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ABSTRACT

We perform numerical experiments of test particle energization in turbulent magnetic and electric fields ob-
tained from pseudospectral direct numerical solutions of compressible three-dimensional magnetohydrodynamic
(MHD) equations with a strong background magnetic field. The natural tendency of turbulent MHD fields is to
form current sheets along the magnetic field direction, as well as strong nonuniform fields in the transverse
directions. By associating the MHD dissipation length scale with the ion inertial scale, we found differential
energization in parallel and perpendicular directions according to the type of particles considered. Electrons
develop large parallel velocities, especially in current sheets. Protons instead show higher perpendicular ener-
gization due to the nonuniform perpendicular induced electric field produced by the plasma MHD velocity, which
varies on proton length scales. Implications for dissipation mechanisms in a coronal heating model are discussed.

Subject headings: acceleration of particles — MHD — turbulence

1. INTRODUCTION

Test particle simulations can be useful for gaining insight into
the complex topic of bridging large-scale macroscopic mag-
netohydrodynamic (MHD) descriptions and particle kinetic
physics descriptions. As such, they have been used in spatial
diffusion studies, where usually turbulent MHD fields are
modeled by giving their second-order spatial correlation func-
tions or, equivalently, the energy spectrum. This is the area, for
instance, of cosmic-ray scattering and transport (Giacalone &
Jokipii 1999). When studying momentum diffusion (stochastic
acceleration), a typical approach is to represent the MHD fields
as a collection of waves with prescribed dispersion relations
between frequency and wavenumber vectors, given amplitudes,
and random phases (Miller et al. 1997). This “wave turbu-
lence” representation is used then to address wave-particle
interactions. Another approach using test particles includes
randomly generated (Gaussian) fields with (modeled) locally
enhanced resistivity in current “hot spots” (Arzner & Vlahos
2004).

In another very different set of models, instead of using
spectral representations or waves to model turbulent fluctua-
tions, the fields are considered in special geometries, with
large-scale and coherent properties. Among those studies are
the cases of magnetic reconnection and its influence on particle
acceleration, for example in the magnetosphere or solar flares.
Reconnecting fields for pushing test particles can be given
analytically (Heerikuisen et al. 2002) or from MHD simu-
lations, which can include driving flows (Schopper et al. 1999;
Birn & Hesse 1994) or initial-value problems with added per-
turbations (Ambrosiano et al. 1988). In all these examples, the
main geometry of reconnection is set up at the beginning and
is not the result of a natural evolution of the fields.

From the largely random prospective used in wave turbu-
lence or stochastic acceleration studies to the more organized
scenario of reconnection studies, there is, however, an inter-
mediate class of problems that, in our view, has received very
little attention. This corresponds to problems in which turbu-
lence results as a natural evolution of the MHD fields (and so is
not modeled) and, at the same time, reconnecting-like geom-
etries appear as an outcome of that evolution.
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We are quite aware of the limitations of the direct approach
for the MHD fields that we are attempting to use, in terms of
the length- and timescales available with actual computer re-
sources; however, we believe that it is worthwhile to explore
this issue, even with these limitations in place. In this regard,
the approach based on modeling turbulent fields through spec-
tra and waves has the advantage of achieving in principle very
high spatial resolution up to particle scales. However, it lacks
an important property of turbulence, which is the fact that
MHD fields tend to form coherent and singular structures (like
current sheets) that are completely absent in the wave turbu-
lence picture. It is possible that for scattering or transport
problems this is not relevant, but it could be very important for
particle energization problems, especially on short timescales.

The approach that we follow is perhaps closer to the re-
connecting geometry test particle studies, since, as we state
below, the fields that we consider are not going to be evolved in
time (so there is no possibility at all of waves in the system).
But an important distinction is that the fields that we consider
are obtained from a direct numerical simulation of MHD tur-
bulence, in which no initial reconnecting structure is set up to
be driven or perturbed, but rather any coherent or singular
structure formation results from the natural evolution of the
fields. Once the system has evolved for a couple of dynami-
cal times, the fields are saved for pushing the particles in the
largely irregular (but not totally random) configuration obtained.
The assumption here is that the effect of the time evolution of
the fields is of secondary importance for the test particle be-
havior. This in particular is applicable for short times, where
our study is focused. In this sense, the study is limited and we
are not attempting to address the long-time momentum diffu-
sion problem here. Limitations on the size of the simulation
(and resolving scales) would also prevent a correct study of
the diffusion problem.

The problem that we consider continues in the line of study
that we started in Dmitruk et al. (2003) in an attempt to fill a
gap in numerical studies of test particles in directly obtained
turbulent fields with singular structure formation. Idealized
and theoretically motivated as it is, it turns out that this prob-
lem could be of relevance for a long-standing problem in space
physics, which is the energization of electrons and ions in the
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corona and solar wind (Kohl et al. 1997, 1998). The results
presented here could be regarded as the onset of a direct dis-
sipation mechanism for a coronal heating model based on
development of MHD turbulence and current sheets (Dmitruk
& Matthaeus 2003). Kinetic dissipation mechanisms for co-
ronal heating based on well-studied wave-particle energiza-
tion models, such as ion cyclotron resonance (see Hollweg &
Isenberg 2002 and references therein), or kinetic Alfvén waves
models (Cranmer & van Ballegooijen 2003; Gary & Nishimura
2004) should also be mentioned.

The organization of the paper is as follows. In § 2 we de-
scribe the equations and properties of the MHD fields, in-
cluding the formation of current sheets. In § 3 results are given
for different types of test particles, “electrons’ and “protons,”
moving in these fields and described by the nonrelativistic
equations of motion. A qualitative picture of the different type
of energization for each kind of particle is discussed. Section 4
discuss mostly speculative ideas about how these results
could fit into a coronal heating model. Section 5 contains the
conclusions.

2. THE FIELDS
2.1. MHD Definitions and Equations

The macroscopic description of the plasma is given by
compressible three-dimensional MHD, which involves a fluc-
tuating flow velocity v(x, y, z, t), magnetic field b(x, y, z, t), and
density p(x,y,z,t). We assume the presence of a large-scale
magnetic field (DC field) in the z-direction, By = ByZ, so the
total magnetic field is B = By + b.

