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ABSTRACT

We describe an online system for automated classification of X-ray sources, ClassX, and we present preliminary
results of classification of the three major catalogs of ROSAT sources, ROSAT All-Sky Survey (RASS) Bright
Source Catalog, RASS Faint Source Catalog, and WGACAT, into six class categories: stars, white dwarfs, X-ray
binaries, galaxies, active galactic nuclei, and clusters of galaxies. ClassX is based on a machine-learning tech-
nology. It represents a system of classifiers, each classifier consisting of a considerable number of oblique decision
trees. These trees are built as the classifier is ‘‘trained’’ to recognize various classes of objects using a training
sample of sources of known object types. Each source is characterized by a preselected set of parameters, or
attributes; the same set is then used as the classifier conducts classification of sources of unknown identity. The
ClassX pipeline features an automatic search for X-ray source counterparts among heterogeneous data sets in
online data archives using Virtual Observatory protocols; it retrieves from those archives all the attributes required
by the selected classifier and inputs them to the classifier. The user input to ClassX is typically a file with target
coordinates, optionally complemented with target IDs. The output contains the class name, attributes, and class
probabilities for all classified targets. We discuss ways to characterize and assess the classifier quality and
performance, and we present the respective validation procedures. On the basis of both internal validation and
external verification, we conclude that the ClassX classifiers yield reasonable and reliable classifications for
ROSAT sources and have the potential to broaden class representation significantly for rare object types.

Subject headinggs: methods: statistical — surveys — X-rays: binaries — X-rays: general — X-rays: stars

1. INTRODUCTION

The classification of cosmic sources into physically distinct
classes is a key element of research in all domains of astro-
physics. Traditionally, this has involved painstaking manual
analysis of detailed, homogeneous sets of observations. More
recently, automated classifier tools have been used to help in
the classification of objects from huge but still largely homo-
geneous surveys. Examples include analysis of the First
(Odewahn 1995) and Second (Weir et al. 1995) Digital Sky Sur-
veys and the Sloan Digital Sky Survey (SDSS; Stoughton et al.
2002). In this paper, we discuss how we can go beyond using
single large surveys and combine information from multiple
heterogeneous databases to classify astronomical sources. Us-
ing dynamic cross-correlations of electronically available data
sets, the ClassX team has developed a series of classifiers that
rapidly sort X-ray sources into classes. These facilities are
now available to the community at the ClassX Web site.8

Classification is distinct from correlation and identification
with objects at other wavelengths. Our classification tools can
use the nonexistence of counterparts at other wavelengths or

use ensembles of potential counterparts to establish limits to
parameters.
Our initial work has concentrated on the more than 100,000

unclassified sources detected by the ROSAT observatory9 from
1990 to 1999. These high-energy sources are particularly rich
in interesting objects: QSOs and other active galactic nuclei
(AGNs), clusters of galaxies, young stars, and multiple systems
containing white dwarf (WD), neutron star, or black hole
companions. The ROSAT samples have been used in prior in-
vestigations (e.g., Rutledge et al. 2000; Zhang & Zhao 2003),
but still only about 10% of the sources observed by ROSAT
have a reliable classification. In most cases this identification
rests on cross-correlation between the ROSAT object and tables
of classified sources. In some cases detailed follow-up ob-
servations have been performed on a source-by-source basis.
This is extraordinarily expensive in both telescope time and the
time of astronomers analyzing these data. Direct comparison of
ROSAT sources with massive optical catalogs (e.g., Rutledge
et al. 2000; or the similar efforts for XMM-Newton data; cf.
Watson et al. 2003, Yuan et al. 2003, and Lamar et al. 2003)
enables the cross-identification of ROSAT sources, but unless
the class of the counterpart is known, this does not determine
the type of the source. However, flux information frommultiple
catalogs allows us to try to classify sources with more infor-
mation than is available from the X-ray observations alone.
Our approach differs from most previous efforts at multi-

spectral classification in several basic ways. First it does not
specifically constrain the information that is used to distinguish
our output categories. Other authors have looked at the X-ray
to optical ratios (Maccacaro et al. 1988) or X-ray/optical/radio

9 See http://wave.xray.mpe.mpg.de/ROSAT.
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correlations (Giommi et al. 1999). Here the authors manually
define the regions in phase space that are to be assigned to
specific classes. The algorithms below provide an automated
method for defining a transformation between observational
parameters and class rather than imposing one.

Second, the number of parameters that can be accommo-
dated by the algorithms we use here is substantially greater
than that in prior work. Rather than looking at ratios of two or
three elements, even the simplest of our classifiers uses six
independent quantities, and we have explored classifiers with a
dozen or more independent features. Given the difficulties in
simply visualizing these high-dimensionality phase spaces, ex-
tensions of earlier manual approaches are not feasible. This has
important ramifications regarding the flexibility of the classi-
fiers. For example, consider classification of Galactic versus
extragalactic objects: Since Galactic absorption hardens the
X-ray spectra and dims the optical brightness of extragalactic
sources, a given hardness ratio or LX=Lopt can imply different
classification at different Galactic latitudes. Thus, while Mac-
cacaro et al. (1988) can accommodate the effects of Galactic
absorption on the hardness ratio, assuming a source to be ex-
tragalactic, our approach can, in principle, accommodate the
effects of absorption automatically.

Unlike many of the previous works (Maccacaro et al 1988;
Perlman et al. 1998; Giommi et al. 1999), our classifiers at-
tempt to distinguish both Galactic and extragalactic classes of
objects rather than focusing on selecting out one or two par-
ticular classes. Given this ambitious goal, these first results
focus on fairly broad classes that contain the great majority of
detected high-energy sources. Our experience suggests that to
simultaneously provide fine-grained and wide-reaching clas-
sification will likely require a network of classifiers, starting
with ‘‘broad band’’ classifiers of the type described below,
that feed more specialized classifiers optimized for the vari-
ous types. We defer further exploration of this topic to a later
paper.

Finally, our approach lends itself to extending the sets of
parameters that are used for classification. Once we have
identified a training set of classified objects, we can use these
objects to train classifiers using any interesting subset of ob-
servable parameters. For example, while a training set of AGNs
may have been identified using correlations of X-ray, optical,
and radio information, we can use this set to build classifiers
based only on X-ray information. Thus, we can attempt to
classify objects even if correlative optical or radio data are not
available.

This paper concentrates on discussing the technique and
evaluates its effectiveness in the classification of large samples
in broad categories. Further work (e.g., Suchkov & Hanisch
2004b) will specialize this approach to analysis of specific
classes.

With the recent and pending publication of several very
large data sets covering much of the sky to considerable depth,
we have begun to explore how well objects can be classified
using data from these new large surveys. Thousands of pre-
viously classified sources are used to train classifiers, and these
trained classifiers are then used to classify the 105 unclassified
sources. In x 2 we discuss the sources of information we have
used in our classifiers and how we dynamically extract infor-
mation from the catalogs as needed, using capabilities that
prototype generic Virtual Observatory10 tools. Demonstrating

the feasibility of this dynamic approach to extracting infor-
mation was a major technical goal for this project.

Section 3 describes the actual classification tools and the
training process we have used. We have used a supervised
classification technique: oblique decision trees (Murthy et al.
1994). We discuss the reasons for this choice and the appli-
cability of our approach to other supervised and unsupervised
classification algorithms.

Section 4 discusses the ways in which we test our classifiers
for accuracy. Internal validation looks at the performance of
the classifier with respect to the sources we used to train it, and
to the general characteristics of our newly classified sources.
Can the classifier recover the classes of the data used to train it?
External verification uses data sets independent of those used
to train the classifier and compares how well the classifier pre-
dicts these results. Substantial numbers of our sources (several
thousand) have been classified by other surveys, notably the
SDSS. Comparing our results with these external data sets is a
powerful test of our classifiers especially when the external
data set is sufficiently deep.

