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ABSTRACT

In recent years, automated, supervised classification techniques have been fruitfully applied to labeling and
organizing large astronomical databases. These methods require off-line classifier training, based on labeled
examples from each of the (known) object classes. In practice, only a small batch of labeled examples, hand-labeled
by a human expert, may be available for training. Moreover, there may be no labeled examples for some classes
present in the data; i.e., the database may contain several unknown classes. Unknown classes may be present
because of (1) uncertainty in or lack of knowledge of the measurement process, (2) an inability to adequately
‘‘survey’’ a massive database to assess its content (classes), and/or (3) an incomplete scientific hypothesis. In recent
work, the question of new class discovery in mixed labeled/unlabeled data was formally posed, with a proposed
solution based on mixture models. In this work we investigate this approach, propose a competing technique
suitable for class discovery in neural networks, and evaluate methods for both classification and class discovery in
several astronomical data sets. Our results demonstrate up to a 57% reduction in classification error compared to a
standard neural network classifier that uses only labeled data.

Subject headinggs: astronomical data bases: miscellaneous — galaxies: general — methods: data analysis —
methods: statistical

1. INTRODUCTION

Finding patterns in large astronomical databases and group-
ing the data into different classes has become an important task
in recent years, one that must be done in an automated fashion
given the massive amounts of sky survey data currently being
collected and stored. Traditional methods such as looking at
large sky plates and identifying galaxies and clusters by eye are
no longer feasible. Within statistical pattern recognition there
are two traditional approaches to data classification: supervised
statistical classification and unsupervised learning (clustering).
In the supervised approach one is given a batch of training data
containing labeled examples from each of the known classes
of interest. These examples are used to learn a decision func-
tion that partitions the feature space into disjoint regions, each
associated with one of the classes. Typical decision function
structures used in practice are neural networks, decision trees,
and prototype-based classifiers. Once the decision function is
learned, it can be used to automatically classify new examples.
The supervised learning of the decision function can be slow
and generally requires off-line training. Moreover, enough la-
beled examples from each of the classes are required to learn an
accurate decision function that adequately separates data into
the different classes. However, extracting labeled examples
from a large database is a time-consuming and expensive pro-
cess, generally requiring hand labeling by human experts.

Alternatively, unsupervised learning, or clustering, tech-
niques assign data to groups without any need for supervising
examples. In these approaches, the grouping is chosen so that
the data examples belonging to each cluster are ‘‘as similar as
possible’’ and so that examples from different clusters are ‘‘as
dissimilar as possible.’’ This notion of similarity is quantified
through a mathematical clustering objective function, one that

relies on the choice of a distance measure defined on the feature
space, e.g., the sum-of-squared-errors criterion. Mixture mod-
els (Duda et al. 2001; McLachlan & Peel 2000; Banfield &
Raftery 1993) are one form of model-based clustering. They
produce probabilistic, or soft, assignments of data points to
each of the mixture components, or clusters. The nature and
quality of the learned groupings obtained via unsupervised
clustering critically depend on the choice of clustering distance
measure and also on the number of clusters to be learned, which
must be specified as part of the algorithm. There are currently
no generally agreed on approaches for choosing these parameters
in unsupervised learning. Furthermore, without supervising ex-
amples, there are no guarantees that the chosen parameters are
consistent with the learning of clusters that correspond to the
ground-truth classes in the data.

In recent years, to overcome the disadvantages of both su-
pervised and unsupervised learning, ‘‘semisupervised learning’’
techniques have been proposed, e.g., Shashahani & Landgrebe
(1994), Miller & Uyar (1997), and Nigam et al. (2000). These
methods learn based on a batch of data that consists of both
labeled and unlabeled examples. On the one hand, appropriate
use of unlabeled examples, in addition to labeled ones, can help
to better learn the ‘‘shapes’’ of each of the classes, i.e., the class-
conditional density functions (Shashahani & Landgrebe 1994;
Miller & Uyar 1997). On the other hand, use of some labeled
examples can potentially help to guide unsupervised clustering
methods toward solutions that capture the ground-truth classes in
the data (Miller & Uyar 1997; Basu et al. 2002).

In nearly all prior semisupervised work, it has been assumed
that the number of classes present in the database is known and
that there are both labeled and unlabeled examples from each
of these classes. However, for scientific domains, especially
those with massive data collections, this assumption may not be
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very reasonable. We use the term ‘‘unknown class’’ to refer to a
ground-truth class that is present in a semisupervised data set
but for which there are no labeled examples. If such classes are
lying ‘‘latent’’ in semisupervised data, it will be scientifically
interesting to identify these groups and to distinguish unlabeled
known class samples from unlabeled unknown class samples.

There are several reasons why the presence of some classes
within a given data set may be unknown. First, there may be
uncertainty associated with the measurement process. As one
example, suppose the data are measured by a new device or one
whose operation (e.g., measurement sensitivity) is imprecisely
known. If the device’s sensitivity or dynamic range is greater
than was supposed, it may record measurements corresponding
to unanticipated events or objects. Second, in some cases, the
set of known classes may be inferred by surveying or sam-
pling a subset of the collected database. However, if there are
millions of data samples, it is only practical to sample a very
small data subset; if 99% of a database remains unsurveyed, it
is quite possible that important content (such as some classes)
will be missed. Finally, because the set of known classes reflects
the currently accepted scientific hypotheses for a given domain,
unknown classes may be present in the data if the current the-
ory is wrong or incomplete. In fact, we can go so far as to say
that the assumption that a collected database is composed of a
fixed (known) set of classes is in some way inconsistent with
the scientific method; one is guaranteed to find what one is
looking for, i.e., known classes, rather than what may actually
be present in the data.

