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ABSTRACT

A new classification of neutron star cooling scenarios, involving either ‘‘minimal’’ cooling or ‘‘enhanced’’
cooling, is proposed. The minimal cooling scenario replaces and extends the so-called standard cooling scenario to
include neutrino emission from the Cooper pair breaking and formation process. This emission dominates that due
to the modified Urca process for temperatures close to the critical temperature for superfluid pairing. Minimal
cooling is distinguished from enhanced cooling by the absence of neutrino emission from any direct Urca process,
due either to nucleons or to exotica such as hyperons, Bose condensates, or deconfined quarks. Within the minimal
cooling scenario, theoretical cooling models can be considered to be a four parameter family involving the equa-
tion of state (including various compositional possibilities) of dense matter, superfluid properties of dense matter,
the composition of the neutron star envelope, and the mass of the neutron star. The consequences of minimal
cooling are explored through extensive variations of these parameters. The results are compared with the inferred
properties of thermally emitting neutron stars in order to ascertain if enhanced cooling occurs in any of them.

All stars for which thermal emissions have been clearly detected are at least marginally consistent with the lack
of enhanced cooling, given the combined uncertainties in ages and temperatures or luminosities. The two pulsars
PSR 0833�45 (Vela) and PSR 1706�44 would require enhanced cooling in case their ages and/or temperatures
are on the lower side of their estimated values, whereas the four stars PSR 0656+14, PSR 1055�52, Geminga, and
RX J0720.4�3125 may require some source of internal heating in case their age and/or luminosity are on the
upper side of their estimated values. The new upper limits on the thermal luminosity of PSR J0205+6449 (in the
supernova remnant 3C 58) and RX J0007.0+7302 (in CTA 1) are indicative of the occurrence of some enhanced
neutrino emission beyond the minimal scenario.

Subject headinggs: dense matter — equation of state — neutrinos — stars: neutron

1. INTRODUCTION

Within the last several years, several candidates for thermally
emitting neutron stars have been discovered (see, e.g., Pavlov&
Zavlin 2003 for a short review). These stars are presumably
cooling through the combination of neutrino emission from the
interior and photon cooling from the surface, the latter re-
sponsible for their observed thermal emissions. Their temper-
atures have been deduced by fitting atmosphere models to their
spectra, whereas ages can be inferred from kinematics or from
the associated pulsar spin-down timescale. Neutron star cooling
depends upon the equation of state (EOS) of dense matter
as well as the neutron star mass and their envelope composition.
It has been hoped that comparing theoretical cooling curves,
i.e., the temperature-age or luminosity-age relation for neutron
stars, with observations could yield information about their
internal properties.

A goal of this paper is to explore how observations of ther-
mal emission from neutron stars might be able to constrain the
equation of state of dense matter. We will treat theoretical
neutron star cooling trajectories as a four parameter series of
models. The parameters are as follows:

1. the equation of state (including various compositional
possibilities);

2. superfluid properties of the relevant components;
3. the envelope composition;
4. the stellar mass.

In nature, only one equation of state and one set of superfluid
properties is realized, but at the present time, the theoretical
range of superfluid properties for a given equation of state is so
broad that these must be treated as an independent parameter.
In the future, as more observations become available, it should
be possible to eliminate some combinations of EOS and su-
perfluid parameter sets, if not entire families of possibilities. It
is also not known if a neutron star’s envelope composition is
unique (at least for a given mass) or if it varies from star to star
or as a function of time. The neutron star mass is constrained to
lie between the maximum mass (a function of the equation of
state) and a minimum mass of about 1.1 M� (set by theoretical
considerations of neutron star birth (see, e.g., Burrows &
Lattimer 1986).

Historically, theoretical neutron star cooling models have
fallen into two categories, ‘‘standard’’ cooling or enhanced
cooling. The so-called standard cooling scenario has no ‘‘en-
hanced cooling’’ that could result from any of the direct Urca
processes involving nucleons, hyperons, meson condensates,
or quark matter (see, e.g., Pethick 1992 and Prakash 1998).
Until recently, ‘‘standard’’ cooling has been treated as being
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dominated by the modified Urca process (Friman & Maxwell
1979). However, in the presence of superconductivity or su-
perfluidity in the neutron star interior, an additional source of
neutrino emission, Cooper pair breaking and formation, occurs
(Flowers et al. 1976; Voskresensky & Senatorov 1987). For
temperatures near the associated gap energies, Cooper pairs, in
fact, dominate the neutrino emissivities. Although the magni-
tude of the superfluid gap energies as a function of density is
somewhat uncertain at present, it is generally accepted that
superfluidity occurs in neutron star matter. For this reason, we
embark on the ‘‘minimal cooling’’ scenario in which ‘‘standard
cooling’’ is extended to include the effects of superfluidity,
including Cooper pair breaking and formation.