The MHD equations are

1 1 1
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with p the pressure, v the viscosity, 1 the magnetic diffusivity,
and J = V x B the current density (here J = 4j/c, where j
is the current density in Gaussian units and c is the speed of
light). A continuity equation for p and an equation of state
complete the system. We assume a nearly incompressible regime
with l\s/ie;ch number 0.25 and treat the pressure as polytropic,
p~p.

We consider periodic boundary conditions in a cube of side
Lyox = 27L. The value of L is of the same order as the energy-
containing scale or the magnetic field correlation length, which
is approximately constant throughout the short time evolution
of the system. The periodic box contains then about six cor-
relation scales, Lyox = 27L.

The initial magnetic and velocity fluctuation root mean
square (rms) values are 6B = (\b\2>1/2 and bv = <|v|2>1/2, and we
set up év = 6B/ (47po)"/? = vy, which is the plasma Alfvénic
speed based on the fluctuations amplitude (py is the mean
density). Note that another (usually much larger) Alfvén speed
can also be defined for the DC field part, Vo = By/ (47rp0)1/ 2,
This is the speed of Alfvén waves propagating parallel to the
DC field, but it has no relation to the turbulent fluctuations
amplitude. The kinetic and magnetic Reynolds numbers are
R =wL/v and R,, = vyL/u, which measure the strength of
the nonlinear terms in the MHD equations compared to the
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dissipative terms. We take R = R,, = 1000, which are limited
here by the available spatial resolution.

The timescale for the turbulent MHD fields is # = L/v
(eddy turnover time). We consider a decaying simulation from
an initial state with the kinetic and magnetic field fluctuations
populating an annulus in Fourier k-space such that 1 < k£ < 4,
with constant amplitude and random phases. We employ a
pseudospectral code with resolution of 256> Fourier modes,
which guarantees that dissipation scales /; > 27L/256 are
fully resolved for the moderate Reynolds numbers considered.
After 21y times, a turbulent state with a range of scales from
L to I; =~ L/32 has been developed (recall here that some room
has been made in the simulation box to contain about six
energy-containing scales L, so about 2 orders of magnitude in
k-space are available). We then take a snapshot of the magnetic,
velocity, and current density fields at that time to be used for
pushing the test particles.

2.2. MHD Field Structure

The structure of the magnetic field and the current density J,
in the parallel direction can be seen in Figure 1. In the left panel
we show a cross section in the plane x-z of the current density
J, in color tones. Yellow (light) corresponds to strong positive
values, while blue (dark) corresponds to strong negative val-
ues. Superposed with arrows is a magnetic field vector con-
structed with the components b,x + (b, + By)Z in the same
cross section. The presence of the DC field is clear. The ratio
between the DC field and the rms of magnetic fluctuations at
this time is By/6B = 10. This value is fixed for the test particle
simulations. Current density structures preferentially aligned
along the DC field direction can be seen in this panel. This is a
manifestation of the well-known anisotropic behavior of mag-
netic field fluctuations in MHD with a DC field (Shebalin et al.
1983; Oughton et al. 1994). In this case, the current density
is directly related to small-scale fluctuations of the magnetic
field, and so the anisotropy at these scales is clearly visible.
The right panel shows the current density J, in an x-y cross
section and the perpendicular magnetic field vector b,x + b,y
in the same section, with arrows superposed (note that the ar-
rows here are not exactly in scale with the left panel arrows,
because of the small ratio 1/10 between them). The current
density structures are much more varying in the perpendicular
cross section, confirming the anisotropy.

The overall picture is that current sheet structures along the
DC field are formed as a natural evolution of the turbulent
MHD fields. The magnetic field fluctuations in the perpen-
dicular plane are also rapidly varying in space. These structures
resemble two-dimensional reconnecting structures (Matthaeus
& Lamkin 1986; Biskamp & Welter 1989), although since
this is three-dimensional, they should be better compared with
the type known as “component reconnection,” which is the
two-dimensional reconnection of the perpendicular compo-
nent of a magnetic field with a strong guide field (Birn et al.
1989). However, the plots show that the form of the magnetic
field is not quite the ideal type described commonly in re-
connection theory, but rather a more complex and fluctuating
picture. Moreover, perpendicular currents J,, J, are also formed
(not shown); however, they lack the coherent structure seen
for J,.

In Figure 2 the velocity field is shown. In the left panel the
velocity field vector constructed with components v.X + v,Z
is shown as arrows over the current density in color tones as
before. The current density structures are shown here for ref-
erence with the previous figure. The right panel shows the
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Fig. 1.—Left: Cross section in a plane x-z of the current density J, in color tones. Yellow (light) is positive J, blue (dark) is negative J,. Superposed with arrows is
a vector magnetic field constructed with b, and b, + By components, where By is the background magnetic field in the z-direction. Right: Cross section in a plane x-y
of the current density J; and superposed arrows for the vector magnetic field constructed with b, and b, components.

velocity field vector in the perpendicular plane v X + v,y. As
with the magnetic field fluctuations, the velocity field fluctu-
ations are highly varying in this plane. As will become clear
later, these variations are important for the particles’ energization.

With the magnetic field, velocity, and current density, the
electric field can be obtained through Ohm’s law,

1 volL
E—=—— B+ — 3
ke +RmCJ, 3)

and is the result of the electromotive force (EMF) term due to
the plasma motion plus a formally small resistive term that is
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important in current sheet regions (here we write the magnetic
diffusivity as p = vL/R ).