Section 5 gives results for classification of the major ROSAT
samples. We present the classification probabilities for each
source in our original samples. Since we are classifying nearly
200,000 sources, only excerpts are included here, but the full
tables are available for download from the ClassX Web site.
Section 6 summarizes the status of the classifiers and describes
our plans to extend our results to other X-ray data sets such as
XMM-Newton and to integrate our classifiers in the growing
Virtual Observatory.

2. DATA SOURCES AND DATA COLLECTION

2.1. Data Sets

2.1.1. WGACAT

The White-Giommi-Angelini Catalog (WGACAT)11 was
created by reprocessing the data from the pointed phase ob-
servations of the ROSAT PSPC. The result was a catalog of
88,579 sources with X-ray count rates in three energy bands
and a variety of supporting data. About 20% of the sources in
this sample have classifications derived from cross-correlations
with other catalogs. The cross-correlation catalogs are de-
scribed by White et al. (2000). The cross-correlations were
performed from the less specific (i.e., giving only limited in-
formation about the type of the counterparts) to more specific
catalogs, and the latter matches were used for the classifica-
tion. The X-ray positions and fluxes from WGACAT were
supplemented with the source extent information derived from
the ROSAT PSPC (ROSPSPC) catalog.12 The ROSPSPC in-
cludes only high-quality source detections in the standard im-
age processing.

The pointed phase of ROSAT observations lasted nearly
8 years, and during that time the observations provided cov-
erage of about 15% of the sky. Many regions were observed
more than once, and objects in those regions may have multiple
entries in WGACAT and the ROSPSPC catalog. When objects
shared a common WGACAT ID, only a single value was in-
cluded in our sample. The catalog contains a quality flag, and
the data with higher quality were retained preferentially. In
cases with equal quality flags, the entry nearest the center of the

10 See http://www.ivoa.net and http://us-vo.org.

11 See http://wgacat.gsfc.nasa.gov, maintained by N. E. White, P. Giommi,
& L. Angelini.

12 See http://heasarc.gsfc.nasa.gov/W3Browse/rosat/rospspc.html.
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field of view of the observation was retained. This resulted in a
WGACAT sample of 76,763 sources, 18% of which had ex-
isting classifications.

X-ray source extent measurements were not included in the
WGACAT. We obtained the required data by correlating the
WGACAT sources against the ROSPSPC catalog, using a
correlation radius of 3000, and selecting the closest candidate
in the case of multiple matches. X-ray extent information was
obtained only for sources within 190 of the pointing axis or
34,633 (45%) of the 76,763 distinct WGACAT sources; for the
sources without such information the extent parameter was set
to 0. The ROSPSPC catalog and WGACATwere derived from
the same set of observations (the pointed phase observations of
the ROSAT PSPC instrument).

Setting the size to 0 where the extent is not known biases the
classifier against classes in which sources have a real extent,
notably clusters of galaxies. We have found that omitting ex-
tent information entirely makes it very difficult to distinguish
such classes. This approach is the most effective way to use the
information we have. The presence of a ROSPSPC catalog
counterpart is noted in the tables in x 5.

The distribution of the previously classified sources in
both the full WGACAT sample and our subset of it is shown in
Table 1. While many objects had more specific classifications
(e.g., specific spectral types for stars or Hubble types for gal-
axies), the classes chosen represent distinct physical origins
for the X-ray emission. Understanding classification in these
broad categories is a necessary prerequisite to attempting
more detailed classifications. These classes in Table 1 represent
categories in which there were sufficient entries to train the
classifier. There were some categories—supernova remnants,
nebulae, open star clusters—for which there were only a hand-
ful of classified sources. These were eliminated from our train-
ing set.

Figure 1 gives the photon count rate distribution for the
WGACAT sample for the classified and unclassified sources.
While brighter sources are more likely to be classified, there are
many classified sources down to the faint end of the observed
brightness distribution. The classified sources sample the entire
flux space of the WGACAT. Figures 2 and 3 give the overall sky
coverage of theWGACATsources for both the entire sample and
the classified sources. Although the WGACAT source distribu-
tion is highly nonuniform, the distributions of the (known)
classified WGACAT objects are similar to those of the entire
catalog. The nonuniform distribution reflects the concentration

of ROSAT’s pointed observations on ‘‘interesting’’ targets and
regions. About 15% of the sky was covered in the PSPC pointed-
phase observations.

2.1.2. ROSAT All-Sky Survvey

The ROSAT All-Sky Survey (RASS) catalogs (Voges et al.
1999, 2000) contain X-ray sources detected during the survey
phase of the ROSAT mission with the PSPC instrument. The
entire sky was surveyed with exposures highest toward the
ecliptic poles. While the survey covers the entire sky, it is gen-
erally less deep than pointed observations in the areas of overlap.
Overall, 124,735 objects were detected: 18,806 of these were
published in the RASS Bright Source Catalog (BSC) and
105,924 in the Faint Source Catalog (FSC).

Figures 4 and 5 give the photon count rate distribution of the
RASS classified and unclassified sources. Since the classified
sources were restricted to the BSC, the sampling of faint objects
is quite poor. The sky distribution of objects detected in the
RASS is shown in Figures 6 and 7. There is a marked increase
in density toward the ecliptic poles and there are a few regions
not observed in the all-sky survey, but the sky coverage is, by
design, much more uniform than during the pointed phase.

TABLE 1

Basic Classes and the Number of Class Objects in the WGACAT and RASS BSC Samples

WGACAT

Class All Uniquea RASS
Origin of X-Ray

Emission

Star ................................ 6027 4678 4694 Corona or shocked stellar wind

WD................................ 152 98 78 Hot atmosphere

XRBb............................. 494 271 192 Accretion disk of a neutron star or black hole

AGNc ............................ 4589 3031 726 Central accretion disk, XRBs, galactic wind

Galaxy ........................... 1614 1305 1015 XRBs, hot corona, galactic wind

Cluster (of galaxies)...... 1717 1508 210 Hot intracluster gas

Unclassified................... 73986 65872 . . .
Total .......................... 88579 76763 6915

a In the case of multiple entries for a source, only the entry with the highest quality flag is used.
b Including cataclysmic variables.
c Including quasars, radio galaxies, and BL Lac galaxies.

Fig. 1.—Photon count rate distribution for all WGACAT sources (solid
line) and classified WGACAT sources (dashed line).
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2.2. The ClassX Pipeline

The ClassX processing pipeline gathers the data used for
classification. A generic pipeline that can gather data from
many catalogs in many wavebands was constructed for ClassX,
and we have looked at many different sources of information.
However, in this paper only X-ray, optical, and radio data were
used. The catalogs used and information extracted are shown in
Table 2. The correlative data from each band are gathered
separately, filtered, and then combined to form a single package
of data for use by the classifier itself. The classifiers X and XOR
are described further in x 3.5. The ClassX pipeline makes ex-
tensive use of the standard representation of tabular and catalog
data developed in the Virtual Observatory initiative, VOTable
(Ochsenbein et al. 2000a).13

Optical counterparts of X-ray sources are found using a
search radius of 3000; this gives a reasonable completeness level
while keeping the number of chance coincidences manageable.
The correlations were done using the VizieR (Ochsenbein et al.
2000b) system.

If no counterpart was found, the object was dropped from
consideration for use by classifiers needing information from
that waveband. If a single counterpart was found, then the data
from that counterpart were used. When multiple counterparts
were found, a rule for resolving the ambiguity was needed.
Both nearest and brightest counterparts were tried. Using the
brightest counterpart was found to provide somewhat more ac-
curate results and was used here; however, a function com-
bining the two would likely be better still.

For radio data, only the existence or nonexistence of the radio
counterpart was used in the classifier. The combination of the
NRAO VLA Sky Survey (NVSS; Condon et al. 1998) and
SUMSS catalogs gave us radio coverage over approximately
92% of the sky. Since the determination of the coverage

Fig. 2.—Galactic distribution of all WGACAT sources.

Fig. 3.—Galactic distribution of classified WGACAT sources.

