for the growth of a black hole; see Salpeter
1964), the number of times that a star will cross the disk at a
pericenter smaller than rp is Norb ¼ (tSal=P)(rp=a)(2� rp=a),
whereP ¼ 2�a3=2=(GMBH)

1=2 is the period. Using equation (15),
the average rate of orbital energy loss of a star with semimajor
axis a due to passages at all pericenters rp is

dE

dt
¼
Z a

r1

drp

aP
2 1� rp

a

� � � rp
� �
��

�GMBH

rp
: ð16Þ

Note that this integral diverges at small rp , that is to say, the
loss of orbital energy is dominated by the disk crossings
closest to the center, when the eccentricity is closest to 1. We
choose the lower limit of the integral, r1, to be the pericenter
for which Norb ¼ 1 because a typical star will not cross the
disk at a smaller pericenter. Using the approximation r1Ta,
this pericenter is r1 ¼ (aP)=(2tSal). Note also that it is essen-
tial here to assume that the rate of relaxation is fast enough to
keep the loss cylinder full, so that the probability to have a star
in a pericenter range drp (when rpTa) is 2drp /a. Assuming
�(r) / r�3=5 (which is true for b ¼ 1, or for the gas pressure–
dominated region of the disk if b ¼ 0), we have

dE

dt
¼ 10

3P

� r1ð Þ
��

�GMBH

a
: ð17Þ

Substituting the orbital energy per unit mass in a point-mass
potential, E ¼ GMBH=(2a), we find

da

dt
¼ � 20�a

3P

� r1ð Þ
��

: ð18Þ

Assuming again �(r1) / r
�3=5
1 and using P / a3=2 and r1 /

aP / a5=2, we have da=dt / a�2. Hence, the condition for the
star to be captured by the disk in a time less than tSal is that, at
the initial semimajor axis,

da=dtk k > a= 3tSalð Þ: ð19Þ

Substituting equation (19) into equation (18), we find that
the capture condition is that the initial semimajor axis must be
smaller than a critical radius rc that obeys

� r1cð Þ
��

¼ Pc

20�tSal
¼ r3=2c

10 GMBHð Þ1=2tSal
; ð20Þ

where Pc is the period at rc and r1c ¼ rcPc=(2tSal).
Because the loss of orbital energy is dominated by disk

crossings at the smallest pericenters, a typical star starting at
a ’ rc loses little orbital energy until by chance it enters the
loss cylinder at a pericenter Pr1c and then substantially re-
duces its semimajor axis in a single disk crossing. After that,
relaxation may take the star out of the loss cylinder if it occurs
fast enough, but as a decreases, the timescale for randomly
entering the loss cylinder again is rapidly shortened in any
case (because on average da=dt / a�2 as shown above), so the
star will inevitably be captured. The radius rc represents the
semimajor axis for which the average time to enter the loss
cylinder for disk capture is tSal.

In practice, the rate of relaxation will not be so large to
make all stars of a fixed semimajor axis have the same prob-
ability to be captured. Stars on loop orbits may never come
close to the center, and only the stars that can reach the phase-

space region of zero angular momentum from their initial or-
bit with the available rate of relaxation will be captured. Pro-
vided that the latter stars are a large enough fraction of the
total within the radius rc , the approximation of a full loss cyl-
inder is appropriate and equation (18) still gives an average
rate of reduction of the semimajor axis. Some stars on loop or-
bits within rc may never reach the loss cylinder, while other
stars slightly farther than rc may be captured if they start on
highly radial orbits. We ignore these complications here and
assume that the stars that are captured are those that start with
a < rc.

2.4. The Black Hole Mass–Velocity Dispersion Relation

We can now clearly see why there should be a relation
between the black hole mass and velocity dispersion of the
stellar system around the black hole. Assuming that the stars
follow an isothermal density profile, the stellar system has a
mass within a radius rc given by its velocity dispersion �c ,
M�(rc) ’ 2rc�

2
c =G. Over the time duration tSal of the luminous

phase of a quasar during which the gaseous disk is present,
stars will continuously plunge through the disk supplying it
with new gas, which will then accrete into the black hole. At
the end of this process, the black hole mass will be MBH ¼
M�(rc), so rc is equal to the zone of influence of the black hole
as its mass reaches its final value.
From equation (20), the surface density at the pericenter

where stars are captured, �(r1c), is proportional to the orbital
period Pc, if tSal and �� are constant. Since

r1c / rcPc / r5=2c =M
1=2
BH ð21Þ

and, for b ¼ 1 and �̂ ¼ 1, we have �(r) / M
4=5
BH =r3=5 (eq. [9]),

we find

� r1cð Þ / M
4=5
BH =r

3=5
1c / M

11=10
BH =r3=2c / Pc / r3=2c =M

1=2
BH : ð22Þ

This implies that M
8=5
BH / r3c , or, using rc / MBH=�

2
c , that

MBH / �30=7
c ; ð23Þ

in excellent agreement with the slope of the observed power-
law relation (Merritt & Ferrarese 2001; Tremaine et al. 2002).
The full predicted relation between MBH and �c is easily

found starting from equations (9) and (20), combined with
r1c ¼ �r5=2c =½tSal(GMBH)