In recent work (Miller & Browning 2003a, 2003b), the
problem of new class discovery in mixed labeled/unlabeled
data sets was formally proposed. The authors recognized that
within a mixed labeled/unlabeled data set, unknown classes
will consist of clusters or groups that are purely unlabeled. The
authors proposed a special mixture-modeling technique tai-
lored for discovering the cluster/group structure in the data and,
in particular, the unknown classes. In their approach, either
individual mixture components represent data from known
classes, in which case they own both labeled and unlabeled
samples, or they represent unknown classes, in which case they
own purely unlabeled data subsets. Their learning approaches
were demonstrated to be very effective at identifying purely
unlabeled clusters (Miller & Browning 2003a) or nearly purely
unlabeled ones (Miller & Browning 2003b) in partially labeled
data sets. Such clusters represent putative unknown classes.
Their approach was further demonstrated to improve the over-
all accuracy of the mixture-modeling solution.

In this work, we consider the problem of galaxy classification
based on sky survey data, with several unknown classes present
in the data. For this domain, we evaluate both the approach of
Miller & Browning (2003b) and a new approach that we pro-
pose here, one that is applicable to class discovery for neural
network–based classifiers. In x 2 we describe the data sets and
data preparation. In x 3 we review Miller & Browning (2003a,
2003b) and also introduce a class discovery approach for neural
network classifiers. In x 3 we also describe several performance
criteria, each capturing different aspects of the class discovery
problem. In x 4 we present our experimental results. Finally, the
paper concludes with a summary and some discussion.

2. DATA PREPARATION

In our experiments we used two data sets, each with over
5000 data points. The first consisted of data from Storrie-
Lombardi et al. (1992) (hereafter the ESOLV data, after the
ESO-LV catalog of Lauberts & Valentijn [1989]), which have

been used previously in several studies of automated classi-
fication methods (Storrie-Lombardi et al. 1992; Owens et al.
1996; Bazell & Aha 2001). The second data set consisted of
Sloan Digital Sky Survey (SDSS) early release data (Stoughton
et al. 2002) composed of over 50,000 objects of various types.
Storrie-Lombardi et al. (1992) performed one of the earliest

attempts at morphological classification of galaxies using neu-
ral networks. Their data set consisted of 13 input features de-
rived from images of galaxies that were then used to classify the
galaxies into five classes: E, S0, Sa+Sb, Sc+Sd, and Irr.We used
their input data set of 5217 galaxies. The features in this data set
are described in Storrie-Lombardi et al. (1992). Bazell & Aha
(2001) describe the use of this data set for galaxy classification
using ensembles of neural networks. For our studies we elim-
inated one of the features, EFit

Err, which is the error in an ellipse
fitted to B isophotes. This feature had very small variance and
equaled zero for approximately 80% of the objects. Thus, we
used 12 of the 13 features in the original data set.
The second data set has an order of magnitude more objects

than the ESOLV data. The SDSS data consist of 54,007 objects
drawn from seven different classes. Each object is described by
a total of six features: photometric values in u, g, r, i, and z and
the redshift of the object. For later reference, we denote the
number of objects/data points by N and the number of features
for each object by d , i.e., for the SDSS data N ¼ 54;007, and
d ¼ 6. Each object is represented as a ‘‘feature vector,’’ x ¼
(x1; x2; : : : ; xd), with xj the measured value for the jth feature.
For the SDSS data, these six values are the five photometric
values and the redshift. The data set of objects is thus repre-
sented as fxi j; i ¼ 1; : : : ; N ; j ¼ 1; : : : ; dg.
Tables 1 and 2 summarize the properties of the data sets we

used. For each class the tables show the number of objects in the
class, the percentage of total objects that class represents, and
the type of object in the class.
For our experiments, we treated one or two of the classes as

being unknown, withholding from use during model learning
the label for every data example from each of the unknown
classes. For data from all other classes, we retained the labels
for a randomly selected subset (roughly 10% of the points from

TABLE 1

ESOLV Data Set Summary

Class Number

Portion of Whole

(%) Object

0...................................... 466 8.93 E

1...................................... 851 16.3 S0

2...................................... 2403 46.1 Sa+Sb

3...................................... 1132 21.7 Sc+Sd

4...................................... 365 7.00 Irregular

TABLE 2

SDSS Data Set Summary

Class Number

Portion of Whole

(%) Object

0........................ 229 0.42 Unknown spectrum

1........................ 6049 11.2 Stellar spectrum

2........................ 41930 77.6 Galaxy spectrum

3........................ 4409 8.16 Quasar spectrum

4........................ 237 0.44 High-z quasar spectrum

5........................ 130 0.24 Sky spectrum

6........................ 1023 1.89 Late-type star
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these classes: 521 examples for the ESOLV data and 5400 ex-
amples for the SDSS data). The random selection was per-
formed in a ‘‘stratified’’ fashion, ensuring that the number of
labeled examples from each known class was in proportion to
the mass, or frequency of occurrence, of the class. In this way,
we obtained a data set containing both labeled and unlabeled
examples, and with all labels missing from one or two classes.
This is precisely the data scenario proposed and addressed in
Miller & Browning (2003a, 2003b).

3. DESCRIPTION OF ALGORITHMS

We used two algorithms to classify the data and perform class
discovery, a mixture model and a back-propagation algorithm.
These approaches are described in detail below.

3.1. Mixture-ModelinggApproach

This subsection concisely reviews the work in Miller &
Browning (2003a, 2003b). There are three main contributions
in these works: (1) The problem of new class discovery in
mixed labeled/unlabeled data was proposed. (2) A mixture
model was proposed, tailored for this scenario: one that in-
corporates a realistic statistical model for how data become
labeled. This model has built into it the competing hypotheses
that a data sample may come from a known or an unknown
group. Thus, this model naturally yields a posteriori probabili-
ties for these hypotheses, as well as the standard a posteriori
probabilities for the known classes (now assuming a known
class hypothesis). These probabilities are used to make sev-
eral types of classification decisions, as is discussed below.
(3) Methods for learning the mixture model from given data
were proposed. In these approaches, individual mixture com-
ponents learn to represent data of either known or unknown
classes. We next give a descriptive summary of the procedure,
followed by a more detailed review of Miller & Browning
(2003a, 2003b).