3. TEST PARTICLES

The nonrelativistic equations of motion for the charged
particles in the fields obtained from MHD (in cgs units) are

d 1
—":1<—uxB+E>,

@ _u
dt  m\c ’

o 4)

where u is the particle velocity, x the position, ¢ the charge,
and m the mass.
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Fic. 2.—Left: Cross section in a plane x-z of the current density J, in color tones. Superposed with arrows is a velocity field constructed with v, and v,
components. Right: Cross section in a plane x-y of the current density J. and superposed arrows for the velocity field constructed with v, and v, components.
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A fast timescale is given here by the inverse of the parti-
cle gyrofrequency w, = ¢B/(mc) around a magnetic field of
intensity B, and a small length scale (unless the particle en-
ergy is very high) is given by the gyroradius r, = u, /w, =
u,mc/(gB), where u, is the velocity of the particle in the
perpendicular plane to the magnetic field. A nominal gyrora-
dius can be defined by setting u, = v (i.e., the typical plasma
speed) and B = By; thus, ry = vogmc/(¢By). Recalling here that
vy = 6B/ (47rp)1/ 2, where p is the plasma density, and intro-
ducing the ion (proton) inertial scale p; = mpc/(ez47rp)1/2,
with m,, the proton mass and e the charge, we have ry =
Z(m/m,)(6B/By)pi;, where we use ¢ = Ze. A dimensionless
quantity can be constructed by comparing this small particle
length scale r( with the large MHD scale L,

0B pj;
o _ 5 M OB pii (5)
L “m B L

A wide range of values of ry/L can be obtained, either by a
change in the particle properties (charge, mass) or by a change
in the ratio p;;/L between the ion inertial scale and the energy-
containing scale. In general, we might expect that p;/L < 1.
This is especially true for space physics and astrophysics ap-
plications. For instance, in the solar wind it can be estimated
that p;; /L ~ 1073, In a coronal hole (at about one solar radius),
pii/L ~ 107%. In fact, there are good indications from ob-
servations in the solar wind (Leamon et al. 1998) that the
length scale /; at which dissipation effects become noticeable
in MHD is of the order of the ion inertial scale, that is, I; ~ p;;.

Attempting to resolve this full range of scales in a three-
dimensional MHD simulation requires an enormous cost in
terms of computing power at present standards. As we stated
before (see previous section) we have set up I, = L/32 (cor-
responding to the current sheet thickness observed in Fig. 1),
so the identification I; = p; gives a modest value of p;/L =
1/32, and we study the properties of “protons” and “elec-
trons” in this situation (note that the box simulation size is then
Lbox =2l =~ 200p”)

These test particles start from rest at random positions in
the box and will move in the electromagnetic field obtained
from the MHD simulation. We consider 50,000 particles that
are moved using a Runge-Kutta fourth-order time integration
method, with an adaptive time step calculation. The values of
the fields at each particle position are obtained by linear inter-
polation in space from the grid of the MHD simulation.

When the rms displacement of the particles is about an
energy-containing scale L, the simulation is stopped. Since we
set the energy-containing scale 6 times smaller than the box
size, this prevents effects of the periodic boundary conditions
on the result. In this sense, our study is focused on the short-
time behavior of the particle velocity distribution and does not
attempt to address the long-time transport problem. A direct
numerical simulation of the MHD fields for a diffusion study
would require a larger box size compared to the energy-
containing scale, thus increasing even more the computational
requirements. Otherwise, turbulence is usually modeled through
second-order correlations (spectra) and random phases, and a
wide range of scales is available. As we pointed out above, that
approach lacks the dynamical formation of singular structures
that naturally occurs in MHD. Fokker-Planck descriptions (Hall
& Sturrock 1967; Achatz et al. 1991; Schlickeiser & Miller
1998) of the particle distribution evolution are possible in that
approach, but that analytical level is not available here.
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Fic. 3.—Top: The rms displacement of electrons as a function of time in the
z-direction (parallel to the background magnetic field) (Az2)"2. Bottom: The
rms displacement in a transverse direction (Ax2)"2,

3.1. Electrons

Considering m = m, =m, /1836, Z = —1, p;/L =1/32,
and 6B/By = 1/10, then r§/L ~ 1.7 x107%. Here r§ is the
previously defined nominal gyroradius ry, for the particular
case of electrons.

In Figure 3 the rms displacement of electrons as a function
of time is shown. The top panel shows the rms displacement
in the z-direction (parallel to the background magnetic field)
(Az?)12 until it reaches a value of about 1 (i.e., an MHD
energy-containing scale L); the bottom panel shows the rms
displacement in a transverse direction x (there is no difference
on which transverse direction is chosen, x or y) (Ax?)"2. Tt is
clear from these plots that a large displacement of electrons
occurs in the parallel direction as compared to the relatively
small displacement observed in the transverse direction. The
timescale at which most electrons have traveled a distance L
in the parallel direction is about #; ~ 0.09¢p. This is a short
timescale in terms of the plasma dynamic time and also (as we
will show) short compared to the time it takes for protons to
travel a distance L.

By that timescale, however, as can be seen in the top panel
of Figure 4 a high parallel velocity has been developed by
electrons. The rms of the parallel velocity is (Au2)"/* ~ 19,
so it is many times the plasma MHD speed v. By comparison
the rms value of a transverse component of the electron ve-
locity is much smaller, <Au§>l/ ? & 1.6v. The bottom panel
in Figure 4 shows the ratio between the mean squares of the
parallel and a transverse velocity, which reaches values as
high as 150. This implies the same high ratio for parallel to



No. 1, 2004 TEST PARTICLE ENERGIZATION 671
_. 1.000F :
o = ) K
f g 0.100¢ // \\ 3
A 200} ; z , .
N,::N y N
= 0010 ’ \ E
v z )/ \
0.001 . . .
0 . . . . 10 5 0 5 10
000 002 004 006 008 0.10 u; [vol
tlto] 1.0000 ' 1 '
30
2 : 2 0.1000 ¢
25 : o E
e 20f ; B 0.0100¢
N LSE . Z
3 7 0.0010¢ 3
3 10f : “ "
Y 0.0001
03 ] 20 10 0 10 20
0.0 A A A A ] u; [v]
000 002 004 006 008 0.10 1.0000 . . .
t [t0] . t
150( ; ; ' ; = 0.1000F
- 5
A [ ="
u © 0.0100¢
* 100} 4 <
5 10 Z
N [ % 0.0010F
N F
=] o .
3 >0 L 0.0001
160 80 0 80 160
0 [ ] u; [vol
0.00 0.02 0.04 0.06 0.08 0.10 Fic. 5.—Velocity distribution functions of electrons at different times. The
t [tO] continuous line is the distribution of velocities in the parallel direction, and the

Fic. 4—Top: Mean square velocity of electrons as a function of time in the
parallel direction (Au?). Middle: Mean square velocity in a transverse di-
rection (Au?). Bottom: Ratio of parallel to transverse mean square velocities
(Au2) /().

perpendicular electron temperatures, if defined as proportional
to the mean square velocity.