1=2�. We also use the relation rc ¼
GMBH=(2�

2
c ) for an isothermal density profile and tSal ¼

(c�e)=(4�Gṁ) for the Salpeter time. The result is

MBH ¼ M 5=7
� m

2=7
Pl

� emPl

me

� �8=7
2�c

ve�

� �30=7 ve�
3c

� �10=7

; ṁ�5=7�̂ r1cð Þ�1=7 5	(1þ X )

�� r1cð Þb�1

" #4=7
; ð24Þ

where mPl ¼ (fc=G )1=2 is the Planck mass and ve� ¼ (2GM�=
R�)

1=2 is the escape velocity of the star. In terms of typical val-
ues of MBH and �c , this is

MBH ¼ 3:3 ; 108 M�
� � M�

M�

� �5=7ð �c

200 km s�1Þ30=7

;
ve�
ve�

� �20=7

ṁ�5=7�̂ r1cð Þ�1=7 ��2� r1cð Þb�1
h i�4=7

; ð25Þ

where we have used X ¼ 0:7 and 	 ¼ 0:62.
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The normalization of the relation is also reasonably close to
the observed relation MBH ¼ (1:3 ;108 M�)(��=200 km s�1)a

(Merritt & Ferrarese 2001; Tremaine et al. 2002), but it is
subject to many uncertainties depending on various parame-
ters: the type of star that is most abundant in the stellar system,
the viscosity parameter �, the normalized accretion rate ṁ,
and the relationship of the velocity dispersion �c of the nuclear
starburst region at the time the quasar was active to the present
central velocity dispersion of the galaxy that contains the rem-
nant black hole. On this last point, it must be realized that the
stellar density we have assumed at radius rc is much higher
than the present stellar density in observed elliptical galaxies (for
example, for �c ¼ 200 km s�1 and MBH �108 M�, rc ’ 5 pc,
and the density profiles of observed elliptical galaxies are shal-
lower than isothermal up to radii much larger than rc). This
implies that in our model the central stellar density must have
been greatly reduced after the quasar epoch owing to, for ex-
ample, mass loss from supernovae and winds with subsequent
adiabatic expansion (in particular if the stellar mass function
in nuclear starbursts is dominated by massive stars), as well as
mergers of nuclear black holes as their host elliptical galax-
ies merge (Quinlan 1996; Faber et al. 1997; Milosavljević &
Merritt 2001). These processes may have altered the central
velocity dispersion of the galaxy.

The quantities �̂(r1c) and �(r1c)
b�1 can affect not only the

normalization but also the shape of the MBH-�c relation. In
Figure 1, the value of r1c as a function of MBH is plotted (as-
suming �̂ ¼ 1). This is computed by using r1c ¼ rcPc=(2tSal),
which yields

r1c ¼ 340RSṁ
1=6 M�

M�

� �5=6 ve�
ve�

� �10=3

; M8�̂ð Þ�1=6 ��2�
b�1

� �2=3
: ð26Þ

As we can see, the region where �̂ exceeds unity substan-
tially is at radius larger than r1c , but the disk radiation pres-
sure can be important near r1c . This implies that the relation
MBH / �

30=7
� is only valid for b ¼ 1, that is to say, when the

disk viscosity is proportional to the gas pressure. If b ¼ 0, and
in the radiation-dominated pressure limit of �T1, we can
find by using equations (11), (25), and (26) that MBH / �10=3

c .
Hence, the predicted MBH-�c relation depends on details of the
disk viscosity.

Generally, the MBH-�c relation in equation (25) depends
on the disk surface density profile, which is subject to other
possible modifications in addition to the viscosity mechanism.
The effects of the stars crossing the disk on the surface density
profile are briefly discussed in x 5. The simple thin-disk model
may also be modified when the luminosity is approximately
equal to the Eddington luminosity and the disk thickens by the
radiation pressure (Wang et al. 1999; Ohsuga et al. 2002).

2.5. The Evvolution of a Nuclear Black Hole
after the Formation of a Galactic Spheroid

The mass–velocity dispersion relation we have derived in
equation (24) originates from the condition that the rate at which
newmass is delivered to the disk by plunging stars is the same as
the rate at which the gas in the disk is accreted by the black hole.
How does that establish the black hole mass–velocity disper-
sion relation in the remnant galaxies after quasars turn off ?

Mergers of galaxies rich in cold gas may often give rise to
strong nuclear starbursts. A seed black hole may be present in
the nucleus, probably coming from one of the galaxies that

merged. The seed black hole mass can initially be very small
compared to the value implied by equation (24) for the ve-
locity dispersion of the newly formed galactic spheroid. A
small seed accretion disk can initially form around this black
hole by a variety of mechanisms, such as residual gas left over
from star formation or from stellar winds that reaches the
center directly, physical stellar collisions, and tidal disruptions
of stars by the black hole. This disk can then start growing and
feeding the black hole by capturing stars. We now show that
the capture rate of stars will be more than sufficient to main-
tain an Eddington accretion rate as long as the black hole mass
is below the MBH-�c relation in equation (24).

