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ABSTRACT

We apply our single scaling method to the numerical integration of perturbed two-body problems regularized by
the Kustaanheimo-Stiefel (K-S) transformation. The scaling is done by multiplying a single scaling factor with the
four-dimensional position and velocity vectors of an associated harmonic oscillator in order to maintain the Kepler
energy relation in terms of the K-S variables. As with the so-called energy rectification of Aarseth, the extra cost
for the scaling is negligible, since the integration of the Kepler energy itself is already incorporated in the original
K-S formulation. On the other hand, the single scaling method can be applied at every integration step without
facing numerical instabilities. For unperturbed cases, the single scaling applied at every step gives a better result
than either the original K-S formulation, the energy rectification applied at every apocenter, or the single scaling
method applied at every apocenter. For the perturbed cases, however, the single scaling method applied at every
apocenter provides the best performance for all perturbation types, whether the main source of error is truncation
or round-off.
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1. INTRODUCTION

Recently we published a series of new methods to efficiently
integrate perturbed two-body problems. They are classified
into three categories: (1) the four methods of manifold cor-
rection, consisting of the single scaling method (Fukushima
2003a),1 the dual scaling method (Fukushima 2003b),2 the
rotation method (Fukushima 2003c),3 and the linear transfor-
mation method (Fukushima 2004a);4 (2) three simplifications
of the linear transformation method, consisting of two first-
stage simplifications using nine variables per body (Fukushima
2004b),5 two second-stage simplifications using seven varia-
bles per body, and a final simplification using six variables per
body, which we call the orbital longitude method (Fukushima
2004c);6 and (3) a couple of modifications of the orbital lon-
gitude method using the true and the antifocal orbital longitude,
respectively, enhanced by a technique to reduce the accumu-
lation of round-off error in the angle variables (Fukushima
2004d, 2004e).7 Table 1 provides a summary.

Among these methods, the last two exhibit the best cost
performance, as we showed in Papers VII and VIII. For unper-
turbed cases, they produce only periodic errors at the machine-
epsilon level if a sufficiently high order integrator is used with
a sufficiently small step size (see Fig. 1 of Paper VIII). We ex-
perimentally confirmed that this is true even in highly eccentric
cases. For perturbed orbits, the errors of the orbital longitude
methods first grow in proportion to the square root of time for
some period of time, the length of which depends on the mag-
nitude of the perturbation. After that, the errors grow more
rapidly (see Fig. 8 of Paper VII for the true-longitude method
and Fig. 12 of Paper VIII for the antifocal longitude method).

The overall errors of the two orbital longitude methods are
the lowest among the methods of manifold correction for
various types of perturbations. In any sense, this feature is of
great advantage when compared with the usual manner of error
growth achieved by existing methods, a quadratic or linear8

increase with respect to time from the beginning of the inte-
gration whether perturbations are present or not.
Unfortunately, the cost of ensuring the desirable proper-

ties of the orbital longitude methods increases rapidly when
the eccentricity is large. In other words, if we choose a large
step size, the precision of the two improved orbital longitude
methods rapidly degrades when the eccentricity increases. Such
demerits are eminent in the study of the long-term orbital
evolution of the periodic comets, some peculiar asteroids, and
a few natural and artificial satellites with highly eccentric or-
bits. Typical examples are Halley’s comet (q ¼ 0:577 AU,
e ¼ 0:967, P ¼ 76:0 yr), Icarus (a ¼ 1:078 AU, e ¼ 0:827,
P ¼ 326 days) and Hidalgo (a ¼ 5:746 AU, e ¼ 0:661, P ¼
13:8 yr), Nereid (a ¼ 222RNeptune, e ¼ 0:75, P ¼ 360 days),
and the artificial satellite HALCA ( perigee altitude 560 km,
e ¼ 0:600, I ¼ 31N3, P ¼ 6:3 hr) of VSOP, the Japanese space
VLBI program (Hirabayashi et al. 2000). This deterioration
occurs not only in the magnitude of the error itself , but also in
the rate of its growth.
Consider Figure 1, which shows the errors in the mean

longitude at epoch, L0, of a highly eccentric (e ¼ 0:5) orbit ob-
tained using various methods of manifold correction. In pre-
paring this figure, we (1) adopted the implicit Adams method
in PECE (predict, evaluate, correct, evaluate) mode as the in-
tegrator, (2) fixed the step size such that one orbital period is
covered by 90 steps,9 (3) prepared the starting tables using
Gragg’s extrapolation method, (4) measured the errors by com-
paring with reference solutions that we obtained using the
same integrator and the same model parameters but with half

1 Hereafter Paper I.
2 Hereafter Paper II.
3 Hereafter Paper III.
4 Hereafter Paper IV.
5 Hereafter Paper V.
6 Hereafter Paper VI.
7 Hereafter Papers VII and VIII , respectively.

8 Only a limited number of integrators are known to produce linearly growing
errors: the symplectic integrators and the symmetric multistep methods.

9 This is to make the cost of integration almost the same.
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the step size, and (5) set the orders of the implicit Adams
method as the highest among those that led to no numerical
instabilities.10 Even the antifocal longitude method, which pro-
duces the lowest errors among the methods of manifold correc-
tion in rectangular coordinates, provides a poor result, although
its rate of error growth is relatively low, being linear with re-
spect to time in the long run. This weakness of the orbital lon-
gitude methods against increases in eccentricity is more clearly
shown in Figure 2. This figure illustrates the eccentricity de-
pendence of the longitude errors in a Keplerian orbit after a
sufficiently long integration time, 32,768 orbital periods, for the
same integration conditions as in Figure 1. Under the condition
that the number of steps per orbital period is fixed, the errors
of the antifocal longitude method grow exponentially with the
eccentricity. This is a well-known property common to almost
all integration methods that employ the policy of fixing the step
size in physical time.