We start with a data set in which each object is described by
a feature vector. The elements, or dimensions, of the feature
vector represent some measured or derived parameters of each
object. In the case of the SDSS data, the feature vectors consist
of the photometric values in u, g, r, i, and z of each object and
the object’s redshift, resulting in a six-dimensional vector.

The data set is then divided into two parts: objects that have a
class label describing what we think the object is (S0 galaxy,
star, quasar, etc.) and objects without a class label. Every object
in the data set belongs to some class, but we may not know
which class and in fact we may not have identified the existence
of the proper class. Each labeled object is described by its
feature vector, its class label, and a parameter indicating that the
object is labeled. Each unlabeled object is described by its fea-
ture vector and a parameter indicating that the label is absent.
This effectively labels all the data, either with a class or with a
label of ‘‘unlabeled.’’ A novelty of this method is to add the
parameter indicating the presence or absence of a label and
to require the mixture model—the probabilistic model of the
data—to explain all the parameters describing the data, in-
cluding the presence or absence of the label. This results in a
more powerful model of the data, as we describe below.

The mixture model consists of a weighted sum of probability
densities, which we take to be Gaussian densities but which
could be any density function that suitably describes the data. It
also includes a function that generates class labels (including
the ‘‘unlabeled’’ class) given a particular mixture component.
This approach contains another improvement over the stan-
dard mixture model in that it defines two types of mixture

components, predefined and non-predefined. Predefined com-
ponents generate data points that can be either labeled or
unlabeled, for which the labels are assumed to be missing at
random. The non-predefined components generate only un-
labeled data points, i.e., the labels are always missing from
the data. The non-predefined components describe data points
that are purely unlabeled and may represent new classes of
objects.

Along with the mixture model, we define a likelihood func-
tion that assumes all the data are labeled, perhaps with a class
label and perhaps with a label of ‘‘unlabeled.’’ The mixture
model is then learned based on maximizing this likelihood
function. In other words, the best-fit parameters that describe
the mixture model, including Gaussian parameters (means and
variances), the coefficients of the mixture components (which
are prior probabilities), and the function that generates labels
given a certain mixture component, are determined by max-
imizing the likelihood function. This produces a set of proba-
bilities that each mixture component describes a given class,
including unknown classes. If the probability is high (close
to 1) that a specific mixture component describes an unknown
class, then that component is effectively non-predefined and is
likely to be describing a new class.

The remainder of this subsection describes in more detail the
implementation of the mixture-model approach, following
Miller & Browning (2003a, 2003b). Consider a data set with
both labeled and unlabeled samples, i.e., Xm ¼ fX l; Xug,
where X l ¼ f(x1; c1); (x2; c2); : : : ; (xNl

; cNl
)g is the la-

beled subset and X u ¼ fxNlþ1; : : : ; xNg is the unlabeled
subset. Here, xi � (xi1; xi2; : : : ; xid) is a feature vector, and ci
is the associated class label from the set of known classes Pc.
This mixed data scenario was considered previously in, e.g.,
Shashahani & Landgrebe (1994), Miller & Uyar (1997), and
Nigam et al. (2000). However, in these works, it was assumed
that all unlabeled samples originate from known classes. Here
we consider the case in which unlabeled samples may also
originate from unknown classes.

If a sample is labeled, then it is known that the sample
originates from one of the known classes. On the other hand, if
the sample is unlabeled, then there are two sources of un-
certainty. First, since there may be unknown classes present, it
is unknown whether or not the given sample originates from a
known class. Second, even if it does belong to one of the known
classes, it may not be known which one. An example is shown
in Figure 1, with labeled data denoted by a single number, the
class, and with unlabeled data denoted by ‘‘U’’ followed by the
ground-truth class of origin.

The two-dimensional data points were generated according
to a Gaussian mixture with five components. For this example,
all points originating from the same component come from the
same class, i.e., classes ‘‘own’’ either one or multiple mixture
components. Class 2 consists of two components, with the other
classes consisting of single components. Classes 1, 2, and 3 are
known classes, while class 4 is an unknown class. For the data
from known classes, we randomly select a subset of samples to
label. As indicated in Figure 1, based on this random selection,
each component from a known class ends up owning both some
labeled data and some unlabeled data. In contrast, for the un-
known class 4, no samples are labeled. Accordingly, as in-
dicated in the figure, the component from class 4 owns only
unlabeled data (shown by ‘‘U4’’). Thus, components from un-
known classes are characterized by the fact that they own purely
unlabeled data subsets, while components from known classes
own both labeled and unlabeled data.
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Since the presence or absence of a label for each sample
appears to be helpful for distinguishing known class from un-
known class groups, it was suggested in Miller & Browning
(2003a, 2003b) to treat these presence/absence indications as
data, to be explained by the mixture model, along with the
feature vectors and the known class labels. In particular, the
authors redefined the data set as consisting of Xm ¼ fX l; Xug,
where now X l ¼ f(x1; l; c1); (x2; l; c2); : : : ; (xNl

; l; cNl
)g

and X u ¼ f(xNlþ1; m); : : : ; (xN ; m)g. Here the new random
observation L2fl; mg is introduced, taking on values indi-
cating that a sample is either labeled or missing the label. The
authors proposed a special mixture model to explain all the data,
including the presence or absence of a label for each sample. Two
types of mixture components were posited, differing in the
mechanism they use for generating the label presence/absence
data. ‘‘Predefined’’ components generate both labeled and un-
labeled data and assume labels are missing at random. These
components represent the known classes. ‘‘Non-predefined’’
components generate only unlabeled data; thus, in localized re-
gions, they capture data subsets that are purely unlabeled. These
components represent the unknown classes. Note that these two
types of components are precisely matched to the data scenario
depicted in Figure 1, in which, based on random selection of
labels solely for the known class data, known class components
(predefined ones) have labels missing at random, while for
the unknown class (non-predefined) components, labels are de-
terministically (always) missing. We next briefly summarize
the mathematical formulation in Miller & Browning (2003a,
2003b). More details can be found in these original papers.