A more complete behavior of the test electrons can be ob-
tained by looking at their velocity distribution function at dif-
ferent times. This is shown in Figure 5. In these panels, the
continuous line corresponds to the normalized distribution of
parallel velocities u; = u. while the dashed line corresponds to
the distribution of a transverse velocity u; = u,. The top panel
shows the distributions at a very short time, ¢ = 4 x 107¢,.
This time can be expressed in terms of the electron gyroperiod
in the strong magnetic field By, which is 7, = 2wm.c/(eBy) =
2m(r§ /L)ty ~ 1073ty (using the above chosen values for the
electrons), so that for this panel ¢ = 47,. At this very short

dashed line is the distribution of velocities in a transverse direction. Top: Dis-
tributions att = 47, = 107¢y. Middle: Distributions at t = 4007, = 4 x 107 3¢,.
Bottom: Distributions at # = 10*7, = 0.09¢,. Here 7, is the electron gyroperiod
and ¢, is the MHD timescale.

timescale transverse velocities of the particles are larger than
the parallel velocities, and the values correspond approxi-
mately to values of the order of the plasma MHD speed vy. That
is, test electrons have rapidly acquired a transverse velocity
of the order of the plasma MHD speed. The plot in the mid-
dle panel corresponds to the distributions at ¢ = 4 x 1073y ~
4007,. By this time, the parallel velocity of test electrons is
already larger than the transverse velocity, both at the core
part of the distributions and in the large developed tails at
both positive and negative values. This behavior is further
developed in time, as shown in the plot in the bottom panel,
corresponding to the distributions at = 0.09¢y ~ 10*7,. Both
very large parallel and very large transverse velocities have
developed by this time (note the different scale used in each
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Fic. 6.—Left: Scatter plot of transverse (u,) and parallel (u.) velocity of electrons. Right: Scatter plot of transverse velocities (uy, uy).

panel), but much larger parallel velocities both in the core and
tails of the distributions are observed. Values as high as u, =
160vy have developed. The high parallel velocity tails are re-
miniscent of the observed strahl effect in solar wind energetic
particle distributions (Gosling et al. 2004). Recall here that
the u, component of the particle velocity is proportional to
the (global) pitch angle y = u+Bgy < u,.

The anisotropic behavior of the electron velocities is clearly
shown in Figure 6. The left panel is a scatter plot of u, and u,
electrons velocities, while the right panel shows a scatter plot
of transverse velocities u, and u,, which is clearly isotropic.

The behavior of the electrons in the situation that we have
considered can be qualitatively explained by simple arguments.
We are not attempting to explain details of the form of the
distribution functions, but rather to provide a general picture
of the differential energization that takes place for the elec-
trons. In order to do this we write the equations for the ve-
locity change of particles in the transverse and parallel
directions. We first write the equations of motion of particles
using equation (3) for the electric field E = —vx B/c+
(voL)/(Ryc)J to obtain

du g

J%{(M—U)XB'F%J], (6)

R

where we recall that u is the particle velocity and v is the
plasma velocity.

Now, separating into perpendicular and parallel components
(and using ¢ = —e, m = m, for electrons):

du | e voL
a T me [(lu —0) X B+ () —v)xb, +Rmh},

(7)

duH e voL
@ me {(lu —v1)xby +R—ml]- (8)

Let us assume B)| =~ ByZ, which neglects (or absorbs into
the strong field By) the fluctuations in the parallel direction.
On looking at the equation in the perpendicular direction, the
first term on the right-hand side describes a perpendicular
drift motion, with a velocity equal to the perpendicular plasma

velocity v, plus a motion around the guide field B,. This
happens on a very short timescale of the order of 7, =
2m(m.c)/(eBy), which as we have seen is much smaller than
the plasma time £, (that is, 7, ~ 10~°#, with the values used).
In this short timescale the electrons acquire a perpendicular
drift velocity of the order of the local plasma velocity u | ~ v,
plus the gyromotion (also with velocity amplitude of order v,
if the particles started from rest or from a velocity close to the
plasma speed vy) around the strong magnetic field B,. This
very initial picture is supported by the top panel in Figure 5,
which shows that a transverse velocity of the particles is
already comparable to plasma speed values (the dispersion
coming from the distribution of MHD velocities in the box,
sampled by the particles’ initial positions) in a very short time.
Also, in Figure 4 for the mean square velocities, a sharp step
from 0 to vy (the plasma speed) in a very short time can be seen
in the panel plot corresponding to the transverse velocity of
particles. Ignoring for the moment the effect of the second term
on the right-hand side of equation (7) for the perpendicular
velocity (either by assuming that fluctuations b, are small or
that parallel velocities are initially small, a situation that may
change in time), we are left with a term involving perpendicular
currents J . This term may increase the perpendicular energy
of the particles; however, these currents are very incoherent (as
compared for instance with parallel currents), changing signs in
distances much shorter than L (the turbulent correlation length),
so they do not produce a net effect on the particle energy.

We now look at equation (8) for the particle parallel velocity.
The first term on the right-hand side involves the difference
between the perpendicular velocities of the particle and the
plasma. As we have seen, this is given by the gyromotion
around the strong magnetic field By. For electrons, this is an
oscillatory motion on a very fast timescale and on a very short
length scale (gyroradius). Electrons will essentially see the
same field b, over many gyroperiods, so this term does not pro-
duce a net increase in the energy of the particles.