Of course, a common recipe for dealing with such highly
eccentric orbits is the introduction of two-body regularizations
(Aarseth 2003), the most famous of which is the Kustaanheimo-
Stiefel (K-S) regularization (Kustaanheimo & Stiefel 1965). A
concise summary of the K-S regularization is given by Funato
et al. (1996), while details are provided in a textbook by one of
the inventors (Stiefel & Scheifele 1971). See Table 1 and Fig-
ures 1 and 2 again—apparently, the integration of regularized

orbits is superior to the antifocal longitude method in highly
eccentric cases, say, when e > 0:5 for a step size of 90 steps per
period. Such superiority of the K-S regularization in precision
orbital integrations has been reported many times. For example,
Palmer et al. (1998) present a comparison of various combi-
nations of the K-S regularization and different integrators for
practical problems in the orbital motion of artificial satellites.

Unfortunately, the errors of the K-S regularization will ex-
ceed those of the orbital longitude methods over the long run,
since its error growth is quadratic. Yet, there remains a chance
for improvement. As summarized by Stiefel & Scheifele (1971),
the K-S regularization transforms the nonlinear Kepler prob-
lem in real three-dimensional space into a set of linear problems
for a harmonic oscillator in a virtual four-dimensional space.
This change in the form of the equation of motion provides some
benefit in its numerical integration. In fact, Funato et al. (1996)
presented an enhancement of K-S regularization by requiring
its integration to be time-symmetric. Further, we ourselves re-
ported that numerical integration of K-S regularized orbits
using the special second-order symmetric linear multistep meth-
ods designed for special second-order ordinary differential equa-
tions avoids the so-called step-size resonance, the only known
drawback of these integrators (Arakida & Fukushima 2000,
2001).

As we stressed in Paper II, the concept of manifold correction
is not limited to a specific form of orbit integration, for exam-
ple, those in rectangular coordinates that we studied exten-
sively. Thus, it could be worthwhile to apply the idea to the K-S

TABLE 1

Methods of Manifold Correction for Orbit Integrations

Method Variables Relations Correction Conserved Elements Reference

Standard ................................. 6: x, v None None None

Single scaling......................... 7: x, v, K K (x, v) ! (sx, sv) a Paper I

Dual scaling ........................... 10: x,v, K, P K, F (x, v) ! (sXx, sV v) a, e*, !* Paper II

Single scaling + rotation........ 10: x, v, K, L K, xL, vL (x, v) ! (sRx, sRv) a, I, � Paper III

Dual scaling + rotation .......... 13: x, v, K, L, P K, F, xL, vL (x, v) ! (sXRx, sVRv) a, e*, I, �, !* Paper III

Linear transformation............. 13: x, v, K, L, P K, P, xL, vL (x, v) ! (sXRx, sV (Rv � �Rx)) a, e, I, �, ! Paper IV

First-stage simplification:

First .................................... 9: x, L, P r, xL x ! s(x � �L) a, e, I, �, ! Paper V

Second................................ 9: n, L, P |n|, nL n ! s(n � �L) a, e, I, �, ! Paper V

Second-stage simplification:

First .................................... 7: xA, xB, L, PA, PB r (xA, xB) ! (sxA, sxB) a, e, I, �, ! Paper VI

Second................................ 7: nA, nB, L, PA, PB |n| (nA, nB) ! (snA, snB) a, e, I, �, ! Paper VI

Original true-longitude........... 6: g, L, PA, PB None None a, e, I, �, ! Paper VI

True-longitude........................ 6: g, L, PA, PB None g ! mod (g, 2�) a, e, I, �, !, L0 Paper VII

Antifocal longitude ................ 6: w, L, PA, PB None w ! mod (w, 2�) a, e, I, �, !, L0 Paper VIII

K-S regularization:

Standard ............................. 10: u, u0, t, hK None None None Kustaanheimo & Stiefel 1965

E-J scaled........................... 10: u, u0, t, hK �, C1C2 = 1 (u, u0) ! (C1u, C2u
0) a Aarseth 2003

Single-scaled ...................... 10: u, u0, t, hK � (u, u0, t) ! (�u, �u0, kT + t�) a This work

Note.—Listed are some key features of the methods of manifold correction to integrate perturbed orbits in rectangular coordinates, as well as the standard method
to directly integrate in real rectangular coordinates and the K-S regularization (Stiefel & Scheifele 1971). The numbers in the second column are the number of
dependent variables per celestial body. The variables listed in the second column include the position vector x, the velocity vector v, the Kepler energy K, the
Laplace integral vector P, the orbital angular momentum vector L, and the unit position vector n � x=r ; xA and xB are two independent components of x in the
orbital plane, nA and nB are the corresponding components of n, and PA and PB are the corresponding components of P ; g is a true orbital longitude, w is a similar
orbital longitude for the antifocal anomaly, u and u0 are the four-dimensional position and velocity vectors of an associated harmonic oscillator, t is the real time, and
hK = �K is the negative Kepler energy. In the third column, we indicate the relations to be maintained: ‘‘K ’’ for K = (v2=2) � (�=r), ‘‘F ’’ for |v < L| = |P + �n|,
‘‘P ’’ for v < L = P + �n, ‘‘xL’’ for x = L = 0, ‘‘vL’’ for v = L = 0, ‘‘nL’’ for n = L = 0, ‘‘r’’ for r = L2=(� � P = x=r) or r = L2=[� � (PAxA + PBxB)=(x