3.1.1. Notation

LetMk , k ¼ 1; : : : ; M , denote the kth mixture component.
Let Cpre denote the subset of predefined components, with the
remaining subset denoted C̄pre. For example, in Figure 1 there
are four predefined components and one non-predefined com-
ponent. Let C2Pc � f1; 2; : : : ; Ncg be a random variable
defined over theNc known classes, with c (x)2Pc the class label
for sample x. Let � k denote the prior probability for compo-
nent k, �k denote the parameter set specifying the kth com-
ponent’s (component-conditional) joint feature density, and
f (xj�k) denote this density. We also introduce a new class set

P̃c ¼ f1; 2; : : : ; Nc; ug, consisting of the set Pc plus a value
u, used to indicate that a sample is unlabeled. With respect to
the class set P̃c, every sample is now labeled, with the un-
labeled samples taking on the values ‘‘u.’’ We suppose a dif-
ferent random label generator, conditioned on each mixture
component, i.e., Prob(cjMk) � �cjk , c2P̃c, where

P
c2 P̃c

�cjk ¼
1. Note that �c|k measures the fraction of samples from compo-
nent k that belong to class c, with �u|k the fraction of unlabeled
samples. For a non-predefined component, �ujk ¼ 1, i.e., all
samples from the non-predefined component k are unlabeled. In
summary, the mixture model is based on the parameter set � ¼
ff� kg; f�kg; f�cjkgg.
Hypothesis for Random Generation of the Data.—This

model of Miller & Browning (2003b) hypothesizes that each
sample from Xm is generated independently, based on �, ac-
cording to the following stochastic generation process:

1. Randomly select a component Mj according to {� k}.
2. Randomly select a sample x according to P(xj�j) and a

label c according to {�c|k}.

Joint Data Likelihood.—The log of the joint data likelihood
associated with this model is

L ¼
X

x2Xm

log
XM

k¼1

� k f (xj�k)�c ðxÞjk ; ð1Þ

where c(x)2P̃c. The model parameters � can be chosen to
maximize the log-likelihood (eq. [1]) via the expectation-
maximization (EM) algorithm (e.g., Duda et al. 2001). Since
the derivation of these EM equations is standard, their ex-
position is herein omitted.
This model does not explicitly discover new class components,

i.e., mixture components that are purely unlabeled. However,
suppose that for a given component Mj, we have that �uj j ’1,
and �u| j is also significantly greater than the average value
1=Mð Þ

PM
j 0¼1 �uj j 0 . In this case, the fraction of unlabeled data

owned by the component is unusually high. We categorize these
components as non-predefined, i.e.,Mj2 C̄pre. Such components
are putative unknown class components. All other components
are categorized as predefined, representing known class data. To
summarize, we have the following strategy for new class dis-
covery inmixed labeled/unlabeled data: (1) learn amixture model
to maximize the log-likelihood (eq. [1]); (2) for each component,
declare it non-predefined if �uj j� 1=Mð Þ

PM
j 0¼1 �uj j 0 > �; other-

wise, declare it predefined. Here, � is a suitably chosen threshold.
In practice, we declare a component non-predefined when its
value �u| j is closer to1.0 than to the average value; i.e., we choose
� ¼ 1=2ð Þ½1� 1=Mð Þ

PM
j 0¼1 �uj j 0 �. We have found this choice for

� to give reasonable results for a variety of experimental con-
ditions (for different data sets and for different fractions of labeled
data).

3.1.2. Statistical Inferences from the Model

After applying this thresholding operation to each compo-
nent, the resulting model is naturally applied to address several
inference tasks: (1) standard classification of a given sample to
one of the known classes and (2) known versus unknown class
discrimination. For classification to known classes, for a given
sample x, we compute the a posteriori probabilities

P C¼ cjx ; �ð Þ ¼
P

k 2C pre
� k f (xj�k)½�cjk=(1� �ujk)�P
k 2C pre

� k f (xj�k)
; c2Pc:

ð2Þ

Fig. 1.—Example involving partially labeled data and an unknown class.
Those labeled are denoted by a single class number, while unlabeled data are
denoted by a ‘‘U,’’ followed by the class. The crosses denote mixture com-
ponent centers.
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These can be used in a maximum a posteriori (MAP) class
decision rule, i.e., c� ¼ arg max c P(C ¼ cjx; �).

In order to discriminate between the hypotheses that an un-
labeled sample originates from a known versus an unknown
class, we need the a posteriori probability that the given feature
vector is generated by a non-predefined component. This is
given by

P Mnpjx2X u

� �
¼

P
k 2 C̄ pre

� k f (xj�k)�ujkP
k � k f (xj�k)�ujk

: ð3Þ

If P(Mnpjx2X u) >
1
2
, then the sample is declared to belong to

an unknown class; otherwise, it is declared as a known class
sample.

3.1.3. New Class Discovvery

While the EM learning assumes that the number of mix-
ture components M is fixed and known, in practice this size
must be estimated. Model order selection is a difficult and
pervasive problem, with several criteria proposed (Schwarz
1978; Wallace & Freeman 1987; McLachlan & Peel 2000) but
no consensus on the right one. In our class discovery setting, the
importance of accurate model order selection cannot be over-
stated: the non-predefined components in the validated solution
will be taken as candidates for new classes, to be forwarded to a
domain expert for further study. Accurate model order selection
is thus important for successful new class discovery. Here, as in
Miller & Browning (2003a, 2003b), the Bayesian information
criterion (BIC; Schwarz 1978) is applied. The BIC model
selection criterion is written in the form

BIC(M ) ¼ Np(M )

2
logN � L; ð4Þ

with Np(M ) the number of free parameters in theM-component
mixture model and N the data length. The first term is the pen-
alty on model complexity, with the second term the negative
log-likelihood. We apply BIC in a ‘‘wrapper-based’’ model
selection approach; i.e., we build models for increasing M,
evaluate BIC for each model, and then select the model with
minimum BIC cost.