Where does the observed increase in the parallel energy of
the electrons come from? The second term in equation (8) for
the particle parallel velocity involves the current density in the
parallel direction. As we have seen in the section on the MHD
fields, the current is organized in sheet-like structures, being
very coherent along the direction of the strong magnetic field.
Although the ohmic current term can be very small compared
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to the induced EMF term in the electric field seen by the par-
ticles (due to the small factor 1/R,,), it can still be the relevant
term in those sheet structures. Moreover, we have seen that the
induced EMF term can be assimilated into the perpendicular
drift motion of the particles. The ohmic current term instead
remains coherent for long distances and is not damped by the
strong magnetic field, which is aligned in the same direction
as the formed currents. If electrons are moving on a short gy-
roradius (see Fig. 8 for that), they will essentially move along
the strong current channels and increase their energy accord-
ingly to an almost constant field over a correlation length in the
parallel direction (of order L, the turbulence correlation length).

In this scenario, electrons that find strong currents will en-
ergize most, while electrons that encounter only average or
small currents will only acquire a moderate energy. This process
may continue until the electron leaves the box (or more pre-
cisely, travels about a correlation length distance). We can give
an estimation of what those energies are by considering the
electron parallel motion as described by

du” - e voL dz

—J, —=u. 9
dt myc R, b ar I ©)
If we assume an approximately constant current J|, the dis-
tance traveled in the parallel direction in a time ¢ is Az ~
J||t2evoL/(2mecRm), so the time 7 = 7 to move a correlation
length Az ~ L is

o oR 1/2

o= e (10)
evlJj|

and the parallel velocity acquired during that time is
1/2
2enlJ) |
Auyy=|————) L. 11
“I ( mecR,, (1)

The value of J| will depend on the location of the electron. If
the particle finds a current channel, then J; ~J ﬂ“”‘; in con-
trast, if the particle is in an ‘“average site,” then J| = J|,
where the bar indicates a volume average. Using a reference
current Jy = 6B/L and the definition of the ion inertial scale
pii» We can rewrite equation (10) in terms of the unit time

to = L /vy, and equation (11) in terms of the unit velocity vo, as

2me pii ,, Jo 12
t = —R, — to, 12
| (mp L JI) ’ (12)
2m, L 1 J\"?
Aup= (L= 2 . 13
uH (me Pii Rm JO 0 ( )

For the MHD simulations that we performed, we observed a
maximum value J**/Jy = 47. Replacing this value and the
values that we considered for the test electron simulations (see
above), we get the estimate 7 ~ 0.03%) and Auj ~ 74v. This
estimate corresponds (in order of magnitude) to the tails of the
velocity distribution function observed in Figure 5. Accord-
ingly, with this estimation the electrons that acquire the higher
parallel velocity will also travel a distance L on a faster time-
scale than the other electrons. For electrons that move in
“average currents,” using the observed value in the MHD
simulation of J/Jy = 4.5 we obtain # ~ 0.09%) and Au =~
20vy. The estimated parallel velocity corresponds to the core
of the velocity distribution function shown in Figure 5. The
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Fig. 7.—Trajectories of three of the most energetic electrons. The structures
in the background are contour surfaces of the current density J,, with white
indicating strong positive currents and black strong negative currents. The
colors in the trajectories indicate the speed of the particle.

estimated timescale of 7 ~ 0.09¢, corresponds to what is ob-
served in the particle simulations for the electrons to travel a
distance L in the parallel direction (see Fig. 3).

In this picture, electrons that find strong current channels
acquire a higher parallel speed (and travel a distance L
sooner). This is confirmed by Figure 7, which shows the tra-
jectory of three of the highest speed electrons. The structures
in black and white correspond to strong negative and positive
currents (they are surface contours of the parallel current). The
trajectories of the electrons are indicated by the thick lines,
with changing colors corresponding to increasing speed of the
electron. It is quite clear in this figure that these high-speed
electrons have found a current channel (two of them found a
strong negative current, so they move up, while the other one
found a strong positive current, so it moves down) and that
they move essentially along the direction of the strong mag-
netic field. That is, electrons are essentially magnetized and
attain high parallel speeds in strong current channels.

The maximum current can also be estimated to be J ““”X =
6B/ pi;. Then, J T‘“a" /Jo = L/p;;. Using equation (13), we can
write the maximum parallel energy eﬁm = meuﬁ /2 of an elec-
tron by this mechanism as

L\? 1
Eﬁnax = (p_) R—mpvg. (14)

In principle, electrons in the current channels will see a weak
transverse magnetic field b, (the reconnecting field inside the
current sheet); however, as we pointed out the reconnection
geometry observed in turbulent simulations is not ideal, and
eventually the particles will see a transverse magnetic field
than can be large. At that point, the electron with a large parallel
velocity will pitch-angle scatter and some of the energy will
then be transferred to the perpendicular velocity. This is the role
of the terms containing b in the transverse and parallel equa-
tions of motion for the electrons that we have ignored before.
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By such mechanism, electrons can gain some perpendicular
energy, a fact that it is observed in the velocity distribution plots
(see middle and bottom panels of Fig. 5). Perpendicular ve-
locities larger than the plasma speed v, are observed after sev-
eral electron gyroperiods.

We have identified several ways by which the test electrons
can gain energy. In the very initial stage, at timescales of the
order of the electron nominal gyroperiod, electrons (if started
from rest) will get a perpendicular velocity of the order of the
plasma speed v;. On a longer timescale #; (but still small
compared to the MHD timescale ¢j), some electrons get large
parallel speeds due to motion along current channels, until they
travel a correlation length L (or leave the region in consider-
ation). A third stage consists of some transfer of energy to
perpendicular motion, due to pitch-angle scatter effects from
the transverse magnetic field fluctuations b, . There is another
possibility by which particles can gain energy, but we have
ignored so far this effect for the electrons. This comes from the
particles moving in the turbulent velocity field v, , which is far
from uniform. In this case particles could get energy by sam-
pling the variations of the velocity field (which implies that
particles see a nonuniform electric field and can be subject to
kicks aligned with their velocity). The reason for ignoring this
effect for the electrons is their small gyroradius, compared with
the MHD turbulence scales. To support this fact, we show in
Figure 8 the distribution of electron gyroradii, computed as
re = u, mec/(eBy).