2
A + x2B)

1/2], ‘‘|n|’’
for |n| = 1 or (n2A + n2B)

1/2 = 1, and ‘‘�’’ for 2(u0)2 + hKu
2 = �. In the fourth column, listing the type of manifold correction, s is the single scaling factor, sX and sV are

the dual scaling factors, R is a rotation matrix to make x and v perpendicular to L, � is a factor to maintain the angle between x and v properly, � is a factor for
orthogonalization, mod (x, y) is a function to take the modulus of x with respect to y, C1 and C2 are the scaling factors of the energy–angular momentum (E-J )
scaling for the K-S regularization (Aarseth 2003), and � is the single scaling factor for the K-S regularization. The second-to-last column shows the orbital elements
that are conserved roughly (with asterisks) or completely (without asterisks) for the Keplerian orbits. Here we use the phrase ‘‘completely’’ in the sense of being at
the machine-epsilon level. Note that the error in the mean longitude at epoch, L0, reduces completely if a sufficiently high order integrator is used with a sufficiently
small step size.

10 This is to compare the best available precision for each method of
integration.
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regularization.11 In our work on manifold correction methods,
we have repeatedly seen that the most important relation to be
maintained is that of the Kepler energy. In the K-S formulation,
this quantity is already incorporated as an auxiliary quantity
to be integrated simultaneously with the main variables, the
position and velocity vectors of a four-dimensional harmonic
oscillator. Then a natural question emerges: Why not apply the
single or another scaling method to the K-S formulation?

S. Mikkola invented such a method of manifold correction
aroud 1990. It was then adopted in the codes described by
Aarseth (2003), where he referred to it as energy rectification
(see x 11.3 of Aarseth 2003 for details; see also Appendix A for
a concise summary). In short, energy rectification is a sort
of dual scaling method, in the vocabulary of our methods of
manifold correction. It applies different scaling factors to the
position and velocity vectors of the associated harmonic os-
cillator in the K-S formulation to satisfy the Kepler energy
relation and conservation of the magnitude of the orbital an-
gular momentum. In this sense, we will call this rectification
the energy–angular momentum scaling, or the E-J scaling for
short, since it is a scaling method to maintain the energy and the
angular momentum. Experimentally, we have learned that the
E-J scaling is not suitable for application at every integration

step. If one attempts to do so, the integration error is greatly
enhanced after one orbital period and the integration itself be-
comes numerically unstable sooner or later. However, as rec-
ommended by Aarseth (2003), when it is applied only at the
apocenter—or, rigorously speaking, only at the nearest point
to the apocenter among the discrete points on the integrated
orbit12—the precision of the orbit integration is greatly enhanced
without facing any instabilities. We confirmed that such limited
use of the E-J scaling is much superior to the K-S regularization
itself. Refer to Figures 1 and 2 again; for Keplerian orbits, the
E-J scaling applied at the apocenter significantly reduces the
magnitude of the longitude errors.
From our experience with the manifold correction methods

for orbit integrations without regularizations, we expected that
the simplest method of manifold correction, the single scaling
method, would also be applicable to the K-S regularization
without requiring any additional components to be integrated.
To our surprise, the single scaling method, whether applied at
every apocenter or at every step, not only reduces the magni-
tude of longitude errors but also changes their growth rate from
quadratic to linear with respect to time in the unperturbed case
(see Figs. 1 and 2 once again). This is a significant improve-
ment, especially over the long run. However, it remains to be
examined whether this superiority persists when perturbations
are present.
In this paper, we report that the single scaling, especially if it

is applied at every apocenter, is generally superior to the E-J
scaling whether perturbations exist or not. In the following, we
describe the application of the single scaling method to K-S
regularized orbital motions in x 2 and present a numerical com-
parison with existing methods in x 3.

2. SINGLE SCALING METHOD FOR K-S REGULARIZED
ORBITAL MOTION

Here we apply the single scaling method, the simplest
method of manifold correction and extensively described in
Paper I, to the perturbed two-body problem in the K-S regu-
larization (Kustaanheimo & Stiefel 1965; Stiefel & Scheifele
1971). The equation of motion of a K-S regularized orbit

Fig. 1.—Dependence of growth of integration error on method for a highly
eccentric orbit. Illustrated are the errors in the mean longitude, L0, of a Keplerian
orbit with e ¼ 0:5. The compared methods of integration are (1) the standard
method, (2) the single scaling method from Paper I, (3) the dual scaling method
from Paper II, (4) the linear transformation method from Paper IV, (5) the
improved true-longitude method from Paper VII, (6) the antifocal longitude
method from Paper VIII, (7) the original K-S regularization, (9) the K-S reg-
ularization with the E-J scaling (Aarseth 2003) applied at every apocenter,
(10) the K-S regularization with the single scaling applied at every apocenter,
and (11) the K-S regularization with the single scaling applied at every step. The
notation ‘‘@A’’ means that the manifold correction is applied at the apocenter
only. The adopted integrator was the implicit Adams method in PECEmode, the
step size was fixed throughout the integration and chosen such that one orbital
period is covered by 90 steps, the starting tables were prepared using Gragg’s
extrapolation method, and the errors were measured by comparing with refer-
ence solutions obtained by the same integrator and with the same model pa-
rameters but half the step size. The order of the integrator was selected as the
highest among those that led to no numerical instabilities for this step size: the
16th for the antifocal longitude method, the 14th for the linear transformation
method, the 13th for the improved true-longitude method, and the 11th for
the others.

Fig. 2.—Eccentricity dependence of numerical integration errors of a
Keplerian orbit. Similar to Fig. 1, but the errors after 32,768 periods are
plotted as functions of eccentricity. Here we show the results of the antifocal
longitude method and four kinds of K-S regularization.