The purpose of this paper is to explore in as complete a
fashion as possible the consequences of this minimal cooling
paradigm, employing the four kinds of parameters described
above, and to compare our results with the inferred properties
of cooling neutron stars. In this way, it will become apparent to
what extent one or more of the so-called enhanced cooling
mechanisms might be necessary to understand the observa-
tions. A future paper will explore in a similar fashion the con-
sequences of enhanced cooling.

One consequence of the minimal cooling paradigm, that
enhanced cooling will not occur, is a restriction upon the
equation of state involving the symmetry energy. It is well
known (see, e.g., Lattimer et al. 1991) that the density de-
pendence of the nuclear symmetry energy controls the charge
fraction in uniform beta-equilibrium matter. Since the direct
Urca process occurs in uniform beta-equilibrium matter when
the charge fraction exceeds 1/9 (in the absence of muons or
hyperons), minimal cooling thus restricts the density depen-
dence of the nuclear symmetry energy: the critical density for

the onset of the direct Urca process must remain above the
star’s central density. When muons are considered, this critical
density, for a given equation of state, is slightly lowered. The
appearance of hyperons can also trigger other direct Urca
processes (Prakash et al. 1992). Thus, to the extent that min-
imal cooling can explain existing observations, a constraint on
the equation of state could be inferred.
In x 2, observations of cooling neutron stars are reviewed.

The input physics, including the equation of state, superfluid
properties, and neutrino emissivities are discussed in x 3. The
influence of the neutron star envelope is briefly discussed in x 4.
The results of cooling calculations for minimal cooling models
are extensively discussed in x 5. The coldest stars possible
within the minimal cooling scenario are identified in x 6, and x 7
contains a summary of the confrontation of the minimal cooling
paradigmwith existing data. A comparison with other studies is
performed in x 8. Conclusions are offered in x 9.

2. DATA ON COOLING NEUTRON STARS

Observations of neutron stars whose thermal emission has
been unambiguously detected give rise to the information
summarized in Tables 1 and 2, whereas Table 3 contains results
about objects for which only upper limits have been set. Tables 1
and 2 display four inferred quantities: the total thermal lumi-
nosity L1, the surface temperature T1, the distance d, and the
age t, whereas Table 3 omits T1. The subscript ‘‘1’’ refers to
quantities observed at the Earth that are redshifted relative to
their values at the stellar surface. The data in these tables are
taken from references that are detailed in Appendix A. In cases
where a range of estimates is presented in these references,
the particular parameters selected for inclusion in these tables
are elaborated in Appendix A. Table 1 presents properties as

TABLE 1

Neutron Star Properties with Hydrogen Atmospheres

Star

log10tsd
(yr)

log10tkin
(yr)

log10T1
(K)

d

(kpc)

log10L1
(ergs s�1)

RX J0822�4247................. 3.90 3:57þ0:04
�0:04 6:24þ0:04

�0:04 1.9–2.5 33.85–34.00

1E 1207.4�5209................. 5:53þ0:44
�0:19 3:85þ0:48

�0:48 6:21þ0:07
�0:07 1.3–3.9 33.27–33.74

RX J0002+6246 ................. . . . 3:96þ0:08
�0:08 6:03þ0:03

�0:03 2.5–3.5 33.08–33.33

PSR 0833�45 (Vela).......... 4.05 4:26þ0:17
�0:31 5:83þ0:02

�0:02 0.22–0.28 32.41–32.70

PSR 1706�44 ..................... 4.24 . . . 5:8þ0:13
�0:13 1.4–2.3 31.81–32.93

PSR 0538+2817.................. 4.47 . . . 6:05þ0:10
�0:10 1.2 32.6–33.6

Note.—References are cited in Appendix A.