For fixed �c and a singular isothermal profile of stars, the
black hole needs to capture stars out to a radius rc / MBH to
increase its own mass. Let t be the timescale over which these
stars with total massMBH are captured. Then, as the black hole
grows, the capture pericenter must increase as r1c / rcPc=t /
M 2

BH=t (where the orbital period at rc is Pc / r3=2c =M 1=2
BH

/MBH).
By the same arguments as in the previous subsections, captur-
ing a star over one orbit requires �(r1c)=�� / r1c=rc / MBH=t.
At the same time, if accretion of the disk gas to the black hole
also occurs at the rate Ṁ �MBH=t (so that the normalized ac-
cretion rate is ṁ / t�1), then equation (9) implies that the sur-
face density at the capture radius is �(r1c)/M 4=5

BHṁ
3=5=r 3=51c /

M
�2=5
BH , independent of t. Combining these two scalings for

�(r1c), we infer t / M
7=5
BH. Equivalently, the normalized accre-

tion rate is ṁ / M�7=5
BH

. This makes it clear that the lower the
mass of the black hole, the shorter the time required for the gas
disk to capture stars with a mass equal to that of the black hole.
Vice versa, if the black hole exceeds the mass in equation (24),
then the gas disk must take longer than the time tSal to capture
stars with a total mass MBH.

We note that our inferred proportionality ṁ / M
�7=5
BH when

the disk is capturing stars from a stellar cluster with fixed �c
implies that the accretion rate is super-Eddington when the
black hole mass is small. Under these circumstances, a thin disk
with the surface density profile equation (9) is probably not
valid (although disk models with super-Eddington accretion
have been proposed by Begelman 2001). Nevertheless, this
does not alter our conclusion that stellar capture provides suf-
ficient matter for maintaining an accretion rate at least at the
Eddington level while the black hole mass is below the relation
given by equation (24). For example, if we assume that a thin
disk with fixed ṁ is maintained while the black hole mass is
small (with the ‘‘excess’’ matter delivered by stars being ex-
pelled in an outflow), then we have�(r1c)/M

4=5
BH=r

3=5
1c /M

�2=5
BH

t3=5, which combined with �(r1c)/MBH=t yields t/M
7=8
BH , so

the timescale for delivery of a mass MBH to the disk is still an
increasing function of MBH.

Hence, capture of stars will replenish the gas disk at a rate
fast enough to maintain an Eddington accretion rate (with
L ’ LEdd and � ’ 0:1) while the black hole mass is less than in
equation (24) for ṁ ’ 10. When this value of the black hole
mass is reached, the disk may still continue to be fed at a de-
creasing value of ṁ, and the black hole mass can keep growing
up to a value MBH / (ṁ)�5=7, according to equation (24). This
continued growth requires that star captures continue over the
increasingly long timescale tSal / ṁ�1.

The growth of the black hole may eventually stop as a result
of three possible mechanisms. The first is the aging of the
stellar population, which reduces the number of available stars
for capture and the mean value of M

5=7
� =v

20=7
e� in equation (24).

The second is the depletion of the loss cylinder as the post-
starburst stellar system reaches equilibrium and the rate of
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orbital relaxation declines. The third is a transition of the gas
accretion into the black hole from a thin, radiatively efficient
disk into a hot, advection-dominated accretion flow or inflow/
outflow solution (e.g., Blandford & Begelman 1999; Quataert
2003). This transition to a hot, thick flow may occur at a
critical value of ṁ as it decreases (Begelman & Celotti 2004),
and it implies a dramatic decline of the surface density, which
would immediately terminate the capture of stars and cause a
sudden decrease in ṁ. Therefore, our model also suggests a
mechanism by which quasars turn off, leaving behind a rem-
nant black hole that will stay at a constant mass thereafter if
there are no additional nuclear starbursts. This final black hole
mass should therefore depend on the value of ṁ at which the
accretion ceases. If this value of ṁ depended on MBH, the
slope of the MBH-�c relation would be altered.

There are a number of possible problems with the simple
picture presented here that will need to be addressed in future
work. The initial process by which the gas disk grows around a
seed black hole, reaching the Eddington accretion rate out to a
certain radius, needs to be examined more carefully. The struc-
ture of the accretion disk should also be thoroughly modified
from that of the simple steady state model in x 2.1, as a result of
the effects of the capture of stars in adding mass, energy, and
angular momentum to the disk. Finally, the process by which a
quasar would turn off as the stellar capture rate decreases and
the stellar population ages also needs to be studied.

3. SELF-GRAVITY OF THE ACCRETION DISK

One of the classic problems encountered by standard quasar
accretion disk models is that if matter is transported from large
radius, from any residual gas in the galaxy that is left over
from star formation, the gas should form a thin disk and be-
come gravitationally unstable to form stars while it is still very
far from the black hole (Shlosman & Begelman 1987). In this
case, the result might not be a black hole fed by an accretion
disk, but simply a dense inner disk of stars. The criterion for
gravitational instability is obtained from Toomre’s parameter,
Q ¼ (cs�)=(�G�), which, using equations (8) and (9), can be
expressed as (see also the Appendix in Goodman 2003)

Q ¼ 453=10

�9=10227=20
ṁ�2=5�̂3=10� 7b�12ð Þ=10 mPl

	mp

� �6=5

;
mPl

MBH

� �13=10 �2
e�m

3
Pl(1þ X )
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e

� �7=10
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r

� �27=20

; ð27Þ

or in terms of fiducial values,

Q ¼ 0:33ṁ�2=5�̂3=10� 7b�12ð Þ=10M
�13=10
8 �

7=10
�2

103RS

r

� �27=20

:

ð28Þ

Contours of Q ¼ 1 are shown in Figure 1 (for ṁ ¼ 10,
��2 ¼ 1). To the left of the contour Q > 1 and the disk is
stable, while to the right the disk is gravitationally unstable.
Figure 1 shows that the region of the disk within r1c is mostly
stable, except for large black hole masses for which the disk
may be marginally unstable close to r1c. The effect of the stars
crossing the disk would probably be important here in in-
creasing the disk temperature and stabilizing it. Hence, the
model proposed here may solve the problem of instability in
quasar accretion disks at large radius, simply because most of

the matter is delivered to the disk at small radius. Future work to
calculate the disk structure including the effects of the plung-
ing stars and possible extensions of the accretion disk to large
radius with matter from stellar winds will be needed to examine
this question in more detail.