13 Also see http://www.ivoa.net/twiki/bin/view/IVOA/IvoaVOTable for
updates to the VOTable standard.
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boundaries for the SUMSS surveys is nontrivial, data in the 8%
of the region not covered were treated as having no counterpart.
Even in classes in which radio counterparts are most frequently
found, most objects do not have a radio counterpart. So this
treatment of 8% of the sky should not cause a significant bias.

Rather than use the radio flux density as a classification
parameter, we have chosen to use instead a simple binary flag
indicating whether the X-ray source has an associated radio
object. There are two reasons why we adopted this approach.
First, by using only a detection flag we are able to combine
both radio detections and nondetections into a single larger
training set, which improves the quality of the classification
over what one would get from two separate training sets. The
classifier algorithms we have used do not provide any natural
way of including upper limits as classification features. In
principle, it is possible to provide two separate parameters, a
detection flag and the flux or upper limit, and to try to train the
classifier to identify the implied connection between those two
parameters. We have tried this approach for this and other
classification problems, but we find that it often does not im-
prove the classification accuracy because the additional param-
eter makes the optimization problem more difficult. It would
be very useful to have generalized classifiers that did ex-
plicitly allow for parameters that have associated uncertain-
ties and upper or lower limits, but such tools have not yet been
developed.

The second reason for using the radio detection flag is that the
simple knowledge of the presence of a radio source already
contains most of the information from the radio band. This
statement is empirically supported by projects such as the
FIRST Bright Quasar Survey (White et al. 2000), which selects
candidates based on radio-optical detections and finds that the
radio flux density is not a strong discriminator between source
types. For example, Figure 7b in White et al. shows that the
fraction of radio-optical candidates found to be quasars changes
by only a factor of 2 when the radio flux varies by 4 orders of
magnitude, from 1 mJy to 10 Jy. This weak dependence on the
radio brightness is due at least partly to the enormous distance
in frequency between the radio and optical (or X-rays). The
radio-optical spectral index � (where the flux as a function of
frequency F� / �� ) changes by only 0.1 when the radio flux

varies by a factor of 4. Two-thirds of NVSS catalog sources
have fluxes within a factor of 4 of the catalog limit, and more
than 90% are within a factor of 16 of that limit. That implies that
for most sources the spectral index can be estimated within 0.1
without knowing the flux at all.
The other radio characteristic that makes a source detection

flag useful is the slowly changing nature of the radio source
populations with flux. Such a flag would be significantly less
effective in the optical because the star-galaxy and star-quasar
ratios change dramatically with optical magnitude. In the radio,
the fractions of radio galaxies, AGNs, and star-forming galaxies
varies relatively little over the flux range covered by the NVSS
and SUMSS catalogs.
Classifiers generally work best when they are not presented

with redundant information. If our classifiers were intended for
classification of extragalactic sources, the hydrogen column
density, nH, at the position of the X-ray source might be a use-
ful discriminator, since absorption hardens the X-ray emission
in the ROSAT band. One can imagine approaches where the
observed flux is corrected to accommodate for absorption.
However, our classifiers try to classify both Galactic and extra-
galactic sources so that such approaches are inappropriate.
Rather the classifiers use the Galactic latitude (and to a lesser
extent the longitude). The position and absorption are strongly
coupled, so that our classifiers can distinguish objects appro-
priately in high and low column regions. The Galactic position
also allows the classifier to accommodate the diminishing den-
sity of some Galactic sources (e.g., X-ray binaries) at high
latitudes. We have tried classifiers that use both position and nH
as input parameters but have not seen any substantial differ-
ences in behavior compared with position alone. In the future
we anticipate exploring classifiers that only use nH.
As a last step before the data are used by the classifier, in-

formation from all tables was combined. Only objects for
which all parameters required by the classifier were available
(either from the table or by use of a default value) were in-
cluded in the final sample.

2.3. Counterpart Validity

The errors in the X-ray positions of the objects in the
WGACAT and RASS samples are relatively large compared to

Fig. 4.—Photon count rate distribution for RASS BSC (solid line) and
RASS FSC (dashed line) sources.

Fig. 5.—Photon count rate distribution for all RASS (solid line) and
classified RASS (dashed line) sources.
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the typical separation of objects detected in the USNO-B sur-
vey (Monet et al. 2003). When we search for optical coun-
terparts to the X-ray sources, we have used the brightest object
within 3000 of the nominal X-ray position. Most objects have
at least one candidate counterpart within 3000, and on average
about five objects are seen within the limiting radius. How
much confidence can we have in the validity of our cross-
identification with optical and radio sources? Since we do not
perform follow-up observations, this question can only be
addressed statistically.

One powerful check on the validity of the identifications is to
look for counterparts at positions near but slightly offset from
the nominal positions. In addition to the actual correlation of
each object in the WGACAT and RASS samples with the
USNO-B survey, we correlated a point 1

�
away in Galactic

longitude. If our cross-correlations were dominated by spurious
cross-identifications—i.e., the optical counterparts had no re-
lation to the X-ray sources—then we would expect the statistics

of cross-match between the nominal target positions and the
offset positions to be similar.

The selection of the offset angle is a compromise. A smaller
offset angle ensures a closer matching of the selection of the
data. However, if the offset angle is smaller than the radius of
the ROSAT field of view, then the ‘‘background’’ for a seren-
dipitous source may be offset to the center of the ROSAT ob-
servation. Since the ROSAT WGACAT observation centers are
very atypical, with a population of very bright stars and gal-
axies, the smallest radius that avoided this was selected.

Comparing the counterparts selected near the X-ray positions
with the offset sample in Table 3, we find that nominal coun-
terparts are on average 1 mag brighter than the offset counter-
parts. Not unexpectedly, for the BSC subset of the RASS survey
the difference is even greater, about 4 mag.

If the counterparts and offset objects both reflect a uniform
distribution of objects in space, then we would expect the
surface density of objects, N (b), at given apparent brightness, b,

Fig. 6.—Galactic distribution of all RASS sources.

Fig. 7.—Galactic distribution of classified RASS sources.
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to go as N (b) � b�1:5. A 1 mag shift then corresponds to a factor
of about 4 in the surface density of objects. Such a simple analy-
sis would imply that about 80% of the counterparts are real.

This naive estimate ignores two important effects. First,
sources are not necessarily distributed uniformly: Galactic
objects will show a preference to the Galactic plane, and there
may be effects from the finite size of the Galaxy. Also, the
sources we detect are selected on the basis of the X-ray bright-
ness. If a class of sources has relatively bright optical coun-
terparts, then the cutoff in X-ray luminosity may correspond
to a relatively high optical brightness. Any faint optical coun-
terparts would have X-ray emission that is too low to be
detected.

In addition to looking at the brightness of the selected
counterparts, one can also look at the total number of candi-
date sources near the X-ray positions and compare them to the
number of sources at the offset positions (see Table 3). X-ray
sources are rare compared to optical sources. The average
density of RASS sources is about 3 deg�2. The WGACAT
sources have an average density of about 12 deg�2 when we
account for the coverage of the ROSAT pointed observations. If
we look at a random 3000 radius circle in the sky, the expec-
tation of finding an X-ray source is less than 0.002. Even where
the density of X-ray sources is much higher than average,

randomly chosen positions are unlikely to include an X-ray
object.
So when we look for candidate counterparts in the offset

positions, we expect on average to find one fewer optical
candidate counterpart than we do when we look at the nominal
X-ray position whenever there is a real X-ray counterpart in the
USNO survey at near the nominal position. Table 3 shows that
for the RASS FSC and WGACAT there is indeed about one
extra candidate per object near the X-ray positions. For the
BSC there are, on average, several excess candidates corre-
sponding to the X-ray source. This likely results from ob-
servations of bright clusters of galaxies and X-ray objects in
star clusters where there can be many optical counterparts as-
sociated with the X-ray source. This indicates that most X-ray
sources have optical counterparts in the USNO survey. How-
ever, even if the real counterpart is among the candidate
counterparts, it may not be the brightest candidate and thus
would not be selected for our analysis.
To address these uncertainties we have undertaken a more