11 There is another method of regularization, named the Burdet-Ferrándiz
(B-F) regularization (Ferrándiz et al. 1992; Martı́n & Ferrándiz 1995). In this
paper, we do not discuss the B-F regularization since its main auxiliary quantity
is not the Kepler energy but the total angular momentum. 12 A practical scheme to realize this situation is presented in Appendix C.
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(eq. [52] in x 9 of Stiefel & Scheifele 1971), is expressed in
four-dimensional vector form as

u00 þ
�
hK

2

�
u ¼ Q; t 0 ¼ u2; h0K ¼ �4

�
u0 =Q

u2

�
; ð1Þ

where primes denote differentiation with respect to the fictitious
time s, u is the four-dimensional fictitious position vector,
u0 � du=ds is the four-dimensional fictitious velocity vector, t
is the real time, hK is the negative Kepler energy, and Q is the
perturbing force, which is a function of u, u 0, and t. Even when
Q is nonzero, equation (1) has an integral13

2(u0)2 þ hKu
2 ¼ �; ð2Þ

where � � G(M þ m) is the gravitational constant of the two-
body problem. In the course of numerical integration of
equation (1), this relation may not always be satisfied. In this
case, we assume that the errors in the fast variables, u and u 0,
are the cause of the observed inequality and correct both of
them to satisfy the relation. Since there is a single relation to
be maintained, there is 1 degree of freedom in the correction.
We thus select a single scaling

(u; u0) ! (�u; �u0) ð3Þ

as the method of correction. As we studied extensively in x 2.3
of Paper I, the harmonic oscillator form of the main equation
of motion strongly implies that there is a benefit to be had in
taking the same scaling factor for the fictitious positions and
velocities when the integration formulae applied to the posi-
tion and the velocity are the same. Fortunately, equation (2)
is purely quadratic with respect to u and u 0. Then the scaling
factor is uniquely14 determined as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

2(u0)2 þ hKu2

r
; ð4Þ

where the quantities u, u 0, and hK on the right-hand side are the
integrated values. The scaling is feasible as long as the argu-
ment of the above square root is positive. This condition is
always satisfied for elliptical and parabolic orbits, even under
perturbations, since hK is nonnegative in these cases. When
hK < 0, on the other hand, there remains the possibility that the
argument will become negative. However, we seldom face
such cases in precise integrations.15 In any event, our experi-
ence tells us that the scaling will be applicable in almost all
cases, independent of the type of orbit or perturbations.

We skip the extension to n-body integrations since it is
trivial, as in Papers I–VIII. See Aarseth (2003) for practical
applications of K-S regularizations. We have only to determine
the scaling factor for each body and apply the scaling, body by
body.

Finally, let us mention a couple of practical techniques
to enhance the scaling method. First, the quantity hK remains

almost constant throughout an integration. Thus, in order to
reduce the round-off error, it is better to integrate not hK itself
but its deviation from the initial value, �hK � hK� (hK)0, in-
stead. In practice, we replace the last component of equation (1)
with

(�hK )
0 ¼ �4

�
u0 =Q

u2

�
ð5Þ

and evaluate hK as

hK ¼ (hK )0 þ�hK ð6Þ

whenever it is needed. Secondly, the solution of t contains a
secular component that grows linearly with respect to the fic-
titious time, s, even in the unperturbed case. In this situation, it
is better to treat separately the integral and fractional parts
measured in some unit of time in order to reduce the accumu-
lation of round-off errors. We therefore decompose t as t ¼
kT þ t�, where k denotes the integer part of t measured in units
of T, such that the condition jt�j < T always holds. Usually we
take half the nominal orbital period as the value of T. If this
separation is already done before the integration, the relation
can be maintained by applying the following procedure, writ-
ten in C-style pseudocode, at each integration step:

if (t* > T) { k += 2; t* -= 2T; }
else if (t* < �T) { k -= 2; t* += 2T; };

(see the similar discussions in Papers VII and VIII ).
Before concluding this section, we stress that the single

scaling described above retains the universality of the original
K-S formulation. Namely, it is applicable to all types of orbits:
elliptical, parabolic, hyperbolic, and linear. This is true even
under perturbations.

3. NUMERICAL EXPERIMENTS

We next examine the effects of the single scaling method
applied to K-S regularized orbits and compare them with the
E-J scaling method. In the following, we restrict ourselves to
perturbed two-body problems. The extension to n-body cases
is postponed to future work.16

Before going further, let us explain how we measure the
integration errors. Among the various approaches discussed in
x 3.1 of Paper I, we adopt a comparison with a reference so-
lution that is obtained using the same integrator, the same initial
conditions, and the same model parameters but with half the
step size. Based on this policy and the technique for synchro-
nizing the errors at the same real time explained in Appendix B,
we define the errors of the K-S variables and Keplerian orbital
elements, X � (u, u 0, hK, a, e, I, �, !, L0), obtained from the
integration with a fixed step size in the fictitious time, h, at the
same real time, t� � t(s; h=2), as

�X (t�; h) � �X (s; h)� dX

dt
�t(s; h); ð7Þ

where

�Y (s; h) � Y (s; h)� Y (s; h=2) ð8Þ

denotes the equal-s difference of a solution Y at s, which is
obtained by integration with the step size in the fictitious time

13 This is a rewriting of the Kepler energy relation in terms of the fictitious
vectors.

14 The uniqueness of the solution of the equation to specify the scaling factor
is different from the situation for the E-J scaling described in Appendix A.