4. THE FATE OF THE CAPTURED STARS

The orbits of the stars plunging through the disk are grad-
ually circularized and brought into the disk plane in successive
crossings. At every crossing, a fraction of the star might be
stripped from its outer layers. If this mass loss were large
enough, stars could be destroyed before they merge into the
disk.
Considering a typical case, forMBH ¼ 108 M�, ṁ ¼ 10, � ¼

10�2, and solar-type stars, a star crossing the disk at r1c ’
500RS (eq. [26]) encounters a surface density �� 5 ;106 g
cm�2 with midplane temperature T � 2 ; 105 K, � � 0:4, and
cs � 70 km s�1 (as obtained from x 2.1). The disk scale height is
H ¼ cs�� 6 AU, and at a velocity v �104 km s�1 the star takes
a few days to cross the disk. The midplane disk density at r1c is
���=(2H ) �10�7:5 g cm�3. The ram pressure exerted by the
disk gas on the star is �v 2 �1010:5 ergs cm�3. In a star like the
Sun, this same pressure occurs at a radius 0:97R�, which cor-
responds to a mass Mout �10�4:5M� outside this radius. How-
ever, most of this mass should simply be pushed against the star
surface to higher pressure by the shock generated by the disk
wind and will not be lost. The disk material will be heated to
�109 K when it encounters the shock and will then flow around
the star. Any stellar mass loss during the disk passage depends
on the heat conduction and irradiation from the postshock disk
material into the stellar surface, as well as any turbulent in-
stabilities that may mix stellar matter into the disk wind. After
the disk passage, the heated material in the stellar surface would
cool back to equilibrium on a short timescale compared to the
orbital period. We therefore expect that the mass loss of the
plunging stars will be negligibly small, modulo the uncertain
mixing processes of matter in the stellar surface and the post-
shock disk wind that might act to destroy stars before they
merge into the disk (see also Goodman & Tan 2004).
Assuming that the stars survive, once embedded inside the

disk they may create gaps around them if they are sufficiently
massive, or theymay accrete gas from the disk (Syer et al. 1991;
Artymowicz et al. 1993). Stars might also evaporate into the
disk instead of accreting if the midplane temperature is high
enough. In any case, eventually the stars will be mostly de-
stroyed and dissolved into the gaseous disk. That this must be
the case can easily be seen by considering what would happen
if a large fraction of the disk mass were in the form of stars
of M� ’ 1 M�. For typical parameters M8 ¼ 1, r ¼ 500RS ¼
1000 AU, and � ¼ 106:5 g cm�2, stars would have to occupy a
fraction of the disk area of at least 10�5 (given their typical
surface density�� �1011 g cm�2), so in a ring of width equal to
the solar diameter there would be about 10 stars. These numbers
become even greater for more massive stars because their sur-
face density is lower. This makes it clear that collisions and
scatterings among stars would be frequent, and they would soon
lead to coalescence and destruction of the stars. If a star is on a
slightly eccentric orbit (either because the orbit has not yet fully
circularized after capture or because it has been scattered by
other stars), a collision can take place at a sufficiently high rela-
tive velocity to cause the dissolution of the stars rather than coa-
lescence. If stars can coalesce repeatedly, they will become very
massive and lose a lot of their mass in winds (for a discussion of
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the possible presence of supermassive stars in accretion disks
see Goodman & Tan 2004). Very massive stars are also highly
unstable because their internal energy is almost balanced by
their negative gravitational energy (since they are polytropes
with adiabatic index very close to 4/3), so collisions with other
stars would not have to occur at very high velocities to produce
large amounts of mass loss. It therefore appears inevitable that a
large fraction of the mass in the stars will be dissolved into the
disk and can eventually be accreted onto the black hole with
high radiative efficiency.

5. THE ANGULAR MOMENTUM PROBLEM

The idea presented in this paper is thatmost of thematter in the
black hole accretion disk comes from stars that were originally
in orbits with radius much larger than the size of the disk. These
stars were perturbed into highly eccentric orbits and captured by
the disk, and they were embedded into the disk after repeated
disk crossings in which their orbital energy was dissipated.