The arrow in the plot indicates the dissipation length of the
turbulence (i.e., the smallest resolved MHD scale), which we
have set to be /; ~ p;;. It can be seen that the electron gyro-
radii are much smaller than the smallest resolved MHD scale
in this simulation.

Since electrons are then gyrating with high frequency and
small gyroradius, they essentially see the same fields for many
gyroperiods and there is no substantial energy gain by this effect
(kicks by the electric field are first aligned, then antialigned with
the particle velocity in rapid fashion). As we see in the next sec-
tion, this situation changes completely for the case of protons.

3.2. Protons

Considering m =m,, Z =1, p;/L =1/32, and 6B/By =
1/10, then rf/L ~ 3.1 x 1073, Here r{ is the nominal gyro-
radius 7 (see eq. [5]) for the particular case of protons.
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Fic. 8.—Distribution function of electron gyroradii », at = 10*7, =
0.09%. The electron gyroradius is defined as ¢ = u; m.c/(eBy), with u the
electron perpendicular velocity. The arrow indicates the MHD dissipation
scale Iy ~ pi.
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FiG. 9.—Top: The rms displacement of protons as a function of time in the
z-direction (parallel to the background magnetic field) (Az2)"2. Bottom: The
rms displacement in a transverse direction (Ax?)!2,

The rms displacement of protons as a function of time in the
parallel (z) and a transverse direction (it does not make any dif-
ference which transverse direction we choose, x or y) is shown
in Figure 9. We see again that the parallel displacement is
larger, but not as much as in the case of electrons. The average
timescale to travel a distance L in the parallel direction is now
t =~ 1.8¢), much larger than in the case of electrons. A sharp
contrast with the electrons results is in Figure 10, showing the
mean square parallel and transverse velocities as a function of
time. There is a large gain in the transverse velocity direction,
reaching an rms value (Au?)'/? ~ 15u in ¢ =~ 1.8f. The ratio
of a mean square transverse velocity and the mean square
parallel velocity maintains a high value throughout, with a
value of (Au2)/(Au?) ~ 25 after an initial decrease (see
Fig. 10). This implies the same ratio of perpendicular to par-
allel temperature for protons, if defined as proportional to the
mean square velocities.

The evolution of the velocity distribution function of pro-
tons at three different times can be seen in Figure 11. The top
panel corresponds to ¢ = 0.041, approximately equal to 27,,
where 7, = 2wm,c/(eBy) is the proton gyroperiod. The distri-
bution function of parallel velocities u, of protons is indicated
with the solid line, while the dashed line indicates the distri-
bution of the transverse velocities u, (essentially identical to
the distribution of u,,, not shown). Values of the order of the
plasma speed vy can be observed for the transverse velocity al-
ready at this short time. The middle panel shows the distri-
butions at ¢ = 0.4#y = 207,. Here a noticeable increase of the
transverse velocities is observed. The bottom panel shows the
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Fic. 10.—Top: Mean square velocity of protons as a function of time in the
parallel direction (Au?). Middle: Mean square velocity in a transverse di-
rection (Au2). Bottom: Ratio of transverse to parallel mean square velocities

(Aug)/(Au2).

distributions at the final time in this simulation, t = 1.8¢) =
907,. A substantial increase in the transverse velocities of pro-
tons is seen here. Parallel velocities have increased as well,
but a large ratio of transverse to parallel velocities is observed
at the large velocity tails and is somehow smaller at the core
part of the distributions. The scatter plots of proton veloci-
ties in Figure 12 show clearly the anisotropic behavior. The
left panel shows the parallel u, and transverse velocity u,,
while the right panel shows the two transverse components u,
and u,.

We attempt now to understand qualitatively the behavior of
protons by the effect of the different terms in the equations of
motion, as we have done for the electrons in the previous

Fic. 11.—Velocity distribution functions of protons at different times. The
continuous line is the distribution of velocities in the parallel direction, and the
dashed line is the distribution of velocities in a transverse direction. Top:
Distributions at ¢ = 27, = 0.04fy. Middle: Distributions at ¢ = 207, = 0.4%.
Bottom: Distributions at ¢ = 907, = 1.8f.

section. The equations for the transverse and parallel velocity
of the protons are given by (using ¢ = e and m = m,)

duL e ’U()L
~Ll__° — B — b, + 2=
d " mpe [(M v)X B+ (u —v)xb + R h},

(15)
%: e

L

As for electrons, the first term on the right-hand side of
equation (15) describes a drift motion with velocity v, plus
a gyromotion around the magnetic field B ~ Boz. This
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FiG. 12.—Lefi: Scatter plot of transverse (u,) and parallel (u) velocity of protons. Right: Scatter plot of transverse velocities (i, u,).

drift+gyromotion occurs here on a timescale of order 7, =
2mmyc/(eBy), which as we have seen corresponds to ¢~
0.027%. So on a short timescale (compared to the MHD time-
scale #y) protons acquire a transverse velocity of the order of
the transverse plasma velocity v, at that location. This is
supported by the results of the transverse velocity distribution
function of protons in the top panel of Figure 11, which cor-
responds to ¢~ 27,. The difference in mass of protons and
electrons of course implies that the timescale of this initial
stage is much larger than the corresponding timescale for
electrons, 7, > 7,. More importantly, the fact that the gyro-
radius of electrons was much smaller than the MHD dissipa-
tion scale (of the order of the current sheet thickness) allowed
them to remain inside the current channels over several gy-
roperiods. For the protons, on the other hand, the gyroradius
is much larger and comparable initially to the current sheet
thickness. Protons, then, do not remain inside the current chan-
nels and they do not see a coherent parallel current, which
could produce a net energization effect, as happens for the
electrons.

The fact that the proton gyroradius is initially of the order of
the current sheet thickness (the MHD dissipation length scale)
and grows in time is shown in Figure 13. The distribution
function of proton gyroradii, obtained as rf = umy,c /(eBy), is
shown at three different times in the evolution. The values are
clearly increasing with time as a result of the increase in the
transverse velocity u; of protons, which has already been
shown in the previous plots.