15 Rare exceptions happen when originally hyperbolic orbits are integrated
by very crude integration methods, say, with a very low-order integrator or with
a very large step size, such that the integrated position and velocity become so
circularized that the kinetic energy greatly reduces while hK itself, which is
integrated separately, remains negative.

16 We feel no pressing need to do long-term integrations of multiple gravi-
tating bodies in highly eccentric orbits.
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at h fixed. The coefficient on the right-hand side of equation (7),
the t-derivative of X, is evaluated directly for Keplerian orbital
elements. On the other hand, for the K-S variables, the de-
rivatives are evaluated by way of s-derivatives as

dX

dt
¼ X 0

t 0
; ð9Þ

where the s-derivatives, X 0 and t 0, are evaluated using the ref-
erence solution, X(s, h=2) and t(s, h=2). Note that this defini-
tion of the equal-t errors satisfies the trivial condition � t ¼ 0.

In this paper we omit the discussion of nonelliptical orbits.
In such cases, whether perturbations are present or not, a long
integration is not necessary, since the nonlinear effects are
serious only for a limited time, in the neighborhood of close
encounters with gravitating bodies (including the central one),
and there are only one or two such close encounters at most for
each gravitating body. Therefore the original K-S regulariza-
tion is accurate enough to integrate the nonelliptical cases with
sufficient precision. In fact, we have confirmed that the scaling
does not significantly enhance the performance of the K-S
regularization. Thus, we deal with the elliptical but highly ec-
centric cases in what follows.

We begin with unperturbed cases. Figure 3 illustrates the
growth of the position error and the errors in six modified or-
bital elements for a highly eccentric Keplerian orbit integrated
in the K-S regularized form. The errors in the semimajor axis,
�a, in the orbital eccentricity,�e, and in the longitude of peri-
center, �$, first grow linearly with respect to the real time t
and then grow more rapidly, as a cubic function of t, after some
amount of time—a few thousand periods in this case. As a
result of the initial linear growth of �a, the errors in the mean
longitude, �L0, and those in the real position vector, �x, too,
seem to grow quadratically with respect to t. Since �a has
started to grow in a cubic manner, sooner or later �L0 will
increase as a quartic function of t. The initial quadratic growth
with respect to t is the same as the standard method in the
nonregularized form (cf. Fig. 1). On the other hand, the errors
in the two angles specifying the orbital plane, namely, those in

the inclination,� I, and in the longitude of the ascending node,
��, are negligibly small for the first few hundred periods.
Then they grow in proportion to

ffiffi
t

p
. This suggests that these

errors are caused by the statistical accumulation of round-off
in the single summation of the random errors of the zero-mean
value (Brouwer 1937). We confirmed this conjecture by ex-
amining the step-size dependence of the results integrated by
fixing the integrator in a separate numerical experiment.
Figure 4 shows the same curves as in Figure 3 but with the

application of the E-J scaling at every apocenter.17 This time
�a remains almost constant, at some tens of machine epsilons,
throughout the integration. This is the effect of scaling to main-
tain the Kepler energy relation. However, �L0 grows quadrat-
ically with respect to t. This seems curious. As will be shown
in the next example, the reason is not that we limit the appli-
cation of the scaling only to every apocenter but the nature of
the scaling applied, although we have no idea about its mech-
anism. On the other hand, the errors in some of the elements
first remain at the machine-epsilon level (� I and�$) or grow
in proportion to the square root of time (��) for some amount
of time, 10 or so periods in this case, and then the errors grow
linearly, whereas �e grows linearly from the beginning. In
any event, the magnitude of the errors in the position vec-
tor, |�x|, grows quadratically with time. This is mainly due
to the quadratic growth of the longitude error. However, we
note that their magnitude is significantly smaller than in the
case without any scaling. Thus we have confirmed that the
application of the E-J scaling enhances the precision of orbit
integration.
Figure 5 depicts similar curves for when the single scaling

is applied in place of the E-J scaling. In order to examine the
genuine effect of the difference in the scaling prescription, we
did not change the timing at which we apply the scaling—at
every apocenter. Again, �a remains finite throughout the in-
tegration, at the same low level. This time, however,�L0 grows
linearly with respect to t. This is the effect of the single scaling.
The errors in the eccentricity vector,�e and�$, first remain at
the level of the machine epsilon for some amount of time,
around a hundred periods in this case. Then they grow linearly
with time. On the other hand, the errors in the direction of the

17As we noted earlier, the application of the E-J scaling at every integration
step frequently leads to numerical instabilities. Thus, we did not include it in our
comparison.

Fig. 3.—Element errors of a Keplerian orbit regularized by K-S transfor-
mation with no scaling. Similar to Fig. 1, but the errors in position and in the
modified orbital elements of a highly eccentric Keplerian orbit integrated with
the K-S regularization are plotted as functions of the real time on a log-log
scale. The eccentricity is as high as e ¼ 0:827 and the inclination is as moderate
as I ¼ 23�. They are taken from the nominal values of Icarus in the eclip-
tic coordinate system. Most of the curves are offset by some factor to avoid
overlap.

Fig. 4.—Same as Fig. 3, but with application of the E-J scaling at every
apocenter.
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angular momentum vector,� I and��, grow linearly after one
orbital period. The faster growth of � I and �� is the result
of ignoring conservation of the angular momentum direction,
which is taken into account in the E-J scaling, in the rotation
method in Paper III, and in the subsequent methods of manifold
correction in Papers IV–VIII. In the long run, the errors in po-
sition also grow linearly. This is because there are no compo-
nents whose errors grow quadratically with time.