While any clustering/mixture-modeling technique can in
principle be used to discover unknown classes, standard meth-
ods do not have any special impetus for finding label-free
(or largely label-free) clusters. In contrast, the log-likelihood
(eq. [1]) and the likelihood function used in Miller & Browning
(2003a) both encourage solutions with non-predefined com-
ponents, when such components are warranted by the presence
of unknown classes in the data. In equation (1), it is the �c| j term
that provides the impetus for forming these unknown classes,
since this term approaches its maximum value (�uj j ¼ 1) in the
non-predefined component case.

3.2. Neural Network Approach

The mixture-modeling approach provides several inference
capabilities when dealing withmixed labeled/unlabeled data sets
and possibly unknown classes: (1) it allows one to infer whether
or not a given sample belongs to one of the known classes; (2) it
identifies purely unlabeled mixture components/clusters, which
are reasonably treated as putative unknown classes or, at any
rate, components of unknown classes; (3) assuming a known
class hypothesis for a given sample, the model can infer from
which known class the sample originates (i.e., the usual classi-
fication inference capability).

While the mixture-modeling approach is naturally suited to
new class discovery givenmixed labeled/unlabeled data, neural
network classifiers do not appear to be predisposed to making
these inferences. Neural networks are generally trained using a
purely supervised approach, with class labels provided for ev-
ery example in the training set. Thus, in general, unlabeled
samples play no role in the training; given a mixed labeled/
unlabeled data set, the neural network training will either dis-
card all the unlabeled examples, including those from unknown
classes, or, perhaps worse, erroneously impute and use known
class labels for these unknown class data. Accordingly, the
neural network is only explicitly trained to discriminate be-
tween the known classes; it is not trained to distinguish known
from unknown classes. While it thus appears that neural net-
works do not possess any class discovery inference capability,
we next suggest an approach that gives neural networks at least
a weak form of this capability.

The neural network algorithm we used was a basic
back-propagation algorithm available with theWEKAmachine
learning package (Witten & Frank 2000). We used the default
configuration, consisting of a three-layer network (input, hid-
den, and output). The number of input nodes was Ni, one node
for each input feature. There wereNc output nodes, one for each
known class. The number of hidden nodes was calculated ac-
cording to Nh ¼ (Ni þ Nc)=2. For the ESOLV data we used
12 nodes in the input layer corresponding to the 12 input fea-
tures, eight nodes in the hidden layer, and four in the output
layer. For the SDSS data we used five input layer nodes, five
hidden layer nodes, and six output layer nodes.

3.2.1. Decision Confidence

One possible neural network indicator that a given sample
originates from an unknown class is if the neural network does
not make a ‘‘confident’’ decision for this sample. The neural
network produces an output gj(x) for each known class j ¼
1; : : : ; Nc and decides on the class with the largest output.
There are several ways of quantifying the degree of uncertainty
in the neural network’s decision. One measure motivated by
information theory is Shannon’s entropy function (Cover &
Thomas 1991). Since entropy measures uncertainty in a prob-
ability mass function (pmf ), it is necessary to convert the neural
network class outputs gj(x), j ¼ 1; : : : ; Nc into a pmf. This is
achieved as follows: Let

g̃j(x) ¼
gj(x)�min l gl(x)P
k gk (x)�min l gl(x)

:

With this choice, we have 0 � g̃j(x) � 1 and
P

j g̃j(x) ¼ 1, i.e.,
g̃j(x) is a pmf defined on the known classes. We can then mea-
sure the Shannon entropy asH ¼ �

P
j g̃j(x)log g̃j(x). Entropy is

nonnegative, with greater entropy indicating greater uncertainty.
If H is greater than a preset threshold, we can declare that the
sample x does not convincingly belong to any of the known
classes; i.e., it is declared an unknown class sample. This ap-
proach, based on ameasure of the classifier’s degree of indecision,
is the one we have taken in imparting the neural network with
some class discovery inference capability. Other measures of the
classifier’s degree of indecision are also possible.

3.3. Error Measures

There are three error measures that we have used to evaluate
the class discovery approaches. They are defined as follows:

Criterion 1: Misclassification rate in deciding between
known and unknown class hypotheses.—This criterion was
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evaluated for both the mixture-model and neural network ap-
proaches. For the mixture model, the classification decisions
were made using aMAP probability rule, based on equation (3).
For the neural network, the decisions were made based on
thresholding of the neural network’s entropy measure, as dis-
cussed earlier. The error rate was measured over the unlabeled
portion of the data set (which consisted of both known and
unknown class data); i.e., it was estimated as the fraction of
unlabeled samples that were misclassified.

Criterion 2: Misclassification rate within putative unknown
classes.—The first criterion simply measures how effective an
algorithm is at identifying the subset of (unlabeled) samples
that come from new, i.e., unknown, classes. If there is a single
unknown class present in the data, then this is all that is re-
quired. However, suppose that there are multiple unknown
classes present. Then, in addition to identifying the subset of
samples from unknown classes, one would also like to identify
the individual classes that compose this unknown class subset.
In other words, one would like to identify the underlying cluster
(group) structure within the unknown class data. The mixture-
modeling approach directly models the unknown and, separately,
the known class data by a mixture of components (clusters). Each
such cluster can be viewed as a putative unknown class. A mea-
sure of the accuracy of this clustering is the unknown class label
purity of these clusters. In particular, suppose one of the learned
non-predefined clusters owns (in a MAP sense) 20 samples that

are ground-truth from unknown class A, 30 samples from un-
known class B, and 35 unlabeled samples that in fact belong to
known classes. The most populous unknown class in the cluster
is B. All samples in the cluster that do not possess label B are
reasonably counted as errors. One can sum these errors over all
non-predefined clusters and divide by the total number of
samples owned by all non-predefined clusters. This is the fraction
of samples that in effect have been erroneously assigned to in-
dividual non-predefined clusters. Note that this criterion is only
well defined when the model finds at least one non-predefined
component.
Criterion 3: Known class error rate.—If a sample belongs to

a known class, then we are interested in identifying to which
known class it belongs. Accordingly, we can define an error
fraction measured over the known class data. Several such
criteria are possible. Here, we count an error if an unlabeled
sample that is from a known class is assigned to the wrong
known class. For the mixture model, a MAP classification rule
based on the probabilities in equation (2) was used.
All three of the above criteria require various forms of

ground-truth label information for the unlabeled data subset:
criterion 1 requires a ground-truth known/unknown class in-
dication for all the data, criterion 2 requires knowledge of un-
known class labels for all the data, and criterion 3 requires
knowledge of all known class labels. Since in practice one
would not have this information (by definition, no labels are