rigorous analysis of the distribution of offset counterparts
versus the counterparts at the nominal X-ray positions. Suppose
we have some selection function, s, that can be calculated for
any potential counterpart to a given X-ray source. The candi-
date counterpart with the maximum value of swill be chosen as
the counterpart for use by the classifier. Each X-ray source is
assumed to have a real counterpart with some value of s. There
is a probability distribution for the selection function of p(s) for
real counterparts.
In addition to the X-ray counterparts, there is a population of

background objects. For each background object we can also
calculate the selection function s. In the absence of real coun-
terparts we would measure a distribution of background coun-
terparts with a probability of b(s). At the sensitivities we are
exploring, the density of X-ray sources is only a few per
square degree. For a random element of sky our 3000 radius
circle (about 2 ;10�4 deg2) is very unlikely to have any X-ray
sources. By looking for counterparts at the offset positions we
can measure b(s) directly.
For a given X-ray source, we find a counterpart with a se-

lection function s, unless there happens to be a background
candidate with a larger value of s. The observed distribution of
the selection function will be

o(s) ¼ 1� B sð Þ½ � p(s)þ 1� P sð Þ½ �b(s);

where P(s) and B(s) are the cumulative probabilities that a
counterpart or background source, respectively, has a selection
function greater than s.

TABLE 2

Class Attributes (Object Parameters) Used by the Basic

ClassX Classifiers

Classifier
a

Attribute Name Attribute Source XOR X

Galactic longitude, lII .............. Input y y

Galactic latitude, bII ................. Input y y

X-ray brightnessb ..................... X-ray data y y

Hardness ratio 1, HR1c............ X-ray data y y

Hardness ratio 2, HR2c............ X-ray data y y

X-ray extent (source size)d ...... X-ray data y y

Blue magnitude, Be ................. Optical data y n

Red magnitude, Re ................... Optical data y n

Radio counterpart flagf ............ Radio data y n

a X for WGACAT-X and RASS-X classifiers, XOR for WGACAT-XOR
and RASS-XOR classifiers. Parameter required by a classifier is indicated by
‘‘y,’’ otherwise ‘‘n.’’

b Defined as �2:5 log (count rate).
c From RASS or computed from WGACAT.
d From RASS or ROSPSPC (for WGACAT) if available, else 0.
e From the USNO B1 catalog.
f If counterpart is found in NVSS or SUMSS, then 1, else 0.

TABLE 3

X-Ray Sources and Optical Candidate Counterparts

Sample Size NX
a NoAset

b (NX � NoAset)=Size) mb;X
c mb;oAset

d mr;X
e mr;oAset

f

BSC................................ 18,806 156,505 95,811 3.2 13.84 18.23 12.71 17.05

FSC ................................ 105,924 741,603 587,215 1.5 16.79 18.12 15.63 16.92

WGA.............................. 88,579 598,932 517,786 0.92 17.08 18.34 15.90 17.12

Note.—Characteristics of optical candidate counterparts near the actual X-ray position and offset by 1�.
a Total number of candidate counterparts within 3000 of the nominal X-ray position.
b Total number of candidate counterparts within 3000 of the offset position.
c Average B magnitude of the selected candidate counterpart near the nominal X-ray position.
d Average B magnitude of the selected candidate counterpart near the offset position.
e Average R magnitude of the selected candidate counterpart near the nominal X-ray position.
f Average R magnitude of the selected candidate counterpart near the offset position.
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For our classifiers, s is the brightness of objects within 3000 of
the nominal position or 0 for objects beyond 300. Other for-
mulations for finding the counterpart can use combinations of
the brightness, positional uncertainty, and position offset from
the X-ray position. So long as measurements of the selection
function for counterparts and background objects do not in-
teract, a comparable analysis can be done.

We have measured b(s) and o(s) and can solve for p(s) by
using a Lucy (1974) style deconvolution, which ensures the
functions are positive definite. Figures 8 and 9 show the results
of this analysis.

For each of several Galactic latitudes the distribution of
counterpart luminosities is broken into real and background
components. For low Galactic latitudes, where most counter-
parts are stars, there is a strong peak of real counterparts at
bright magnitudes. Farther from the Galactic equator, where
X-ray sources are more likely extragalactic sources, a lower
brightness population of counterparts emerges. At fainter than

15–16 mag most counterparts are not correct. The true X-ray
counterpart is masked by the brighter background objects.
Since the RASS sources are brighter, the fraction of correct
identifications is generally higher.

A dashed line is included in these figures to show what the
number of counterparts would have been had there been no
background objects. This corrects for the ‘‘screening’’ of the
real counterparts by the background. The figures also indicate
the number of objects for which no matching object was found
in the USNO catalog, as well as the number of objects that we
estimate would not have had a match if there had been back-
ground objects, i.e., for which there was no real counterpart in
the USNO data. This includes at least three classes of objects:
objects where the counterpart is too faint to be included in the
USNO catalog, objects where the counterpart is outside the
3000 radius limit, and cases in which the X-ray object itself is
spurious.

Fig. 8.—Magnitude distribution of real and background counterparts for the
RASS sample. The dashed line gives the counterparts that would be detected if
there were no background objects.

Fig. 9.—Magnitude distribution of real and background counterparts for the
WGACAT sample. The dashed line gives the counterparts that would be de-
tected if there were no background objects.
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For RASS data the total fraction of correctly identified
sources is about 50%. However, when we correct for screening,
we find that only about 10% of sources do not have counter-
parts within the USNO. Looking at the sharp cutoff in the
dashed line in Figure 8 near the luminosity cutoff of the USNO
catalog, it seems clear that many of these objects are simply too
faint to have been included in the USNO catalog.

For WGACAT the number of correct counterparts is only
about 35%. While there is also some screening of fainter
sources, just under 50% of WGACAT objects appear to have
counterparts in the USNO sample. Since the WGACAT X-ray
sources are fainter than the RASS, we would anticipate that
a larger fraction of the counterparts will lie below the magni-
tude limit of the USNO catalog. Since some sources in the
WGACAT sample are far offset from the center where the
position determination is less reliable, the WGACAT sample
will also find a somewhat larger fraction of objects outside the
3000 limit. While we could increase the search radius at larger
off-axis angles to try to get the ‘‘correct’’ counterpart for these
sources, it is clear that screening due to the background is
already a serious issue at 3000, and so we have used a constant
search radius.

Overall, under half of the objects in the RASS and
WGACAT samples are identified with the correct counterpart.
At fainter magnitudes the optical magnitude works essentially
as an upper limit to the actual magnitude of the counterpart.
The classifier techniques described in the following sections
adapt to the changing role of the counterpart magnitude auto-
matically, so long as we can properly train the classifier.

3. CLASSIFICATION TECHNIQUES

3.1. Introduction

‘‘Classification’’ is the process of mapping the observable
characteristics of an object to a set of classes that typically rep-
resent different physical types; a ‘‘classifier’’ is the implemen-
tation of a classification algorithm to perform this mapping. We
consider here methods for ‘‘supervised classification,’’ meaning
that a human expert has both determined into what classes an
object may be categorized and also provided a set of sample
objects with known classes. This set of known objects, called the
training set, is used by the classification programs to learn how to
classify objects. The process of creating such a classifier for a
particular data set is usually called ‘‘training.’’

There are also ‘‘unsupervised classification’’ algorithms
(e.g., clustering, mixture models) that attempt to both determine
the types of objects and how to separate them directly from the
parameter-space distribution of the unclassified sample. We
have chosen to work primarily with supervised classification
methods, however, since we understand much of the underlying
physics for the electromagnetic emissions that are measured,
and we can thus choose intelligently from among the many
measured parameters to build the best training sets and select
the best classes.