Figure 6 plots the same curves as in Figure 5 but with the
timing of the scaling changed from every apocenter to every
integration step. Here �a further decreases and remains ex-
actly at the machine-epsilon level. This is the effect of apply-
ing as many scalings as possible. As a result, the magnitude of
�L0 decreases significantly while maintaining the same linear
growth as in Figure 5. On the other hand, the errors in the other
elements do not change very much. In conclusion, the position
error in this case is smaller than in the three previous figures
because the Kepler energy relation is maintained more rigor-
ously through applcation of the scaling at every integration
step. This situation is exactly the same as we faced with the
single scaling method developed in Paper I.

In conclusion, the scaling methods applied to the K-S reg-
ularization for unperturbed orbits perform excellently, in the
following order: (1) the single scaling applied at every step,
(2) the single scaling applied at every apocenter, (3) the E-J

scaling applied at every apocenter, and (4) no application of
scaling. This fact has already manifested in Figures 1 and 2.

Let us move on to the perturbed orbits. First of all, we con-
firmed that the situation observed in case of unperturbed orbits
essentially persists when the perturbation is sufficiently weak.
Thus, we mainly examine the case of moderate and strong per-
turbations in the following.

Figure 7 illustrates the case of a typical perturbation, Icarus
under Jupiter’s third-body influence. In preparing the figure,
we set the initial conditions for Icarus and Jupiter as those at
J2000.0. Also, the orbit of Jupiter was fixed as its osculating
one at J2000.0. The conditions of the integration are the same
as in Figure 1, namely, the 11th-order implicit Adams method
in PECE mode with the step size set to cover one nominal or-
bital period in 90 steps. Thus the averaged step size is as large
as 3.6 days. In the case of K-S regularization without scaling,
the errors begin to grow quadratically with time after the first
close encounter with Jupiter. On the other hand, with the three
scaling methods, the errors grow linearly for the first few
thousand years. Then they grow quadratically. The result of the
single scaling method applied at every step is a little worse than
both the E-J scaling applied at every apocenter and the single
scaling method applied at every apocenter, while the latter two
give almost the same result. In any case, the scaling suppresses
the magnitude of the errors over the long run by two digits
or so.

The scaling is effective even for dissipative perturbations,
where the Kepler energy secularly decreases. Figure 8 shows a
similar comparison of integration errors for HALCA under the
perturbations of air drag only. The eccentricity is high, at 0.6,
and the perigee altitude is as low as 560 km. The other con-
ditions of the integration are basically the same as in the pre-
vious figures. Thus the averaged step size is 2.1 minutes. The
errors of the K-S regularization without scaling increase qua-
dratically with time. Those with scaling first grow linearly for
some amount of time, about 1 month for the E-J scaling applied
at every apocenter, around a few decades for the single scal-
ing applied at every step, and more than a thousand years for
the single scaling method applied at every apocenter. Then the

Fig. 6.—Same as Fig. 3, but with application of the single scaling at every
step.

Fig. 7.—Effect of the scaling on the K-S regularized orbital motion under a
third body’s perturbations. Compared are the longitude errors of a model
Icarus under Jupiter’s perturbation. The orbit of Jupiter was given as a fixed
Keplerian orbit. The step size in the fictitious time was fixed so as to cover one
nominal orbital period in 90 steps. This corresponds to an averaged step size
of 3.6 days in real time. The curve for the single scaling applied at every
apocenter is mostly the same as that for the E-J scaling at every apocenter, so
the former is offset to show the similarity clearly.

Fig. 5.—Same as Fig. 3, but with application of the single scaling at every
apocenter.
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errors grow more rapidly, about as a cubic function of time. In
any case, the effect of scaling is so eminent that the gain in
precision after 7 years, the project lifetime of HALCA, amounts
to three to four digits.

Of course, there is a sort of perturbation for which the scaling
seems to be ineffective. Specifically, we present a case in which
the error component of quadratic growth is so small for the
original K-S regularization that the application of scaling does
not succeed in further reduction of the errors. Figure 9 shows
the integration errors for HALCA under the J2 perturbation of
Earth. The eccentricity is as high as 0.6 while the inclination is
as moderate as 31

�
. The J2 perturbation is so strong that we

halved the step size to obtain precise results. In the figure, we
scaled the results of the integrations to show the similarity of the
error growth. Note that all the errors increase almost linearly
with time for the first few thousand periods, say, a few years.
This is an excellent property of the K-S regularization itself.

Finally, we examine robustness against round-off. Figure 10
shows the integration errors for Icarus under the Sun’s general

relativistic perturbations using a very small step size to cover
one nominal orbital period with 256 steps. The order of the
implicit Adams methods was chosen as the 14th, the highest
order that led to no numerical instabilities for the given step
sizes. In the cases of no scaling and the E-J scaling applied at
every apocenter, the errors grow in proportion to the 3=2 power
of time. This is the same as in the integrations in real rectan-
gular coordinates, as Brouwer (1937) predicted. On the other
hand, the errors for the single scaling, whether applied at every
step or at every apocenter, increase in proportion to the square
root of time for the first few tens of thousands of years and then
increase quadratically with respect to time. This is similar to
the situation for the true and antifocal longitude methods in
Papers VII and VIII. In any event, the observed growth rates,
3=2 or 1=2, indicate that the errors are mainly due to round-off.
As for the magnitude, the result of the single scaling applied at
every apocenter gives significantly smaller errors than the case
of application at every step. This can be well understood by
considering the difference in the number of scaling operations,
which significantly suppresses truncation errors but may in-
troduce extra rounding off.