TABLE 3

Mixture Model and Neural Network Results Using Criterion 1 Error Model Selection for ESOLV Data

Mixture Model Neural Network

Unknown Class Ncomp Nonpre Criterion 1 Criterion 2 Criterion 3 Criterion 1

�

(%)

0............................ 27 1 0.089 0.728 0.374 0.0992 �10.7

1............................ 42 1 0.172 0.904 0.322 0.181 �5.1

2............................ 70 16 0.380 0.551 0.308 0.488 �22.2

3............................ 48 5 0.218 0.748 0.325 0.241 �9.3

4............................ 14 1 0.051 0.518 0.422 0.078 �34.3

0, 1 ....................... 16 4 0.140 0.559 0.328 0.281 �50.3

0, 2 ....................... 13 3 0.455 0.647 0.214 0.611 �25.5

0, 3 ....................... 39 4 0.318 0.848 0.252 0.340 �6.6

0, 4 ....................... 34 2 0.146 0.770 0.357 0.177 �17.3

Average ............ 33.7 4.1 0.219 0.698 0.323 0.277 �20.2

TABLE 4

Mixture Model and Neural Network Results Using Criterion 1 Error Model Selection for SDSS Data

Mixture Model Neural Network

Unknown Class Ncomp Nonpre Criterion 1 Criterion 2 Criterion 3 Criterion 1

�

(%)

0............................ 49 0 0.005 NA 0.061 0.005 0

1............................ 47 5 0.033 0.209 0.046 0.124 �73.3

2............................ 28 20 0.034 0.007 0.112 0.134 �74.9

3............................ 69 4 0.022 0.170 0.007 0.091 �76.0

4............................ 47 0 0.005 NA 0.064 0.005 0

5............................ 68 0 0.003 NA 0.063 0.003 0

6............................ 74 1 0.012 0.338 0.080 0.021 �43.6

0, 1 ....................... 79 5 0.041 0.243 0.035 0.129 �68.5

0, 2 ....................... 33 20 0.034 0.012 0.090 0.867 �96.1

0, 3 ....................... 80 5 0.025 0.206 0.062 0.095 �73.9

0, 4 ....................... 66 1 0.009 NA 0.074 0.010 �4.3

0, 5 ....................... 77 1 0.006 0.652 0.096 0.007 �22.6

0, 6 ....................... 76 1 0.0156 0.455 0.064 0.026 �39.5

Average ............ 61 4.8 0.019 0.26 0.066 0.117 �57.3
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known for data from unknown classes), these criteria can only
be used for model evaluation/validation. In practice, other in-
formation sources or expert knowledge would be needed in
order to assess the quality of, or to confirm, the model in-
ferences. We also note that criterion 2 can only be evaluated for
the mixture model, since the neural network approach does not
attempt to partition the estimated unknown class data into
smaller groups.

4. RESULTS

We evaluated the mixture model and neural network on both
the ESOLV and SDSS data sets. For SDSS, we constrained
mixture component variances to be at least 0.1 in order to avoid
an observed tendency for the learning to find singular solutions
(zero variance), as well as solutions with very small variances
along some dimensions. For both the mixture model and
the neural network there are ‘‘operating parameters’’ whose
choices affect the class discovery inference performance. For
the mixture model, we need to select the model order, i.e., the
number of components. This choice will clearly affect the
ability to identify unknown class components. For example, if
an unknown class has a small mass, one or more components
will only be ‘‘deployed’’ for its representation if the model has
many components. Likewise, if the unknown class has a very
large mass (and significant within-class variation), quite a few
components may be needed to represent it well. For the neural

network, the choice of the entropy threshold affects perfor-
mance. We have performed several experimental evaluations of
the mixture model and neural network, based on different ap-
proaches for choosing these operating parameters. In one set of
experiments, shown for the ESOLV and SDSS data sets in Ta-
bles 3 and 4, we picked both the mixture order (over the range
10–80) and the neural network’s entropy threshold (by an ex-
haustive search) to maximize criterion 1 performance. Note that
these approaches cannot be used in practice since, in perform-
ing the model selection, these methods require evaluating a cost
(criterion 1) that depends on knowledge of the unknown class
labels. However, this experiment does allow a comparison of
best-case performances achieved by the mixture and neural
network approaches. For the mixture model, we have also ap-
plied BIC-based selection as described earlier. This approach is
wholly unsupervised and thus feasible in practice.

Tables 3 and 4 show the results for the ESOLVand the SDSS
data, respectively, for the case in which both the neural network
and mixture model were chosen to give the best criterion 1
performance. The first column shows the classes that were
treated as unknown for that series of runs. For example, ‘‘3’’
indicates that class 3 was treated as unknown, while ‘‘0, 3’’
indicates that both classes 0 and 3 were treated as unknown. The
value of ‘‘Ncomp’’ is the number of components used by the
mixture model corresponding to the best value of criterion 1,
while ‘‘Nonpre’’ is the number of non-predefined components

TABLE 5

Mixture Model Selected by BIC and Neural Network Results on the ESOLV Data

Mixture Model Neural Network

Unknown Class Ncomp Nonpre Criterion 1 Criterion 2 Criterion 3 Criterion 1

�

(%)