If we imagine that the accretion disk has to be initially formed
from the matter of these plunging stars (starting from an initial
small disk that can grow in mass from captured stars until it
reaches a steady state structure), we are faced with the problem
of how the disk has acquired its angular momentum. The av-
erage angular momentum of the captured stars is far too small
to make a disk. Although the specific angular momentum of
an individual plunging star is of the same order as the specific
angular momentum of the disk gas at the radius r1c where the
star is captured, the direction of the angular momentum of each
star is basically random. Even if the stellar system around the
black hole is rotating (implying a phase-space density of stars
that depends on the direction of the orbital angular momentum),
the stars captured by the disk are coming from a very narrow
loss cylinder, and the variation of the phase-space density over
this narrow region is negligible. Thus, if the disk is made solely
by these stars, the final specific angular momentum of the cap-
tured matter is reduced by the square root of the number of stars
that have contributed to the disk mass. In other words, the radius
of the disk that could be made by the matter from these stars is
reduced relative to the capture radius r1c by a factor equal to the
number of captured stars, which would make the disk smaller
than the Schwarzschild radius. Clearly, a disk around the black
hole cannot be made by stars captured from orbits with random
orientations.

This problem is, however, much less severe if the disk is
considered to be in place initially, and the plunging stars only
have to maintain the disk in a steady state. If we imagine that the
disk is truncated at a radius �r1c , where most of the plunging
stars are incorporated into the disk, then the angular momentum
that flows out of the disk and into the black hole is very small
(because the radius of the innermost stable circular orbit from
which matter is accreted to the black hole is much smaller than
r1c), and the angular momentum that flows into the disk from
the plunging stars is also very small. Hence, the disk angular
momentum can basically be preserved: as matter flows inward
in the disk, it releases its angular momentum by viscosity
processes toward the outer disk, and this angular momentum is
constantly being absorbed by the matter added from plunging
stars. With this simplified description, it can be argued that the
scaling of the disk surface density profile with black hole mass
and radius in equation (9) would essentially be preserved when
the energy and angular momentum added to the disk by the
plunging stars are included self-consistently, except that the
disk is truncated around radius r1c where most of the matter
from stars is added.

This greatly alleviates, but does not completely solve, the
angular momentum problem because there is still a small
amount of angular momentum that is transferred to the black
hole as the accretion proceeds. Moreover, the problem may be
made worse because the stars that have angular momentum
opposite to that of the disk should have a higher probability of
capture owing to their larger relative velocity with respect to the
disk material. This implies that the captured stars would actu-
ally carry a net average angular momentum to the disk but with
opposite direction. A full solution of the problem may require
the addition of some matter to the disk with high specific an-
gular momentum from large radius. The disk would not need
to be completely cut off at radius larger than r1c , but it could
continue at a lower surface density. The outer-disk matter with
high angular momentum can originate from gas that is left over
from star formation or has been expelled in winds from evolved
stars and supernova explosions, and its angular momentum can
come from a small rotation rate of the stellar system around the
black hole. Note that the matter accreting from a disk at radius
larger than r1c needs to be only a small fraction of the total, with
most of the mass coming from plunging stars (because only a
small fraction of the disk angular momentum needs to be re-
plenished every time its mass is replaced within r1c), thereby
preserving the explanation for the M-� relation we have pro-
posed in this paper. As for the problem that stars moving on
orbits with angular momentum opposite to that of the disk are
more likely to be captured than stars moving in the same sense
of rotation as the disk, we note that while stars lose most of their
orbital energy during disk crossings at the smallest pericenter,
the exchange of angular momentum with the disk is dominated
by crossings at large radius for a disk surface density profile
�(r) / r�3=5. This may help solve the problem in a disk ex-
tending to r3 r1c with a small fraction of the accretion rate
contributed by stellar captures.

The total angular momentum of the accretion disk within r1c
might, in fact, be self-regulated by the presence of an AGN
wind. If random fluctuations in the number of plunging stars
coming in with different angular momenta cause the disk to lose
a lot of angular momentum at some point, the natural response
is that as the disk shrinks the accretion rate is increased and
a strong AGN wind results when the luminosity becomes too
close to the Eddington value. Some of the ejected material
might then fall back into the disk at larger radius, mixing with
gas of high specific angular momentum and dragging some of
that gas to smaller radius.

Another mechanism that may cause a mixing of material of
different specific angular momentum is the lifting of gas from
the disk when stars go through it. This was described by Zurek
et al. (1994, 1996), who suggested that the resulting star tails and
debris might be the origin of the broad emission lines in AGNs.

6. DISCUSSION

Several models have been suggested that can explain the
MBH-�� relation. These fall broadly into two distinct classes:
models in which the growth of the black hole is limited by
either radiative or mechanical feedback from the active nu-
cleus (e.g., Silk & Rees 1998; Haehnelt et al. 1998; Blandford
& Begelman 1999, 2004; King 2003; Wyithe & Loeb 2003)
and models in which the matter available in the bulge in stars
or gas determines the feeding of the central black hole (e.g.,
Zhao et al. 2002; Merritt & Poon 2004). The first class of
models face the difficulty of explaining how enough material
accretes from the large distances required down to the central
engine via an accretion disk, as we describe in more detail
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below.Moreover, it is not clear how an outflow can be sustained
over the time required to entirely expel all the matter that could
potentially be fed to the black hole at a future time, out to a large
distance from the host galaxy, without at the same time affect-
ing the accretion disk much closer to the black hole, which is
energizing the outflow. The second class of models (to which
our model belongs), when using stars to grow the black holes,
have been faced up to nowwith the key problem that they do not
account for the high-redshift quasars and that the black holes
grow only on very long timescales.