4. CONCLUSION

To K-S regularized orbital motions we have applied the
idea of single scaling to maintain the Kepler energy relation
consistently. The scaling is executed by applying the same mul-
tiplicative factor to all the positions and velocities of the four-
dimensional harmonic oscillator associated with the orbital
motion. This is different from the E-J rectification (Aarseth
2003), which multiplies two different factors with the position
and velocity separately. The scaling factor is uniquely and sim-
ply determined from the integrated positions and velocities of
the harmonic oscillator, as well as the integrated value of the
Kepler energy, in order to exactly maintain the Kepler energy
relation throughout the entire orbit integration. For unperturbed
orbits, the single scaling not only reduces the magnitude of the
errors but also changes the manner of error growth from qua-
dratic to linear with respect to the real time. As for the times
at which to apply the scaling, the policy of doing so at every

Fig. 10.—Same as Fig. 7, but under the Sun’s general relativistic pertur-
bation. This time the step size was set so small as to cover one orbital period
by 256 steps. The order of the implicit Adams method was the 14th, the
highest among the orders that led to no numerical instabilities for the given
step size. As a result, the main error source is not truncation but round-off.
Again the superiority of the single scaling method applied at every apocenter
is confirmed.

Fig. 8.—Same as Fig. 7, but integrated is the orbit of HALCA, an artificial
Earth satellite with e ¼ 0:600, under perturbations due to a model air drag
only. The perigee altitude was as low as 560 km. The step size was chosen
such that 90 steps cover the nominal orbital period, 6.3 hr. In this example, the
single scaling applied at every apocenter gives the best result.

Fig. 9.—Same as Fig. 8, but under the J2 perturbations of Earth only. This
time the step size was halved. The inclination of HALCA is as moderate as
I ¼ 31�. In order to show the similarity of the curves clearly, we offset the
results that employ scaling. There are no practical differences among the
results from the four methods compared here.
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integration step gives better results than limiting the applica-
tion to every apocenter. For perturbed orbits, the single scal-
ing applied at every apocenter provides the best performance
for third-body perturbations, dissipative perturbations, and gen-
eral relativistic perturbations. For the oblateness perturbations,
however, the scaling does not alter the initial linear growth of
errors, which is already realized by adopting the K-S regulari-
zation. The superiority of the single scaling method applied
at every apocenter is unchanged when the major error source
is round-off. The cost of scaling is negligibly small, since the
integration of the Kepler energy is already incorporated in
the original scheme of K-S regularization and the extra com-
putational time to judge the time of apocenter is relatively
small. Also, the scaling does not destroy the universality of the
original K-S formulation. In conclusion, the application of sin-
gle scaling loses almost nothing in the sense of computational
cost and gains a significant increase in precision for many types
of perturbations, whether the errors are caused by truncation or
round-off. Therefore, we recommend the application of the sin-
gle scaling method whenever the K-S regularization is used.

We thank the referee for the suggestion to apply the single
scaling method at every apocenter. We also appreciate other
valuable suggestions to improve the quality and readability of
the paper.

APPENDIX A

ENERGY RECTIFICATION

Let us summarize the so-called energy rectification for the
Kustaanheimo-Stiefel regularization, which was first proposed
by S. Mikkola in the early 1990s and then gradually introduced
in the n-body simulation codes developed by S. Aarseth and
coworkers (see x 11.2 of Aarseth 2003 for details).

The motivation behind the rectification is roughly the same
as the single scaling method described in x 2 up to the point at
which one speciBfies the functional form of the scaling. In the
energy rectification, the dual scaling

(u; u0) ! (C1u;C2u
0) ðA1Þ

was selected as a method of correction. In addition to the first
integral, equation (2), another condition was posed to uniquely
specify the two scaling factors:

C1C2 ¼ 1: ðA2Þ

This condition means that the scaling does not alter the
magnitude of the orbital angular momentum, which is pro-
portional to |u||u 0| in unperturbed orbits. With the help of this
second condition, equation (2) is rewritten into a quadratic
equation for z � C2

2,

Tz2 � �zþ U ¼ 0; ðA3Þ

where

T � 2(u0)2; U � hKu
2: ðA4Þ

When the discriminant

D � �2 � 4TU ðA5Þ

is nonnegative, the quadratic equation has two real roots,

z ¼ � �
ffiffiffiffi
D

p

2T
: ðA6Þ

Since the scaling factor must be real, the solution z must be
nonnegative. Then the solution is uniquely determined whenffiffiffiffi
D

p
> �, which corresponds to the hyperbolic case. Otherwise,

there remain two possibilities. To specify the solution uniquely,
a rule was adopted such that the more realistic solution must
be the one that is closer to unity, the solution in case of no inte-
gration error. Then the solution is finally specified as

C2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffi
D

p

2T

s
when 2T � � or hK < 0; ðA7Þ

C2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

ffiffiffiffi
D

p

2T

s
otherwise: ðA8Þ

Of course, C1 is computed from the C2 thus obtained as

C1 ¼ 1=C2: ðA9Þ

On the other hand, when D < 0, a different condition,

C2 ¼ 1; ðA10Þ

was imposed. This means that only the fictitious position
vector is modified. In this case, C1 is uniquely determined as

C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� T

U

r
: ðA11Þ

As Aarseth (2003) stressed, this exceptional case rarely happens.