There are two steps to construct a supervised classifier. In the
training phase, the training set is used to decide how the pa-
rameters ought to be weighted and combined in order to sep-
arate the various classes of objects. In the application phase,
the weights determined in the training set are applied to a set of
objects that do not have known classes in order to determine
what their classes are likely to be.

If a problem has only a few important parameters, then
classification is usually an easy problem. For example, with
two parameters one can often simply make a scatter plot of the

feature values and determine graphically how to divide the
plane into homogeneous regions in which the objects are of the
same classes. The classification problem becomes very diffi-
cult, however, when there are many parameters to consider.
Not only is the resulting n-dimensional space difficult to vi-
sualize, but there are so many different combinations of pa-
rameters that techniques based on exhaustive searches of the
parameter space become computationally infeasible. Practical
methods for classification then involve a heuristic approach
intended to find a good enough solution to the optimization
problem.

3.2. Oblique Decision Trees

There are several ‘‘dimensions’’ that we can vary in build-
ing classifiers. The input observational characteristics and the
output physical classes can be varied. We can use different sets
of training information, and we can vary the basic algorithm for
classification. In this paper we report on results using only
a single classifier algorithm, the Oblique Classifier 1 (OC1)
system of oblique decision trees (Murthy et al. 1994) for a
fixed set of output classes. We have chosen the OC1 algorithm
because it is freely available,14 its accuracy is comparable to
the best available algorithms, and it is sufficiently fast (in both
training and application). An additional benefit is that the de-
cision tree can be examined after it has been trained to deter-
mine the key criteria for classification; this is difficult with, for
example, neural networks.
Conceptually, the oblique decision tree classifier is rather

straightforward. It considers the n-space defined by the set of
n-input observational characteristics, where each characteristic
is treated as a continuous variable. A binary tree is constructed
in which at each node a plane in the n-space (described by a
linear combination of the parameters) divides the objects into
two groups. The first node represents a plane that divides the
space into two regions. Objects are sifted down the left or right
branches of the tree depending on which side of the plane they
fall. The next node represents another plane that further divides
the two subspaces. Ultimately, one reaches a leaf node of the
tree where all the objects in the region are assigned to a single
class. Some parts of the parameter space may be well delin-
eated by only a few planes, while other parts might require
many planes in order to separate complex distributions.
Oblique decision trees are difficult to construct because there

are many possible planes to consider at each tree node. OC1
includes a flexible and efficient algorithm for creating a deci-
sion tree given a training set. See the Murthy et al. (1994) pa-
per for full details; we describe here some key features of the
algorithm.
OC1 uses a ‘‘greedy’’ algorithm in the initial tree con-

struction. It first attempts to find the plane in the n-space that
most cleanly divides the training set sample into two samples
having distinct sets of classes. Various impurity measures are
available for determining the quality of a particular split. It then
repeats the process recursively for the subspace on the two
sides of the dividing plane. The algorithm continues until each
remaining subregion is perfectly classified, with all included
training set objects having the same class.
In most cases this initial tree divides the parameter space too

finely. For example, some leaf nodes may contain only a single
object, picked out by planes that separate it from a mass
of nearby objects having different classes but with similar

14 See http://www.tigr.org/�salzberg/announce-oc1.html.
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parameters. The tree overfits the training set data, tracking de-
tails much more closely than is justified. To address this, OC1
prunes its decision tree. A fraction of the training set objects
is reserved during the initial tree construction. This pruning
sample is used to test the decision tree; decision nodes are
eliminated if their removal does not reduce the classification
accuracy for the pruning sample. The final tree does not classify
the training set perfectly (some subregions contain multiple
classes of objects), but it has higher overall accuracy than the
original overfitted tree.

Oblique decision tree classifiers are not the only possible
choices: other commonly used algorithms include neural net-
works, nearest-neighbormethods, and axis-parallel decision trees.
See Salzberg et al. (1995) andWhite (1997, 2000) for discussions
of some astronomical applications andmore detailed comparisons
of these algorithms.

3.3. Votingg Decision Trees and Classification Probabilities

We have improved on the accuracy of the classification by
using not just a single tree, but rather a group of 10 trees that vote
(White et al. 2000). This multiple-tree approach has been shown
to be effective at improving the accuracy of classifiers (Heath et al.
1996). OC1 uses a complex search algorithm that includes some
randomization to avoid the classic problem of getting stuck in
local minima in the many-dimensional search space. Thus, one
can run OC1 many times using different seeds for the random
number generator to produce many different trees.

Heath et al. (1996) used a simple majority voting scheme:
classify the object with each tree and then count the number of
votes for each class. We have improved on this by using a
weighted voting scheme, where each tree splits its vote be-
tween classes depending on the populations of the classes from
the training set at that leaf. (Recall that after pruning a leaf may
contain objects of several different classes.) If an object winds
up at a leaf node with N training set objects of which Li are of
class i (i ¼ 1: : :C ), the tree’s fractional vote in favor of clas-
sification i is (Li þ 1)=(N þ C ). (The particular form used for
the ratio was derived from the binomial statistics at the leaf.)
The votes from all 10 trees are averaged to produce a vector of
probabilities that an object belongs to each of the possible
classes in the training sample. We associate the largest element
of this vector with the ‘‘class’’ of the source.

3.4. The Output Classes

There are many distinct classes of X-ray sources, and one of
the goals of this research is to understand the level of detail to
whichwe can successfully distinguish such sourceswith the infor-
mation we have at hand. In practice, in this initial effort we have
tended to be conservative, using only six basic classes (Table 1).

A problem that needs to be addressed in the classifier design
is that the same astronomical object may legitimately belong to
very different object types, especially as viewed from different
wavelengths. While the X-ray properties of an X-ray binary are
likely to be dominated by the accretion onto the compact com-
panion, the optical appearance of the systemmay be that of, say,
a normal B-star—and it may be categorized as such in some
catalogs. Similarly, while the X-ray emission of a cluster of gal-
axies originates mostly in the intracluster gas, the cluster optical
or infrared counterpart would typically be a cluster galaxy.

Such ambiguities can complicate all phases of the classifi-
cation, including construction of training sets, the training
process itself, and interpretation of the results. Depending on
the use of the classifications, all classification errors are not
equal. If a user is interested in distinguishing Galactic and

extragalactic sources, then misclassifying an AGN as a galaxy
is not as bad as misclassifying it as a star. Indeed, the distinction
between a ‘‘normal’’ galaxy and an AGN is fairly arbitrary. The
usage here is determined by the classification of objects in the
training sets that have been used, rather than specific markers.

3.5. ClassX Classifiers

We introduce here four ‘‘basic’’ ClassX classifiers derived
from the WGACAT and RASS BSC data (Table 2). They are
used in the subsequent discussion to illustrate how the amount
and the nature of the information fed into a classifier affects
classification results. The RASS-X andWGACAT-X classifiers
use ROSAT data only, including positional information. In
addition, the RASS-XOR and WGACAT-XOR classifiers use
optical data for the optical counterparts and a flag indicating
whether the source has a radio counterpart in the NVSS
(Condon et al. 1998) and SUMSS (Mauch et al. 2003) surveys;
objects for which no optical counterpart could be found were
not used in the training of these classifiers. The radio cross-
correlation was done using a 3000 radius. The radio catalogs
have a surface density of about 50 sources per square degree,
so that on average we would expect fortuitous counterparts for
about 1% of our sources. In fact, about 17% of the RASS BSC
sources and 7% of the RASS FSC and WGA sources have
radio correlates. All four illustrative classifiers are trained to
distinguish the same basic set of classes: stars, WDs, X-ray
binaries (XRBs), AGNs, galaxies, and clusters of galaxies.

Many more classifiers are available at the ClassX Web site.
These include classifiers using correlations with other optical
and infrared catalogs, other input parameters, and different sets
of output classes.