The model introduced in this paper proposes that the prin-
cipal mechanism by which accretion disks around quasars ac-
quire their mass is from stars that plunge through the disk. The
increased cross section for capturing a star by the disk, com-
pared to a direct capture by the black hole, allows black holes
to be fed at a rapid rate, thereby avoiding the timescale prob-
lems encountered by previous models in this class. Further-
more, because the stellar matter is dissolved into the thin disk
and then accretes onto the black hole at high radiative efficiency,
quasars are naturally accounted for as the main mechanism by
which black holes grew. Accretion disks around quasars are
predicted to be much smaller than previously believed (although
a small fraction of the accreted matter may be carried in as gas
from large radius), thereby avoiding the disk gravitational in-
stability problem. The predicted MBH-�� relation is consistent
with observations and is related by our model to fundamental
parameters of the accretion disk and properties of the stellar
population.

As pointed out previously by Ostriker (1983), Syer et al.
(1991), and others, it is inevitable that some stars will be
captured through this process because the dense nuclear re-
gions of galaxies must always contain stars. The question is
whether or not star captures will occur at the high rate nec-
essary to feed the disk and account for the final black hole
mass. We have shown that the answer to this question is af-
firmative provided that two crucial assumptions are satisfied:
first, that nuclear starbursts produce a roughly isothermal ini-
tial density profile of stars with a velocity dispersion �c similar
to that of the whole spheroidal component (with any core ra-
dius in the stellar distribution being smaller than the zone of
influence of the final black hole, rc); and second, that the rate
at which stars are brought into a nearly radial orbit owing to
dynamical relaxation and the triaxiality of the potential (which
can result in a substantial fraction of stochastic orbits) is suf-
ficient to keep the loss cylinder full. These assumptions may
turn out to be wrong, and if this is the case, other explanations
will need to be found for how enough gas is transported to the
inner accretion disk in quasars without turning to stars along
the way and for the MBH-�� relation. But if the assumptions
are correct, our model provides a unified solution of these ap-
parently unrelated problems.

The detailed predicted form of the MBH-�� correlation is
still subject to theoretical uncertainties that will need to be
carefully analyzed as the model we have introduced here is
developed further. The surface density profile of the disk,
which is the main property that determines the form of the
MBH-�c correlation, is affected by the viscosity mechanism
that causes the disk to accrete to the black hole, by the ac-
cretion rate of the quasar disk, and by the heating and addition
of angular momentum to the disk associated with the plunging
stars and their transformation inside the disk. Nevertheless,
the simple analysis presented in this paper based on a disk
with no heat source except viscous dissipation and no redis-
tribution of angular momentum (plus the argument we give in

x 5 that the effects of the plunging stars are likely to be a
truncation of the disk around radius r1c , maintaining the basic
scalings of the disk surface density profile with mass, radius,
and accretion rate) suggests that it is plausible that this model
can account for the observed correlation.
This plunging star model has the added benefit of providing

a simple way to deliver the large mass of the black hole to a
very small disk around it. The difficulty of explaining how
nuclear black holes have grown so big in the standard (but
hypothetical) scenario whereby gas reaches the center by ac-
cretion through a disk extending to large radius should not be
overlooked (e.g., Begelman 2003). In fact, taking as a typical
example a black hole with MBH ¼ 108 M� in a galaxy with
�� ¼ 200 km s�1 and stellar mass Mb �1011 M� within 5 kpc
of the center, the radius initially containing a mass of 108 M�
is 5 pc for a singular isothermal profile (and even larger for
shallower profiles). It is very difficult to see how all this mass
could form a gaseous disk and then accrete inward by 3 orders
of magnitude in radius over the lifetime of the quasar, without
turning into stars. Observationally, we see that star formation
is a universal phenomenon taking place in every galaxy that
contains cold gas above some critical surface density thresh-
old (e.g., Kennicutt 1989; Martin & Kennicutt 2001) and that
cold gas does not migrate very much in radius before it turns
to stars. However, in the standard quasar model one is forced
to assume that the same thing does not happen in the innermost
parts of galaxies and that cold gas is efficiently transported to
the nucleus. Our model solves this problem by proposing that
all this gas does indeed turn into stars, and then the stars are
captured by the disk at small radius. In this way, the disk gravi-
tational instability problem is likely also solved. The disk can
still extend to radius much larger than r1c from additional
gaseous material left over from star formation and expelled by
evolved stars (which could be a source of angular momentum
for the disk), but with a much lower accretion rate than in the
inner disk supplied by plunging stars. The low surface density
of this outer disk, plus the additional heating source provided
by plunging stars, can help prevent star formation at large ra-
dius (for models of marginally self-gravitating disks see Sirko
& Goodman 2003).
Norman & Scoville (1988) also suggested a model in which

quasars are fueled by stars after a nuclear starburst, but in their
case all the matter is expelled by evolved stars. Their model still
does not account for why the gas present in this nuclear region
stops forming stars at some point and starts accreting into the
black hole instead. Our model brings the stellar matter in the
central cluster close to the black hole directly and provides a
natural black hole mass at which this process should stop.
What other observational predictions can our model make?