Where might this energization in the transverse direction
come from? Unlike the electrons, whose small gyroradius
means that they essentially see the same fields over many
gyroperiods, protons, with gyroradius of the order of the MHD
dissipation scale, may sample variations of the fields that are
in phase with their own velocity. As a result, a fraction of
the protons may increase their energy considerably. Physically
what happens is that protons see a transverse MHD-induced
electric field E; = —(v, x ByZ)/c that varies on scales com-
parable to the proton gyroradius. If kicks of this electric field
are in phase with the proton velocity, this results in a net in-
crease of the perpendicular energy. Variations of the transverse
electric field are actually produced by variations in the plasma
velocity v . The effect of these variations can be directly seen

through the proton equations of motion. To do that, we con-
sider the derivative of the plasma velocity “following a parti-
cle trajectory’’; this is

dU—L:u-VszuL-VLvL, (17)
dt

the latter approximation as a result of both large transverse

proton velocity compared to the parallel one and small varia-

tions of the plasma velocity along the magnetic field direction.
Subtracting equation (17) from equation (15) results in

s L
A2 € Ny, ) B+ Gy — v x by + 25
dt myc Ry

—UL°VL”L_(uL_UL).VLUL' (18)

The last term on the right-hand side implies that if variations of
the plasma transverse velocity field are in phase with the gy-
romotion of the particle (represented here by the difference
u, — v, between the particle velocity u#,; and the drift v, due
to the plasma), then an energy increase can be obtained through
this motion. This energy increase might be exponential in an
ideal resonant-like situation. The rate at which this energy
increase proceeds could be estimated by the gradient of the
plasma speed Vv, ~ vy/r, where r is the proton gyroradius.
At the same time, the increase in the transverse velocity in-
creases the gyroradius, so the gradients in the fields seen by the
particle become smaller and the energy gain slows down. To
complicate the picture even more, at some point the transverse
velocity of the proton is very high, and the pitch-angle scat-
tering effects due to the transverse magnetic field fluctuations
b, come into play. The parallel velocity of the protons can then
increase because of the term (#, — v, ) x b, in equation (16).
This increase in the parallel velocity of protons is observed
in the distribution function plots shown in Figure 11. There is
then an observable motion in the parallel direction, and even-
tually protons may travel a correlation length L or leave the
region in consideration, at which point the energy gain due to
the previously described resonant-like process stops.

The complex motion of the protons can be seen in Figure 14,
which shows the trajectories of three of the most energetic
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la = pii-

protons in this simulation. Unlike the electrons, the motion of
the protons cannot be associated here with the presence of
strong current channels (indicated with white and black con-
tour surfaces for reference). One of the proton trajectories
shows the pitch-angle scattering effect (an increase in the
parallel motion) mentioned before. In all three trajectories, the
gyromotion on scales of the turbulent fields can be observed.
This gyromotion with an increase in the gyroradius as the
particle velocity increases can be clearly seen in Figure 15,
which shows the same trajectories of the most energetic pro-
tons, but now seen from the top.

The perpendicular speed of the protons can be related to the
gyroradius by u; = w,r, where w, = (eBy)/(mpc) is the nom-
inal proton gyrofrequency. This relation can be put in terms
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Fic. 14.—Trajectories of three of the most energetic protons. The structures
in the background are contour surfaces of the current density J,, with white
indicating strong positive currents and black strong negative currents. The
colors in the trajectories indicate the speed of the particle.

of dimensionless quantities as (i, /vg) = (Bo/6B)(r/pi;)- The
problem here is to determine what is the critical gyroradius
at which the energy gain process stops. Since we do not have a
simple analytical model for the motion of the most energetic
protons, as we did for the electrons, we can just give an esti-
mate. According to the scenario that we showed for the pro-
tons, this critical gyroradius r could take values between L and
pii. Assuming a value given by the geometric mean (Lp;;)"?,
we can estimate that the maximum perpendicular speed ac-
quired by a proton is

”_iwﬁ(iy/z' (19)

Using the values that we assumed for protons, we get
u| ~ 60vy, which falls short of the result obtained in the
simulations. This can be “corrected” by assuming a somewhat
larger critical gyroradius of » = 4(Lp;;)"/?. The relation given
by equation (19) should actually be thought of as a scaling to
estimate only the order of magnitude of the maximum per-
pendicular speed of protons.

The maximum perpendicular energy of protons can be ob-

tained as €T® = m,u? /2, so then the estimation is

Bo\ L 1
max - 2
el (63) o 5 Mpvy- (20)

4. DISCUSSION

By doing test particle simulations we have shown different
mechanisms by which electrons and protons can gain energy in
a MHD turbulent plasma. Two main ingredients have been
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Fig. 15.—Trajectories of three of the most energetic protons. Same plot
as in Fig. 14 but viewed from the top of the simulation box.

assumed for the MHD fields: the presence of a strong magnetic
field Bz, which implies formation of parallel current channels
(as a result of the MHD evolution), and the assumption that
MHD dissipation scales are of the order of the ion inertial scale
pii- A very different behavior of electrons and protons was
found in that situation.

The conditions that we assumed for the MHD fields are
probably found in realistic astrophysical situations. That is the
case for instance in the solar wind, where measurements of
the magnetic energy spectra have allowed identification of the
MHD dissipation scale with the ion inertial scale (Leamon
et al. 1998) and could certainly be found in a coronal hole
(lower corona), where both assumptions of a strong magnetic
field and dissipation scales are highly plausible. To this end,
we could expect that the effects we have seen should be present
in the coronal plasma. That provides an interesting alternative
for effective dissipation mechanisms in coronal models. From
other research that we have done (Dmitruk & Matthaeus 2003),
we believe that the MHD structures that we see here could
be present, for instance, in coronal holes. In that case, energy
injected in the form of waves is transferred to small per-
pendicular scales through anisotropic turbulence. The direct
particle acceleration processes shown here could then provide
a channel for the actual dissipation of the energy that reached
the small scales. Interestingly, large parallel velocities for
electrons and large transverse velocities for protons (and other
heavy particles), which we showed here, is what is widely be-
lieved to be consistent with observations in the corona (Kohl
et al. 1997, 1998).