TABLE 2

Neutron Star Properties with Blackbody Atmospheres

Star

log10tsd
(yr)

log10tkin
(yr)

log10T1
(K)

R1
(km)

d

(kpc)

log10L1
(ergs s�1)

RX J0822�4247........................ 3.90 3:57þ0:04
�0:04 6:65þ0:04

�0:04 1–1.6 1.9–2.5 33.60–33.90

1E 1207.4�5209........................ 5:53þ0:44
�0:19 3:85þ0:48

�0:48 6:48þ0:01
�0:01 1.0–3.7 1.3–3.9 32.70–33.88

RX J0002+6246 ........................ . . . 3:96þ0:08
�0:08 6:15þ0:11

�0:11 2.1–5.3 2.5–3.5 32.18–32.81

PSR 0833�45 (Vela)................. 4.05 4:26þ0:17
�0:31 6:18þ0:02

�0:02 1.7–2.5 0.22–0.28 32.04–32.32

PSR 1706�44 ............................ 4.24 . . . 6:22þ0:04
�0:04 1.9–5.8 1.8–3.2 32.48–33.08

PSR 0656+14............................. 5.04 . . . 5:71þ0:03
�0:04 7.0–8.5 0.26–0.32 32.18–32.97

PSR 0633+1748 (Geminga) ...... 5.53 . . . 5:75þ0:04
�0:05 2.7–8.7 0.123–0.216 30.85–31.51

PSR 1055�52 ............................ 5.43 . . . 5:92þ0:02
�0:02 6.5–19.5 0.5–1.5 32.07–33.19

RX J1856.5�3754..................... . . . 5:70þ0:05
�0:25 5.6–5.9 >16 0.105–0.129 31.44–31.68

RX J0720.4�3125..................... 6.0 � 0.2 . . . 5.55–5.95 5.0–15.0 0.1–0.3 31.3–32.5

Note.—References are cited in Appendix A.
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inferred from models incorporating atmospheres dominated
by hydrogen, whereas Table 2 presents properties inferred from
blackbody or heavy-element dominated atmospheres. The stars
displayed in Table 1 are a subset of those in Table 2 because the
inferred radii of the excluded stars are far above theoretically
plausible values for neutron star radii (see discussion below).
The objects listed in Table 3 are fainter than those listed in the
first two tables, and the upper limits listed have been obtained
only very recently thanks to the extended capabilities of XMM-
Newton and Chandra. As a result, much less information has
been obtained and the data analysis has not been as detailed as
for the stars in Tables 1 and 2. Moreover, in four cases no
compact object has been detected. Indicated by a ‘‘?’’ in Table 3,
these compact remnants may contain isolated black holes in-
stead of neutron stars.

2.1. Temperatures

The estimation of L1 and T1 from the observed spectral
fluxes requires atmospheric modeling in which three additional
factors are involved: the composition of the atmosphere, the
column density of X-ray absorbing material between the star
and the Earth, and the surface gravitational redshift (the sur-
face gravity does not play a major role in fitting broad spectral
flux distributions). The column density is important because
the bulk of the emitted flux from neutron stars is absorbed
(mostly by interstellar hydrogen) before it reaches the Earth.
The surface gravitational redshift, although not a factor in black-
body models, can influence heavy-element atmosphere models.
In many references, the gravitational redshift was not optimized
but was set to the canonical value 0.304 implied byM ¼ 1:4M�
and R ¼ 10 km.

Since narrow spectral lines are not observed in any of the
stars in Tables 1 and 2, the atmospheric composition of these
neutron stars is unknown. However, some information can be
deduced from the shape of the spectral distribution. Broadly
speaking, neutron star atmospheres can be described as being
either light-element (i.e., H or He) or heavy-element domi-
nated. Heavy-element atmospheres have spectral distributions
more closely resembling the blackbody distribution than do
light-element atmospheres (Romani 1987). This is due to the
higher opacities of heavy elements and seems to be the case
even in the presence of strong magnetic fields. Since the wave-
length range of available X-ray spectra is relatively small, it is
possible to fit X-ray spectra with both kinds of atmosphere
models. In general, an X-ray spectrum that is fitted with a
light-element atmosphere will predict the star to have a lower

temperature and a larger angular size than will be the case if
a heavy-element atmosphere or blackbody is assumed. If the
distance is known, the neutron star radius can be inferred (see
more on this in x 2.3). In some cases, fitting a star with a light-
element atmosphere results in a predicted neutron star radius
much larger than the canonical range of 10–15 km. In other
cases, fitting a star with a heavy-element atmosphere could
result in an inferred radius that is too small.