Unlike many classification methods that involve multi-
wavelength data and rely on total reliability of the multiwave-
length counterparts, ClassX can be quite effective in situations
in which counterpart reliability is low. ClassX classifiers can
learn to efficiently use the counterpart information even if a
counterpart is physically not the same object as the X-ray
source. A simple illustration of this capability is as follows.
Given the upper limit for stellar X-ray luminosity, ROSAT can
detect stellar X-ray emission only from relatively close, hence
visually bright stars, typically brighter than 12–13 mag. At the
same time, QSOs are fainter than 13 mag. ClassX learns this
distinction from the training sample. When applied to a source
that has an optical counterpart fainter than 13 mag, the ClassX
classifier then knows that such a source is unlikely to be a star. It
would classify it in most cases as something else, for example,
as a QSO, and only significant pressure from the rest of the
available information can force it to change its decision in favor
of a star. The important point here is that the optical counterpart
does not have to be the physical QSO counterpart to the X-ray
source; the optical information used by the classifier is that the
source is not a star, and then the classifier uses the rest of the
available information to decide which of the nonstellar classes
to assign to this particular X-ray source. Thus, the issue of
counterpart reliability in ClassX is not as crucial as one might
think. It becomes crucial, of course, when the multiwavelength
information needs to be assigned to the source, but this task is
different from classification.

4. VERIFICATION

4.1. Cross-Validation and Classifier Characterization

The statistical nature of ClassX classifiers means that one
has to have some measure of the quality of a classifier to tell if
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the classification results are of any value. To adequately assess
a classifier and interpret classification results, one also needs
to know the differences between the classes and the relevance
of these differences in a particular application of the classifi-
cation results. In the following, we describe some methods to
assess the quality of ClassX classifiers, and we introduce a
quantitative characterization of both the classifiers (e.g., reli-
ability and completeness of classification, classifier prefer-
ence) and classes (e.g., class affinity).

A natural data set to use in order to confirm the quality of a
classifier is the training set that was used to develop it. Our
classifiers are tested using five fold cross-validation. In this
technique the training set is divided into five randomly se-
lected subsets (‘‘folds’’) of equal size. Setting aside the first
fold, 10 decision trees are constructed by training on the
other four folds. Then the trees are tested for accuracy on the
first fold, which was not used in the training. This process is
repeated five times, each time holding back a different fold.
When this is complete, we have classified the entire training
sample. This standard technique avoids the overly optimistic
results for classification accuracy that one would get if one

simply trained the classifier on all the data and then tested it on
the same data.15

The results of cross-validation can be viewed as a matrix
with the input classes as the row headers and the column
headers as the output classes (see Table 4). For a perfect
classifier, only the diagonal of the matrix would be populated.
In practice, the ratio of diagonal to off-diagonal elements gives
us an immediate sense of how well the classifier has worked. In
most cases the accuracy of the classifier will be higher for the
training set sample than for originally unclassified sources,
because the population of unclassified sources may differ
systematically from known sources (e.g., by being fainter.) On
the other hand, some disagreements between the OC1 classifier
and the training set classification are the result of classification
errors in the (imperfect) training set. There the cross-validation
results correspondingly underestimate the classifier accuracy.

TABLE 4

Cross-Validation for the Classifiers from RASS BSC and WGACAT

Input Class ClassX Class

Name Number Star WD XRB Galaxy AGN Cluster

RASS-X Classifier

Star ............................. 4694 4505 17 1 138 31 2

WD............................. 78 8 65 0 2 2 1

XRB ........................... 192 119 10 52 6 3 2

Galaxy ........................ 1015 651 6 4 261 59 34

AGN........................... 726 528 2 0 111 84 1

Cluster ........................ 210 56 0 2 40 0 112

Total ....................... 6915 5867 100 59 558 179 152

RASS-XOR Classifier

Star ............................. 4675 4629 0 1 45 0 0

WD............................. 75 3 63 2 4 3 0

XRB ........................... 173 5 9 61 62 29 7

Galaxy ........................ 945 94 3 4 654 170 20

AGN........................... 707 5 1 6 128 561 6

Cluster ........................ 188 3 0 4 52 25 104

Total ....................... 6763 4739 76 78 945 788 137

WGACAT-X Classifier

Star ............................. 4626 3739 4 10 747 35 91

WD............................. 67 38 11 1 14 0 3

XRB ........................... 265 121 1 61 72 2 8

Galaxy ........................ 1281 370 0 1 557 166 187

AGN........................... 3012 579 0 8 60 2189 176

Cluster ........................ 1496 356 0 3 699 101 337

Total ....................... 10747 5203 16 84 364 4278 802

WGACAT-XOR Classifier

Star ............................. 4028 3617 1 7 279 51 73

WD............................. 59 25 4 3 25 0 2

XRB ........................... 239 87 0 76 66 2 8

Galaxy ........................ 962 267 0 2 307 276 110

AGN........................... 2648 144 0 6 95 2195 208

Cluster ........................ 1311 170 0 6 599 67 469

Total ....................... 9247 4310 5 100 491 3471 870

15 Note that classifiers trained with 80% of the data are only used in cross-
validation. The classifiers installed at the ClassX Web site and used in this
paper for classifications of unknown objects are trained using the entire sample
of preclassified sources.
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The cross-validation results are shown in Figures 10–11.
Each panel in these figures gives the fraction of objects in input
class categories classified by ClassX as objects of a given type.
The diagonal across the panels gives, therefore, the fraction of
correctly classified sources in each class and thus represents
reliability of classification. Because of closeness, or affinity, of
some classes in the parameter phase space (e.g., galaxies and
AGNs), the classifier may place some objects of a given input
class into a class with similar properties. Figures 10–11 char-
acterize quantitatively such class affinity. One can infer, for
instance, from Figure 10 that there is a substantial affinity
between the ROSAT BSC galaxies and AGNs when only X-ray
properties are considered. Addition of optical information de-
creases that affinity quite noticeably. At the same time, clusters
of galaxies are obviously distinctly different from AGNs in the
X-ray. The affinity relationships between the classes are some-
what different for objects from WGACAT (Fig. 11).

In Figures 12 and 13, each panel gives the fraction of input
objects of a given type classified by ClassX into different class
categories. The diagonal across the panels shows the com-
pleteness of the placement of sample objects of a given type into
the correct class category, giving us a measure of classification
completeness. In general, Figures 12 and 13 show us the clas-
sifier preferences as it puts objects of a given type into different
class categories.

Affinity and preference plots in Figures 10–13 are useful
when one wants to know what outcome to expect from a

Fig. 10.—Classifier cross-validation. Distribution of input classes within a
given ClassX class (class affinity). Light and dark gray scale refer to the results
for the classifiers using X-ray data only (from ROSAT ) and X-ray plus optical
and radio data, respectively. Each panel shows the fraction of each of the input
classes assigned by ClassX and the class name. Ideally, that fraction is 100% for
those times when the input class always yields the correct output class—a100%
reliable classification. In practice, ClassX assigns the given class to a fraction of
objects whose input class was different. This happens more often for classes
whose affinity with the given class in the parameter phase space is the largest.

Fig. 11.—Same as Fig. 10, but for the classifiers derived from WGACAT
and with the order of the GALAXY and AGN classes reversed.

Fig. 12.—Classifier cross-validation. Distribution of ClassX classes within
a given input class (classifier preference). Each panel exhibits the fraction of
objects of the given input class in each ClassX class. An ideal classifier would
assign all objects in a given input class to the same class. The preference is the
likelihood that a given input class will be assigned to an output class. Gray
scale as in Fig. 10.
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particular classification. For instance, from the XRB panel in
Figure 12, one would know that less than half of XRBs are
expected to be revealed in a sample of X-ray sources. The
same panel in the affinity plot (Fig. 10) would show that 75%
or more of sources classified as XRBs are expected to be real
XRBs.