Clearly the structure of the accretion disk should be modified
by the capture of stars, probably showing some characteristic
feature in the surface density and temperature profiles at the
capture radius. A clear test of this scenario will require much
more advanced theoretical modeling than we have done here
to obtain predictions for the disk profiles, as well as observa-
tions that can resolve the continuum emission of the disk. The
addition of angular momentum to the central parts of the disk
by plunging stars coming in along random orbits may generate
warped inner disks with a characteristic variability timescale
that could have observable consequences. The star tails gen-
erated by the plunging stars may give rise to the broad emis-
sion line region, as discussed by Zurek et al. (1994, 1996).
Hydrodynamical simulations may be necessary here to make
any predictions that could be confronted with observational
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tests, which could perhaps suggest some diagnostic for the
rate at which stellar collisions with the disk occur, testing if
the rate is as high as required by our model.

The clearest prediction of our model is that the quasar phe-
nomenon must take place in the context of nuclear starbursts.
Only a very compact starburst can provide the high density of
stars in the nucleus that is necessary to feed the accretion disk.
Quasars may always follow an initial stage of growth within
a highly obscured compact starburst region, which becomes
highly ionized and transparent only after the quasar has reached
a high luminosity and cleared the surrounding dust. The light
contribution from the starburst around the quasar will be diffi-
cult to discern because the total mass of the starburst that forms
the plunging stars within radius rc is comparable to the total
mass that will be accreted by the black hole, and the radiative
efficiency of gas accretion to the black hole is much higher than
the efficiency of nuclear burning in stars. The most straight-
forward observational test of our model would be to image the
central few parsecs around a luminous quasar and see if the
population of plunging stars is there, but the high resolution
required and the small amount of light coming from the stars
compared to the quasar may make this a difficult challenge. In
our model, the size of the nuclear starburst from which stars are
captured is rc � (5 pc)(MBH=10

8 M�)
8=15, much smaller than

the highest resolution images available from nearby Seyfert
galaxies (Pogge & Martini 2002).

It is also natural to expect that galaxies that undergo star-
bursts in the nuclear region have ongoing star formation on a
larger scale. The observational evidence generally indicates
that nuclear activity occurs in galaxies with high rates of star
formation (Heckman et al. 2004), which is favorable to our
model.

The high stellar density of the required nuclear starbursts
does not need to be preserved at the present time, long after the
quasar is dead. Several dynamical phenomena can reduce the
central stellar density: if massive stars are dominant in nuclear
starbursts, only the light from the small fraction of mass that
formed low-mass stars would be visible at present. Moreover, a
large fraction of the initial stellar mass would have been lost in
stellar winds and supernovae, resulting in adiabatic expansion
of the remaining stellar population. Mergers of galaxies har-
boring nuclear black holes from old quasars will lead to the
merger of black holes, which eject the stars near the center and
create a wide core in the stellar profile (Milosavljević & Merritt
2001). Diverse merger histories in different galaxies may in-
troduce the large variability observed in the slope of the in-
nermost stellar profiles in elliptical galaxies (Faber et al. 1997;
Balcells et al. 2004). Even though our model predicts thatMBH

is correlated with the velocity dispersion of the nuclear starburst
at the small radius, rc , from which most of the captured stars
come, the correlation with the velocity dispersion can remain a
tight one out to much larger radius if nuclear starbursts tend
to form with a universal density profile close to isothermal.
Then, after the inner part of the stellar distribution is altered by
repeated galaxy and black hole mergers, the remaining present

correlation would be tightest when expressed in terms of the
velocity dispersion at large radius.

The model also predicts that the MBH-�� relation should be
independent of redshift, since it is imprinted at the time the
quasars formed, except for the effects of galaxy mergers and
the passive evolution of the stellar population in changing the
velocity dispersion. The small scatter of the relation is easier
to understand if galaxy mergers shift the black hole mass and
velocity dispersion of galaxies in a direction approximately
parallel to the MBH-�� relation (as seems to be implied by the
Faber-Jackson relation). This suggests that the MBH-�� rela-
tion may remain unmodified by mergers and should then be
close to constant with redshift.

Another prediction of our model is that not all AGNs should
lie on the sameMBH-�� relation as the inactive black holes, but
they should deviate from it in a way that depends on the L/LEdd
ratio. When a black hole becomes active after a nuclear star-
burst has occurred, its mass may initially be small and the sup-
ply of fuel from plunging stars will be more than sufficient to
maintain an Eddington luminosity, but as the black hole grows
in mass and approaches the finalMBH-�� relation, the ratio L/LEdd
has to decrease if the quasar is to be sustained (as discussed in
x 2.5). Hence, active nuclei with L ’ LEdd should lie below the
relation, and they should gradually come closer to the relation as
L/LEdd decreases toward a minimum value at which the nuclear
activity typically ceases, with MBH / (L=LEdd)

�5=7�30=7
� if the

radiative efficiency � is constant (see eq. [24]). Recent data
on narrow-line Seyfert I galaxies suggest a correlation that is
roughly along these lines (Mathur et al. 2001; Grupe & Mathur
2004; Mathur & Grupe 2004).

Finally, the MBH-�� relation should break down at a black
hole mass where the mass of the accretion disk becomes com-
parable to that of a star.When that happens, the timescale for the
disk to accrete onto the black hole should be comparable to the
mean time to capture one star, so the disk can disappear when,
by chance, no star is captured over a long enough period of time.
Approximating the mass of the disk as �r21c�(r1c), and from
equations (12) and (26), we find that the mass of the disk is 1M�
at MBH �104:5 M�. This shows that the mechanism we have
presented here cannot continue to operate below this mass.