0............................ 60 7 0.153 0.921 0.399 0.099 54.2

1............................ 53 10 0.262 0.867 0.335 0.181 44.7

2............................ 63 11 0.433 0.743 0.315 0.488 �11.4

3............................ 54 6 0.256 0.890 0.307 0.241 6.5

4............................ 67 7 0.103 0.614 0.437 0.078 32.9

0, 1 ....................... 69 13 0.190 0.620 0.318 0.281 �32.2

0, 2 ....................... 57 8 0.525 0.799 0.209 0.611 �14.0

0, 3 ....................... 62 11 0.339 0.854 0.237 0.340 �0.3

0, 4 ....................... 62 7 0.200 0.773 0.368 0.177 13.2

Average ............ 60.8 8.9 0.274 0.787 0.325 0.277 10.4

TABLE 6

Mixture Model Selected by BIC and Neural Network Results on the SDSS Data

Mixture Model Neural Network

Unknown Class Ncomp Nonpre Criterion 1 Criterion 2 Criterion 3 Criterion 1

�

(%)

0............................ 70 0 0.005 NA 0.110 0.0047 0

1............................ 63 5 0.104 0.535 0.038 0.124 �16.1

2............................ 67 24 0.100 0.038 0.097 0.134 �25.7

3............................ 74 5 0.023 0.060 0.105 0.091 �74.9

4............................ 76 0 0.005 NA 0.106 0.005 0

5............................ 80 1 0.003 0.539 0.118 0.003 9.2

6............................ 71 3 0.027 0.666 0.107 0.021 29.8

0, 1 ....................... 66 5 0.094 0.489 0.034 0.130 �27.0

0, 2 ....................... 79 30 0.113 0.027 0.064 0.867 �87.0

0, 3 ....................... 74 5 0.033 0.145 0.104 0.095 �65.4

0, 4 ....................... 61 1 0.010 0.530 0.112 0.010 �0.9

0, 5 ....................... 71 1 0.006 0.604 0.112 0.007 �15.0

0, 6 ....................... 71 3 0.0273 0.666 0.107 0.026 6.1

Average ............ 71 6.4 0.042 0.391 0.093 0.117 �20.5
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in that model. The remaining columns under ‘‘Mixture Model’’
list error fractions for the three criteria discussed above. Under
‘‘Neural Network’’ we list the value of criterion 1, the only error
measure evaluated for the neural network. The last column
shows the percentage change in the criterion 1 value between
the neural network and the mixture model, with a negative value
indicating a lower criterion 1 error for the mixture model
compared to the neural network. For the moment we restrict
discussion to the criterion 1 performance. Tables 3 and 4 show
that, with both methods optimized for criterion 1 performance,
significantly better inference accuracy is achieved by the
mixture model–based approach. For the ESOLV data we find
an average decrease in the criterion 1 error of 20% and a maxi-
mum decrease of 50%. For the SDSS data we find an average
decrease in the criterion 1 error of 57% and a maximum de-
crease of 96%. This is not especially surprising, since the
mixture is learned using the unknown class data (but without
use of the labels), while the neural network is only trained on
labeled known class data.

In Tables 5 and 6 we again compare the neural network, with
the threshold optimized for criterion 1, against the mixture

model but with the order now selected based on the BIC cri-
terion. Since the neural network decision-making threshold is
optimized based on knowledge of the unknown class labels,
while the mixture model and its order are chosen without use of
this information, this comparison is not a fair one. However, in
practice unsupervised order selection will be required. Thus,
this comparison does give insight into the loss in accuracy at-
tributable to the use of generally suboptimal but practically
feasible model order–selection techniques. As Tables 5 and 6
show, the criterion 1 error for the mixture model is now higher
in five of nine cases for the ESOLV data and is the same or
higher in five of 13 cases for the SDSS data. For the ESOLV
data we find an average 10% increase in error, while for the
SDSS data we find an average 20% decrease in error, compared
to the neural network.
Figure 2 shows a plot of the number of components in the

best-performing mixture model (selected to optimize criterion1)
as a function of the fraction of objects in the unknown classes,
for the ESOLV data. There is a clear trend toward a larger
number of components selected when the unknown classes
make up a larger mass fraction of the total data set. One point,
with classes 0 and 2 as the unknown classes, is well described

Fig. 2.—Number of components in the best mixture model, using criterion1
model selection, as a function of the unknown class mass for ESOLV data.
Points are labeled by the unknown class or classes. Thus, the point ‘‘3’’ means
that class 3 was taken as the unknown class. A point ‘‘03’’ means that both
class 0 and class 3 were taken as unknown classes.

Fig. 3.—Criterion 1 error as a function of the number of components in the
mixture model using ESOLV data with unknown class 4. The plot demonstrates
that a low error can be achieved with a modest number of mixture components.

Fig. 4.—Criterion 1 error as a function of the number of components in the
mixture model using ESOLV data with unknown class 0. Again, low error is
achieved at a modest number of mixture components. The error remains ap-
proximately constant until non-predefined components are introduced.

Fig. 5.—Criterion 1 error as a function of the number of components in the
mixture model using SDSS data with unknown class 1.
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by an unexpectedly small number of components (13). This is
discussed below. A similar trend is not evident in the SDSS
data. The SDSS data are dominated by two classes (1 and 2),
which together represent over 88% of the data.

Figures 3 and 4 show plots of the value of the criterion 1 error
as a function of the number of components in the mixture model
for two different unknown class combinations. These plots re-
flect the information in Figure 2 in a different way. When the
unknown classes represent a relatively small mass fraction of
the total number of objects in the data set, the minimum value of
criterion 1 is found at a relatively moderate number of com-
ponents. For example, this is evident in the figure for unknown
class 4. Conversely, as seen in Figure 2, if the unknown classes
comprise a large fraction of the total number of objects in the
data set, then the minimum value of criterion 1 is found at a
correspondingly higher number of components. Note that in
Figure 4 criterion 1 remains static over a range of model orders
(for unknown class 0, over the range of 10–20 components).
This is due to the fact that the performance only changes at the
discrete points where additional non-predefined components
are introduced. In this case, no non-predefined components
were chosen until M increased beyond 20.

Figures 5 and 6 show the criterion 1 error as a function of the
number of mixture model components for the SDSS data.
Again, we see the criterion 1 error remaining pretty much static
until the model order M reaches 25–35 components. At this
point, non-predefined components are added to the model, al-
lowing further decrease in the criterion 1 error.