The actual counts of objects in both the input and ClassX
classes used in cross-validation are given in Table 4. The com-
pleteness of the classifier for a particular class is given by the
ratio of the diagonal element to the sum of the column. This
indicates the fraction of a given class where we recover the
correct class. The reliability of the classifier is given by the
ratio of the diagonal element to the sum over the row. The nor-
malized row is a measure of affinity of a given class with other
classes: for a given input class, what class does the automated
classification yield? Of course, in both cases we must assume
that the original classification is correct.

The cross-validation matrices immediately show many in-
teresting features. When data are misclassified, they are usually
misclassified into related categories. For instance, clusters or
AGNs are misclassified as galaxies and vice versa.

The effect of large samples of one class versus smaller sam-
ples of another is also evident. Since there are so many stars,
they can significantly contaminate samples of galaxies. Even
though a classifier may furnish relatively high completeness
for a given class, classification reliability for that class would
be relatively low when occasional misclassification of a very
common type overwhelms the correct classification of a rare
type. The smaller the relative frequency of the object, the more
distinctively its observational signature needs to stand out
against the other classes. For example, WDs are characterized
by very soft X-ray spectra. Thus, even though they make up

only a small subset, they are still easily distinguished by our
classifiers.

4.2. Verification UsinggExternal Samples

While the cross-validation results are useful, they cannot
address any issues involving the selection of data for the
training set itself. We can get some insight into that concern by
looking at how well the classifiers handle ROSAT sources of
known class that were not in the training set. Using our stan-
dard pipelines, we have classified samples of such sources
from a number of catalogs containing identified ROSAT ob-
jects. Three such samples are discussed below in more detail.
In addition to testing the ClassX classifiers, these examples
show some of the research areas where the broad classifications
the current classifiers provide can be useful.

4.2.1. Hipparcos F stars

Suchkov et al. (2003) identified 2011 F stars from the
Hipparcos catalog as X-ray emitters that have X-ray counter-
parts in the RASS FSC and, to a lesser extent, RASS BSC.
Submission of the list of these stars to the classifier RASS-XOR
resulted in an output list of 1737 sources, all of which classified
as stars (Fig. 14). Also, a smaller subset of these stars found
in the WGACAT by the WGACAT-XOR classifier were all

Fig. 13.—Same as Fig. 12, but for the classifiers obtained from the
WGACAT training sets.

Fig. 14.—Class distribution for a sample of X-ray F stars (top panel ) and
two samples of AGNs (middle and bottom panels). Each sample was correlated
with the RASS catalog and WGACAT, and the matching sources were clas-
sified by the RASS-XOR classifier (light gray scale) or the WGACAT-XOR
classifier (dark gray scale). For each plot, the first value of N indicates the
number of objects found in the RASS catalog, while the second value gives the
number found in WGACAT. Classification shown in light gray in the lower
panel is discussed in text. The sample of F stars is from Suchkov et al. (2003).
The sample in the middle panel is from P. Padovani (2003, private commu-
nication). It comprises mostly the sources from Landt et al. (2001) and Perlman
et al. (1998), which were drawn from the previously unclassified WGACAT
sources and identified as AGNs. The sample in the bottom panel comprises
AGNs from SDSS that were found to have X-ray counterparts in the ROSAT
All-Sky Survey catalogs (Anderson et al. 2003).

McGLYNN ET AL.1296 Vol. 616



identified as stars. This result is consistent with a very high
reliability of star classification for these classifiers as inferred
from Figures 10 and 12, thus strongly supporting the credibility
of the cross-validation results.

4.2.2. New AGNs from the WGACAT

P. Padovani (2003, private communication) supplied us with
a sample of 251 WGACAT sources that were identified by him
and his collaborators as various types of quasars and AGNs
(Landt et al. 2001; Perlman et al. 1998; P. Padovani et al. 2004,
in preparation). The results of classification of this sample with
the WGACAT-XOR and RASS-XOR classifiers are shown in
the middle panel of Figure 14. The classifier does a good job
distinguishing the AGNs from all other classes.

4.2.3. AGNs from the SDSS

SDSS is a deep photometric and spectroscopic optical sur-
vey, in which a large number of sources were spectroscopi-
cally identified as AGNs. For more than 1200 SDSS AGNs,
Anderson et al. (2003) found X-ray counterparts in the ROSAT
All-Sky Survey. We used a sample of 964 of these AGNs to test
the performance of the ClassX classifiers. The results of the
classification of that sample are shown in the lower panel of
Figure 14. The classifier performance is very good in terms of
differentiating the SDSS AGNs from galactic X-ray sources
(stars, WDs, and XRBs) and clusters of galaxies. TheWGACAT-
XOR classifier easily differentiates these AGNs from galaxies;
the RASS-XOR classifier is less successful in such a differen-
tiation, likely because it is trained with substantially brighter
objects.

4.3. Classification Accuracy as a Function
of X-Ray Brigghtness

One clear distinction between the classified and unclassified
sources is that the classified sources are generally brighter.
One may expect that classification accuracy for fainter sources

would be different. As one can see in Figure 15, classification
accuracy does indeed vary with X-ray brightness. Interestingly
enough, the degree and even the sense of that variation is not the
same for different classes. In the case of AGNs, the accuracy
drops from 80% at the bright end to below 70% at the faint end
of the distribution. In contrast, the classification accuracy of
clusters of galaxies tends to increase rather than decrease to-
ward faint sources. For stars, accuracy variation is rather small,

Fig. 15.—Fraction of the WGACAT training set sources correctly classified
by the classifier WGACAT-XOR, displayed as a function of X-ray brightness
[defined as �2:5 log (count rate)]. The actual number of sources of a given
class in each brightness bin is also shown.

Fig. 16.—Fraction of WGACAT training set X-ray sources correctly clas-
sified by the WGACAT-XOR classifier as a function of the source off-axis
angle, �. Sources within � ¼ 30, which may include the targets of observations,
are excluded. The number of objects within each bin is shown at each point.

Fig. 17.—Optical counterpart brightness (in the USNO-B1 red band, R) as a
function of the X-ray source off-axis angle for training set sources used by the
WGACAT classifier (sources within � ¼ 30 are excluded). The number of
objects within each bin is shown at each point.
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with a slight tendency to accuracy degradation at the faint end.
In all cases, however, the accuracy remains relatively high even
at the faint end of the training sample.

4.4. Classification Accuracy as a Function of Optical
Counterpart Brigghtness and Off-Axis Anggle

For the WGACAT sample, classifier performance can also
be expected to vary with the source off-axis angle, �, because
of varying properties of X-ray sources and varying reliability
of counterpart selection. Because of the PSPC vignetting, ob-
jects at large off-axis angles are expected to be somewhat
brighter. For all objects this effect is about an order of mag-
nitude. Figure 16 shows that classification accuracy does not
seem to vary strongly as a function of the distance of the source
from the center of the field of view, except perhaps for AGNs.

Figures 16 and 17 indicate that counterparts selected by the
classifier do not seem to be strongly affected by the off-axis
angle. Generally, the brightness of the counterparts is sub-
stantially greater than what would be found for a random
nearby position. Table 3 indicates that we anticipate an average
red magnitude of about 17.1. AGNs are very close to the av-
erage background luminosity, but they show no dependence on
the offset angle.

4.5. Limits and Issues

While our validation of the classifiers is not complete and we
plan to continue to look at the effects of cross-correlation errors
and of selection in the training set, several distinct lines of
evidence suggest that these classifiers give reasonable classi-
fications for their sources. The classifiers have been built from
heterogeneous data sources, which are likely to have some

fraction of incorrect identifications and correlations. Pruned
decision tree classifiers seem to be robust in the face of such
contamination. One can use the classifiers to attempt to purify
the input data set, and we plan to do so in future work.