APPENDIX B

EVALUATION OF ERRORS AT THE SAME REAL TIME

Let us derive the expression for errors at the same real time,
equation (7) in the main text. Assume that Y(s, h) represents a
K-S variable Y at the fictitious time s, integrated by fixing the
step size in the fictitious time at h. Then we approximate its
error at the same fictitious time by the difference from the
reference solution,

�Y (s; h) � Y (s; h)� Y (s; h=2): ðB1Þ

This approximation is precise because the errors of the ref-
erence solution, Y(s, h=2), are negligibly small when com-
pared with those of Y(s, h), since we generally use integrators
of very high order, say, the ninth to 15th. Similarly, we define
the errors at the same real time, t� � t(s; h=2), as

�Y (t�; h) � Y (s�; h)� Y (s; h=2); ðB2Þ
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where s� is the fictitious time corrected so as to satisfy the syn-
chronization condition

�t(t�; h) � t(s�; h)� t(s; h=2) ¼ 0: ðB3Þ

Expanding the first term in the synchronization condition as

t(s�; h) ¼ t(s; h)þ t 0(s� � s)þ � � � ; ðB4Þ

where the prime indicates differentiation with respect to s,
we approximately solve equation (B3) with respect to �s �
s� � s as

�s � ��t(s; h)=t 0: ðB5Þ

Then we finally obtain the expression of errors in X �
(u, u 0, hK, a, e, I, �, !, L0) at the same real time as

�X (t�; h) ¼ ½X (s; h)� X (s; h=2)	 þ ½X (s�; h)� X (s; h)	

� �X (s; h)þ X 0 �s � �X (s; h)� X 0

t 0
�t(s; h)

¼ �X (s; h)� dX

dt
�t(s; h); ðB6Þ

which is what we aimed to prove. The correction is necessary
because what is meaningful is the precise integration not in the
virtual K-S spacetime but in the real world. In fact, we ex-
perimentally confirmed that the smoothness of the errors in L0
shown in the various figures of the present paper is achieved
by applying this correction term.

APPENDIX C

JUDGMENT OF APOCENTER

Let us describe a couple of ways to determine whether an
individual integration step is locally the closest point to the
apocenter. The first technique is rigorous. Assume that at a cer-
tain integration step in the fictitious time, s ¼ sn, we know the
position vectors of the associated harmonic oscillator at three
fictitious times: the previous step s ¼ sn�1, the current step s ¼
sn, and the next step s ¼ snþ1. Denote the three position vec-
tors corresponding to these times by attaching the indices as
un�1, un, and un+1, respectively. Then the condition that the

current step is the closest to the apocenter is simply expressed
as

rn � rn�1; rn 
 rnþ1; ðC1Þ

where the real radii are obtained from the fictitious vectors as
rn � u2n, etc.
In the practical course of numerical integration, it is easy to

find the current and previous values of the fictitious position
vector, un�1 and un. In order to obtain a sufficiently precise
estimate of that at the next step, un+1, without spending too
much computational time, we assume that the three position
vectors un�1, un, and un+1, are on the orbit of a harmonic os-
cillator osculated at s ¼ sn. Then, with help of Chebyshev
polynomials, the following formula is easily derived:

unþ1 ¼ 2cun � un�1: ðC2Þ

Here the coefficient c is expanded in terms of the step size, h, as

c ¼ 1�
�
hK

2

�
h2 þ

�
h2K
96

�
h4 þ O(h6); ðC3Þ

where hK is that evaluated at s ¼ sn. Note that this computa-
tion is universal, namely, valid independent of the sign of the
Kepler energy hK.
The second method is simpler and therefore faster, but it

lacks the exactness of the first. Assume that only the positions
and velocities at the previous and the current step are available.
Then the condition that the time of apocenter is between the
previous and the present time steps is written as

r 0n�1 � 0; r 0n 
 0; ðC4Þ

where the s-derivative of r is evaluated as

r 0 ¼ 2u =u0: ðC5Þ

Note that the above condition does not mean that the current
step is the closest to the time of apocenter. The condition only
ensures that either the previous step or the current one is the
closest to the timing of apocenter. Therefore the chance that the
current step is the closest is 50-50. However, if the step size is
sufficiently small, the effect of this approximation will be small.
We numerically confirmed that either of the above devices is

sufficiently accurate and fairly fast. The difference in compu-
tational time is negligibly small.

REFERENCES

Aarseth, S. J. 2003, Gravitational N-Body Simulations (New York: Cambridge
Univ. Press)

Arakida , H., & Fukushima, T. 2000, AJ, 120, 3333
———. 2001, AJ, 121, 1764
Brouwer, D. 1937, AJ, 46, 149 (erratum 47, 84 [1938])
Ferrándiz, J. M., Sansaturio, M. E., & Pojman, J. R. 1992, Celest. Mech. Dyn.
Astron., 53, 347

Fukushima, T. 2003a, AJ, 126, 1097 (Paper I )
———. 2003b, AJ, 126, 2567 (Paper II )
———. 2003c, AJ, 126, 3138 (Paper III )
———. 2004a, AJ, 127, 3638 (Paper IV)
———. 2004b, AJ, 128, 920 (Paper V)

———.Fukushima, T. 2004c, AJ, 128, 1336 (Paper VI)
———. 2004d, Celest. Mech. Dyn. Astron., submitted (Paper VII )
———. 2004e, AJ, 128, 1455 (Paper VIII )
Funato, Y., Hut, P., McMillan, S., & Makino, J. 1996, AJ, 112, 1697
Hirabayashi, H., et al. 2000, PASJ, 52, 955
Kustaanheimo, P., & Stiefel, E. L. 1965, J. Reine Angew. Math., 218, 204
Martı́n, P., & Ferrándiz, J. M. 1995, Celest. Mech. Dyn. Astron., 63, 29
Palmer, P. L., Aarseth, S. J., Mikkola, S., & Hashida, Y. 1998, J. Astronaut.
Sci., 46, 329

Stiefel, E. L., & Scheifele, G. 1971, Linear and Regular Celestial Mechanics
(New York: Springer)

FUKUSHIMA3122