The SDSS data contain approximately 10 times the number
of data points as the ESOLV data. The mixture-model approach
generally requires a larger number of components to describe
the SDSS data set. On average, 34 components were required to
describe the ESOLV data using the best model by criterion 1,
while 61 components were needed to describe the SDSS data.
Using BIC to determine the best model required, on average, 61
components for the ESOLV data and 71 for the SDSS data.

5. DISCUSSION

As can be seen from the results presented above, we are, in
general, able to achieve a significantly lower criterion 1 error
value when using the mixture approach, which learns based on
unlabeled data, as well as the labeled training data. Overall, we
obtained a 22% (listed in Table 3 as the fraction 0.219, not as
the percent) criterion 1 error for ESOLV data and a 2% error for

SDSS data when using criterion 1 as the model-selection
method. When using BIC for model selection we obtained a
27% error for ESOLV data and a 4% error for SDSS data. The
percentage change column of Table 3 shows that, on average,
the mixture models reduced the criterion 1 error for ESOLV
data by 20%, but this reduction was as high as 50% when
classes 0 and 1 were unknown. Table 4 similarly shows an
average 57% reduction in criterion 1 error for SDSS data, with a
96% reduction when classes 0 and 2 were unknown.

Our study is the first to apply semisupervised learning to
astronomical data and the first, to our knowledge, to use a data
set as large as 50,000 points. This is an important test of the
methodology because of the vast amount of astronomical data
freely available today, most of which is unlabeled. Demon-
strating that our methods work with large astronomical data sets
was a primary goal of this work.

Nevertheless, there are a number of factors that influence the
reliability of the proposed method and what level of error can be
achieved. The results in Tables 3–6 demonstrate the importance
of the model order–selection technique. BIC-based selection
fares well on the SDSS data, achieving substantially better av-
erage criterion 1 results than the neural network optimized for
criterion 1 and only modestly worse results than the mixture
model optimized for criterion 1 (0.02 vs. 0.04 average error
rates). However, there is a significant average performance gap
between the two mixture approaches on the ESOLV data (0.22
vs. 0.27), and the BIC-selected mixture is only comparable to
the neural network on ESOLV (0.273 vs. 0.277 average error
rates). It is possible that a better model order–selection tech-
nique could improve the mixture results on ESOLV.

One artifact of optimizing the mixture for criterion 1 is that,
on average, smaller models are selected, compared to when the
mixtures are selected by BIC. For ESOLV, an average of 34
components were selected by the former approach, while an
average of 61 components were selected by the latter. Fur-
thermore, an average of 4.1 non-predefined components were
chosen with criterion 1 model selection, while an average of 8.9
were chosen with BIC. For the SDSS data an average of 61
components, including 4.8 non-predefined components, were
selected using criterion 1. Finding the best SDSS model by BIC
produced an average of 71 components, including 6.4 non-
predefined components. While we learned models with up to 80
components, in some cases for the SDSS data the best models
were using close to all 80 components. This suggests that it may
be reasonable to evaluate solutions with even more compo-
nents. While the mean number of components selected by BIC
is greater than that selected according to criterion 1, the var-
iance in the number of components is much greater when
selecting according to criterion 1. This is consistent with the
results in Figure 2, which indicate that, for the best criterion 1
performance, the number of components is strongly correlated
with the mass of the unknown classes (which varies greatly,
since the classes are far from equally likely). This further means
that, in some cases, when the mass of the unknown classes is
large, using criterion 1 selects more components than using
BIC. For example, for the ESOLV data, class 2 occurs 46%
of the time. When this class is taken as unknown, BIC selects
63 components, while criterion 1 selects 70.

Another factor that influences model accuracy is the fact that
the learning objective function L is multimodal, with significant
potential for finding suboptimal local maxima rather than the
global maximum. At each model order, we generated several
solutions based on different initializations and picked the one
with the greatest log-likelihood. However, there is anecdotal

Fig. 6.—Criterion 1 error as a function of the number of components in the
mixture model using SDSS data with unknown classes 0 and 3.
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evidence in our results that we may only be finding locally op-
timal solutions at each model order. Referring back to Figure 2
we see that the best model for unknown classes 0 and 2 con-
tains only 13 mixture components. This clearly is not in keeping
with the trend that more mixture components are needed to ex-
plain the data with a larger mass fraction of unknown classes. It
appears in this case that a particularly good solution was found.
This likewise suggests that, at other orders, suboptimal, local
maximum solutions were found.

The criterion 2 error is a measure of how well the algorithm
can classify objects within the newly found classes. This is a
very difficult problem because we are asking the algorithm to do
two things: first, to determine if some mixture components (the
non-predefined components) are needed to describe objects that
do not fit into the existing known class structure, and second, to
partition these objects between the unknown class components,
such that each component exclusively owns objects from a
single unknown class. This second step is effectively looking
for substructure in the newly discovered classes.

For the ESOLV data we find on average about a 70% criterion
2 error compared to about a 25% error for the SDSS data when
using criterion 1 model selection. Similarly, we find about a
79% error for the ESOLV data and a 39% error for SDSS data
when using BIC model selection. The values of ‘‘NA’’ for the
criterion 2 error for some of the SDSS experiments reflect
models in which there are no non-predefined components; in
this case, the error measure is undefined. Note that, in all these

cases, the unknown classes had very small mass, which ex-
plains why no non-predefined components were found. In
particular, class 0 and class 4 collectively comprise less than 1%
of the SDSS data. Thus, when these classes are missing, we
would not expect to find non-predefined components in the
solution unless both (1) there were more than 100 components
in the model and (2) the model criterion selected a solution of
this size.
The criterion 3 error measures how well the model can assign

objects to known classes. For this measure we obtained about a
32% error for ESOLV data and a 7% error for SDSS data using
criterion 1 model selection. When using BIC model selection
we obtained a 33% error for ESOLV data and a 9% error for
SDSS data.
We find the overall results presented here very promising.

The tests done here have demonstrated the efficacy of the class
discovery problem and approaches. However, more work will
be required to develop a mature technology for highly reliable
new class discovery.
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