5. SUMMARY OF RESULTS

Classification results from ClassX for the entire WGACAT
and RASS data sets are available at the ClassX Web site.16

They are illustrated in Tables 5 and 6, which show the first few
rows of two selected tables.
In addition to these static classifications, more than two

dozen ClassX classifiers, readily accessible for the community
for immediate use, are currently deployed at the ClassX Web
site. The Web site contains a description of the input data for-
mat, which is the list of source coordinates, and the input/output
options. All the classifiers are supplied with the information in-
dicating the classifier class categories, parameters (attributes) to be
used in classification and returned in the output, databases (cata-
logs) to be searched for the source information, and other relevant
information. In the output, each classified source is supplied with
classification probabilities for all classes and is assigned a class
name, which corresponds to the class with the highest classifi-
cation probability. The output also contains the parameter values
retrieved for the source and used in classification.

6. CONCLUSIONS

Classification of X-ray (or optical, infrared, etc.) sources
into various categories of astronomical object types can rarely,

TABLE 5

Classification of RASS BSC by the RASS-X Classifier

RASS BSC Source Name Class Index P(Star) P(WD) P(XRB) P(Galaxy) P(AGN) P(Cluster) Class Name

1RXS J000007.0+081653 ................... 3 0.290 0.007 0.038 0.445 0.176 0.044 Galaxy

1RXS J000011.9+052318.................... 0 0.666 0.003 0.023 0.142 0.126 0.040 Star

1RXS J000012.6+014621 ................... 0 0.702 0.002 0.022 0.125 0.117 0.031 Star

1RXS J000013.5+575628 ................... 0 0.871 0.001 0.017 0.060 0.047 0.003 Star

1RXS J000038.4+794037 ................... 0 0.888 0.001 0.015 0.049 0.044 0.003 Star

1RXS J000042.5+621034 ................... 0 0.888 0.001 0.015 0.049 0.044 0.003 Star

1RXS J000055.5+172346.................... 0 0.819 0.001 0.018 0.076 0.072 0.014 Star

1RXS J000115.6+705535.................... 0 0.871 0.001 0.017 0.060 0.047 0.003 Star

1RXS J000119.8+501659.................... 0 0.696 0.005 0.067 0.111 0.098 0.023 Star

1RXS J000123.3+272241.................... 0 0.888 0.001 0.015 0.049 0.044 0.003 Star

Note.—Table 5 is given in its entirety at the ClassX Web site. A portion is shown here for guidance regarding its format and content.

TABLE 6

Classification of WGACAT by the WGACAT-XOR Classifier

WGACAT Source Name P(Star) P(WD) P(XRB) P(Galaxy) P(AGN) P(Cluster) Class Name ROSPSPC Counterpart?

1WGA J1055.2+5638............ 0.483 0.039 0.061 0.057 0.254 0.106 Star n

1WGA J1049.6+5641............ 0.483 0.039 0.061 0.057 0.254 0.106 Star n

1WGA J1053.8+5709............ 0.270 0.039 0.039 0.219 0.348 0.085 AGN y

1WGA J1053.2+5718............ 0.265 0.035 0.035 0.209 0.405 0.050 AGN y

1WGA J1052.9+5725............ 0.415 0.022 0.026 0.160 0.332 0.045 Star y

1WGA J1051.3+5725............ 0.483 0.039 0.061 0.057 0.254 0.106 Star y

1WGA J1751.8�3450 ........... 0.233 0.026 0.028 0.375 0.291 0.047 Galaxy y

1WGA J1415.2+1119............ 0.233 0.026 0.028 0.375 0.291 0.047 Galaxy y

1WGA J1415.2+1119............ 0.352 0.037 0.141 0.046 0.311 0.115 Star n

1WGA J1415.0+1119............ 0.238 0.031 0.032 0.290 0.347 0.062 AGN y

Note.—Table 6 is given in its entirety at the ClassX Web site. A portion is shown here for guidance regarding its format and content.

16 See footnote 8.
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if ever, be 100% accurate. The presence of uncertainty inherent
to classifications based on statisticalmethods immediately splits
the very goal of classification into a set of different goals, which
are often incompatible. As a result, any statement about clas-
sifier effectiveness would generally make sense only if the
classification goal or task, with respect to which the effective-
ness is considered, is indicated. For example, one may want to
either isolate as completely as possible those objects of a given
class in a given sample, even at the expense of a larger fraction
of misclassified sources, or deal only with objects of a class
identified with the highest possible degree of reliability, even at
the expense of rejecting many class objects that the classifier
is unable to identify as such at the desired level of reliability.
These different goals can be addressed in ClassX with different
classifiers. One classifier can be effective in identifying to a
high degree of completeness the members of a class, but clas-
sification reliability for identified class members may not be
high enough. Still another classifier can be effective in deliv-
ering highly reliable class members but may miss many actual
members of the same class.

Supervised classification techniques are a very powerful
way of extending information about well-understood objects in
a sample to the entire sample. For X-ray sources, it is possible
to do classifications using just a few X-ray parameters as object
attributes. Multiwavelength data can substantially improve the
quality of the classifications, although adding data without
regard to its quality or uniqueness does not necessarily help.

The ClassX classifications are useful for studying classes of
objects, but the classification of any individual object should be
taken as advisory rather than definitive. Human understanding
and judgment is crucial in assessment and interpretations of the
results. This is especially true given the statistical nature of
ClassX.

In ClassX, a substantial number of input (training) sources
are required for each class to effectively classify a sample. This
number depends on the degree to which attributes of the class
differ from those of other classes. In the case of WDs, the
RASS-XOR classifier trained with less than a hundred of these
objects proved nevertheless to be quite effective in both de-
tecting the majority of actual WDs in the (training) sample of
many thousand objects and ensuring high reliability of WD
candidates.

We anticipate that modifications to the classifier algorithm
that note when objects do not map well into existing classes will
be needed to improve its detection capabilities for previously
unknown object types (Laidler & White 2003). Currently, the
latter functionality can be emulated through appropriate anal-
yses of classification probabilities provided by ClassX.

Optical information is critical to distinguishing Galactic from
extragalactic sources. It is less crucial for classifying clusters of
galaxies and WDs. The effect of infrared information in ClassX
is generally similar to that from the optical in distinguishing
broad classes. This information becomes increasingly useful in
finer grained classification. A network of ClassX classifiers, each
using a different set of object parameters (attributes) and even a
different set of classes, can provide a highly complete and reli-
able overall classification. Even when the specific counterpart to
a given source cannot be accurately identified, the upper limit to
the optical brightness given by the ensemble of counterparts is
extremely helpful in defining the class of the source. Cross-
correlation with optical catalogs is helpful in classification even
when it does not lead to a secure identification of the counterpart.

In general, the more detailed and accurate the information
available to a classifier, themore precise the classification results.
However, information that is not used in distinguishing classes
can confuse the classifiers so that careful pruning of the infor-
mation provided to the classifiers is essential. The phase space of
possible classifiers is very large. A substantial fraction of this
effort was to learn a reasonable minimum of information to use.

We have begun applying ClassX to more detailed studies of
particular object classes. For example, Suchkov & Hanisch
(2003, 2004a) find strong evidence for new identifications of
low-luminosity low-mass X-ray binaries having hard X-ray
spectra, most likely associated with regions of star formation in
the Galactic plane. Hanisch et al. (2003) noted up to a five fold
increase in the number of known late-type X-ray–emitting stars,
suggesting a large pre–main-sequence population of T Tauri
stars in active star formation regions. Suchkov & Hanisch
(2004b) have continued this study and have been able to corre-
late the spectral hardness of pre–main-sequence stars with the
expected X-ray absorption along the line of sight to different star
formation regions (�Oph, Orion, the Pleiades, etc.). We are now
investigating the use of ClassX on other large databases, such as
SDSS, and are planning extensions of ClassX to other X-ray
missions (Chandra, XMM-Newton) with different bandpass cov-
erage and spatial resolution from ROSAT.

We wish to thank L. Angelini, P. Fernique, F. Genova ,
W. D. Pence, M. Postman, and M. Wenger for numerous dis-
cussions of the project. The comments and suggestions of the
anonymous referee were very helpful in revising and clarify-
ing the results in this paper. This work was funded through
NASA’s Applied Information Systems Research Program un-
der grant NAG5-11019.
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