The limitation on the resolution of the possible length scales
is perhaps the main obstacle in the direct approach that we
took (in contrast to modeling the turbulence), if we want to
apply the present simulations to astrophysical situations. The
scalings that we obtained could, however, be extrapolated to
the larger values present in those situations. Another limitation
that we have to face (if we intend to consider this as a dissi-
pation mechanism for a coronal heating model) is the lack
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of self-consistency (particles do not feed back into the MHD
fields). At some point, the energy gain process may slow
down, not only because of escaping effects, as we considered,
but also because of particles producing waves and instabilities
in the fields. The effects of collisions should also be taken into
account. Including these effects but still working with a test
particle simulation approach requires further research on the
subject (possibly through modeling the energy loss processes;
see for instance a recent paper by Ivlev et al. 2004).

At present we are currently working on two improvements
that are more straightforward to achieve. One is considering
the relativistic equations of motion for the particles, necessary
when large astrophysical values are assumed. The other one is
including the Hall effect modification to the MHD equations.
This is a correction to the Ohm law for the induced electric
field, which can be important at length scales comparable to the
ion inertial scale (Krall & Trivelpiece 1973). Preliminary re-
sults, however, show that this has no important effect during
the particle energization process in the setting that we have
assumed with a strong magnetic field. This is due to the fact
that the extra term given by the Hall effect in the electric field is
mainly in the perpendicular direction, where it only produces a
modification of the drift speed acquired by particles at the
initial stage. Detailed results are going to be shown in a further
publication, to keep the present study simpler.

5. CONCLUSION

We performed test particle simulations in turbulent fields
obtained from direct numerical solutions of compressible
three-dimensional MHD with a strong background magnetic
field. The natural tendency of the turbulent MHD fields is to
form singular structures (current sheets) along the magnetic
field direction, as well as strong nonuniform fields in the trans-
verse directions. A key feature was to associate the MHD dis-
sipation length scale to be of the order of the ion inertial scale.
By doing that we found differential energization in parallel and
perpendicular directions to the magnetic field according to the
type of particles considered.

Electrons, with gyroradius much smaller than the MHD
dissipation length scale, develop large parallel velocities, due
to the coherent action of the parallel electric field in current
channels. In the present case this parallel electric field is due
to the ohmic term. In collisionless applications other kinetic
effects would presumably supply an alternative electric field
of similar magnitude to the ohmic field of the present study.
Protons, on the other hand, with gyroradius comparable to or
larger than the MHD dissipation length scale, show higher per-
pendicular energization, due to the nonuniform perpendicular
induced electric field produced by the plasma MHD velocity,
which varies on proton length scales.

The results shown, although simplified and with the limi-
tations mentioned in the previous section, indicate a promising
way of studying some basic issues in the complex topic of
bridging the MHD and kinetic descriptions of a plasma.

This research was supported by NASA grant NAGS5-7164
and NSF grant ATM 99-77692. The runs were performed on
the Beowulf clusters at Bartol Research Institute, University
of Delaware. P. D. acknowledges useful conversations with
A. A. van Ballegooijen, B. J. Vasquez, and A. R. Barakat at a
conference.



No. 1, 2004

TEST PARTICLE ENERGIZATION 679

REFERENCES

Achatz, U., Steinacker, J., & Schlickeiser, R. 1991, A&A, 250, 266

Ambrosiano, J., Matthaeus, W. H., Goldstein, M. L., & Plante, D. 1988, J.
Geophys. Res., 93, 14383

Arzner, K., & Vlahos, L. 2004, ApJ, 605, L69

Birn, J., & Hesse, M. 1994, J. Geophys. Res., 99, 109

Birn, J., Hesse, M., & Schindler, K. 1989, J. Geophys. Res., 94, 241

Biskamp, D., & Welter, H. 1989, Phys. Fluids B, 1, 1964

Cranmer, S. R., & van Ballegooijen, A. A. 2003, ApJ, 594, 573

Dmitruk, P., & Matthaeus, W. H. 2003, ApJ, 597, 1097

Dmitruk, P., Matthaeus, W. H., Seenu, N., & Brown, M. R. 2003, ApJ, 597,
L81

Gary, S. P., & Nishimura, K. 2004, J. Geophys. Res., 109, 2109

Giacalone, J., & Jokipii, J. R. 1999, AplJ, 520, 204

Gosling, J. T., de Koning, C. A., Skoug, R. M., Steinberg, J. T., & McComas,
D. J. 2004, J. Geophys. Res., 109, 5102

Hall, D. E., & Sturrock, P. A. 1967, Phys. Fluids, 10, 2620

Heerikuisen, J., Litvinenko, Y. E., & Craig, 1. J. D. 2002, ApJ, 566, 512

Hollweg, J., & Isenberg, P. 2002, J. Geophys. Res., 107, 1147

Ivlev, A. V., Khrapak, S. A., Zhdanov, S. K., Motfill, G. E., & Joyce, G. 2004,
Phys. Rev. Lett., 92, 205007

Kohl, J. L., et al. 1997, Sol. Phys., 175, 613

. 1998, AplJ, 501, L127

Krall, N. A., & Trivelpiece, A. W. 1973, Principles of Plasma Physics (New
York: McGraw-Hill)

Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., & Wong, H. K.
1998, J. Geophys. Res., 103, 4775

Matthaeus, W. H., & Lamkin, S. L. 1986, Phys. Fluids, 29, 2513

Miller, J. A., et al. 1997, J. Geophys. Res., 102, 14631

Oughton, S., Priest, E. R., & Matthaeus, W. H. 1994, J. Fluid Mech., 280, 95

Schlickeiser, R., & Miller, J. A. 1998, ApJ, 492, 352

Schopper, R., Birk, G. T., & Lesch, H. 1999, Phys. Plasmas, 6, 4318

Shebalin, J. V., Montgomery, D. C., & Matthaeus, W. H. 1983, J. Plasma Phys.,
29, 525