In summary, we have presented a novel mechanism for
the formation of nuclear black holes in the centers of galaxies
through the capture of stars by a gaseous accretion disk. Our
model provides a physical connection between the stellar pop-
ulations of bulges and black hole growth and reproduces the
observed MBH-�� relation for reasonable input assumptions as
a natural consequence.

We are grateful to Martin Haehnelt, Jordi Isern, David
Merritt, Martin Rees, Scott Tremaine, and David Weinberg for
many insightful discussions. J. A. K. acknowledges the support
of a university fellowship at Ohio State. This work was sup-
ported in part by grant NSF-0098515.

REFERENCES

Aller, M. C., & Richstone, D. 2002, AJ, 124, 3035
Artymowicz, P., Lin, D. N. C., & Wampler, E. J. 1993, ApJ, 409, 592
Balbus, S. A., & Hawley, J. F. 1998, Rev. Mod. Phys., 70, 1
Balcells, M., Graham, A. W., & Peletier, R. C. 2004, ApJ, submitted (astro-ph/
0404379)

Barger, A. J., Cowie, L. L., Bautz, M. W., Brandt, W. N., Garmire, G. P.,
Hornschemeier, A. E., Ivison, R. J., & Owen, F. N. 2001, AJ, 122, 2177

Begelman, M. C. 2001, ApJ, 551, 897

Begelman, M. C.———.2003, in ASP Conf. Ser. 290, Active Galactic Nuclei: From
Central Engine to Host Galaxy, ed. S. Collin, F. Combs, & I. Shlosman (San
Francisco: ASP), 23

Begelman, M. C., & Celotti, A. 2004, MNRAS, 352, L45
Blandford, R. D., & Begelman, M. C. 1999, MNRAS, 303, L1
———. 2004, MNRAS, 349, 68
Faber, S. M., et al. 1997, AJ, 114, 1771
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9

STAR CAPTURES BY QUASAR ACCRETION DISKS 39No. 1, 2005



Gebhardt, K., et al. 2000, ApJ, 539, L13
Goodman, J. 2003, MNRAS, 339, 937
Goodman, J., & Tan, J. C. 2004, ApJ, 608, 108
Grupe, D., & Mathur, S. 2004, ApJ, 606, L41
Haehnelt, M. G. 2004, in Coevolution of Black Holes and Galaxies, ed. L. Ho
(Cambridge: Cambridge Univ. Press), 406

Haehnelt, M. G., Natarajan, P., & Rees, M. J. 1998, MNRAS, 300, 817
Heckman, T., Kauffmann, G., Brinchmann, J., Charlot, S., Tremonti, C., &
White, S. D. M. 2004, ApJ, 613, 109

Kennicutt, R. C., Jr. 1989, ApJ, 344, 685
King, A. 2003, ApJ, 596, L27
Kormendy, J., & Richstone, D. 1995, ARA&A, 33, 581
Lynden-Bell, D. 1969, Nature, 223, 690
Magorrian, J., et al. 1998, AJ, 115, 2285
Martin, C. L., & Kennicutt, R. C., Jr. 2001, ApJ, 555, 301
Mathur, S., & Grupe, D. 2004, A&A, submitted (astro-ph /0407512)
Mathur, S., Kuraszkiewicz, J., & Czerny, B. 2001, NewA, 6, 321
Merritt, D., & Ferrarese, L. 2001, ApJ, 547, 140
Merritt, D., & Poon, M. Y. 2004, ApJ, 606, 788
Milosavljević, M., & Merritt, D. 2001, ApJ, 563, 34
Norman, C., & Scoville, N. 1988, ApJ, 332, 124

Ohsuga, K., Mineshige, S., Mori, M., & Umemura, M. 2002, ApJ, 574, 315
Ostriker, J. P. 1983, ApJ, 273, 99
Quataert, E. 2003, Astron. Nachr., 324, 435
Quinlan, G. D. 1996, NewA, 1, 35
Pogge, R. W., & Martini, P. 2002, ApJ, 569, 624
Pringle, J. E. 1981, ARA&A, 19, 137
Richstone, D., et al. 1998, Nature, 395, A14
Salpeter, E. E. 1964, ApJ, 140, 796
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Shlosman, I., & Begelman, M. C. 1987, Nature, 329, 810
Silk, J., & Rees, M. J. 1998, A&A, 331, L1
Sirko, E., & Goodman, J. 2003, MNRAS, 341, 501
Soltan, A. 1982, MNRAS, 200, 115
Syer, D., Clarke, C. J., & Rees, M. J. 1991, MNRAS, 250, 505
Tremaine, S., et al. 2002, ApJ, 574, 740
Wang, J.-M., Szuszkiewicz, E., Lu, F. J., & Zhou, Y. Y. 1999, ApJ, 522, 839
Wyithe, J. S. B., & Loeb, A. 2003, ApJ, 595, 614
Yu, Q., & Tremaine, S. 2002, MNRAS, 335, 965
Zhao, H., Haehnelt, M. G., & Rees, M. J. 2002, NewA, 7, 385
Zurek, W. H., Siemiginowska, A., & Colgate, S. A. 1994, ApJ, 434, 46
———. 1996, ApJ, 470, 652

MIRALDA-ESCUDÉ & KOLLMEIER40