Chang & Bildsten (2003, 2004) have discussed a trend
observed from atmospheric modeling of thermal neutron star
spectra (Pavlov 2000): the inferred neutron star radii for stars
younger than about 105 yr are consistent with canonical val-
ues only if they are modeled with light-element atmospheres
(magnetized or nonmagnetized). Stars older than about 105 yr,
on the other hand, have inferred radii close to the canonical
range only when modeled with heavy-element atmospheres.
For this reason, Table 1 is limited to stars with ages less than
about 105 yr, and it displays results inferred from modeling
them with H atmospheres. Table 2, on the other hand, lists
all stars and displays properties deduced from blackbody (or
heavy-element dominated) models. The temperatures and lumi-
nosities are plotted in Figure 1 and are also selected according
to this trend and our desire that the inferred stellar radius lies in
a theoretically plausible range. The temperature and luminos-
ity are taken from Table 2 unless values for them appear in
Table 1.

The above trend implies that the atmospheric composition
of a neutron star evolves from light to heavy elements with a
timescale of about 105 yr. This possible evolution is considered
in more detail in x 5.2.

2.2. Agges

The precise ages of observed cooling neutron stars are not
always known. Most stars listed in Tables 1–3 are known radio
and/or X-ray pulsars, and their ages can be estimated from the
observed spin-down rate using tsd � P=2Ṗ, where P and Ṗ are
the period and its time derivative, respectively. In some cases,
kinematic information is available and ages can be inferred by
relating pulsar transverse velocities to the distances from the
presumed sites of origin as, e.g., the geometric center of the
associated supernova remnant or a nearby cluster of massive
OB stars. In the case of an association with a supernova rem-
nant, the age can also be estimated by the general properties
of the remnant and, in the best cases, by association with his-
torical supernovae. We will generically refer to these various
alternatives to tsd as the ‘‘kinematic age’’ tkin. Both ages, where

TABLE 3

Properties of Barely Detected or Undetected Objects

Star (SNR)

log10tsd
(yr)

log10tkin
(yr)

d

(kpc)

log10L1
(ergs s�1)

CXO J232327.8+584842 (Cas A)........ . . . 2.51 3.3–3.6 <34.5

J0205+6449 (3C 58)............................. 3.74 2.91 2.6–3.2 <33.0

PSR J1124�5916 (G292.0+1.8)........... 3.45 3.15–3.30 5–6 <33.3

RX J0007.0+7302 (CTA 1).................. . . . 4.0–4.2 1.1–1.7 <32.3

? (G084.2�0.8)..................................... . . . 3.5–4.0 �4.5 <30.68–31.45

? (G093.3�6.9)..................................... . . . 3.3–4.0 2.1–2.9 <30.65–31.55

? (G127.1+0.5)...................................... . . . 3.3–3.9 1.2–1.3 <29.6–30.75

? (G315.4�2.3)..................................... . . . 3.5–4.17 2.4–3.2 <30.65–31.80

PSR J0154+61 ...................................... 5.29 . . . 1.7–2.2 <32.14

Note.—References are cited in Appendix A.
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available, are shown in Tables 1–3. The data in these tables
show that, in general, there is a large discrepancy between the
spin-down age and the kinematic age in cases where both are
given. In most cases, the spin-down age is longer, but in the
case of the Vela pulsar, it is shorter. Typical discrepancies are
of order 3 or larger. For this reason, we have used the kinematic
age in Figures 1 and 2 where available, and otherwise have
assigned an uncertainty of a factor of 3 in each direction to the
spin-down ages.

2.3. Distances and Luminosities

The distances are estimated from pulsar dispersion mea-
sures, estimated distances to the related supernova remnants, or
observations of interstellar absorption to other stars in prox-
imity. In three cases, parallax estimates are available. The
details are discussed in Appendix A. Uncertainties in the dis-
tances are in many cases rather large. Since the inferred lu-
minosities of the stars are proportional to the square of the
assumed distances, it is usually the case that the inferred stellar
luminosity has greater relative error bars than the inferred stel-
lar temperature. However, in cases in which the composition
of the stellar atmosphere is uncertain, but the distance to the
source is accurately known, the inferred stellar luminosity
might be more accurately estimated. A consistency check of
the measurements of T1, L1, and the distance d is that the
relation

L1 ¼ 4�R2
1�SBT

4
1 ð1Þ

should give a radius at infinity R1 comparable to the radius of
a neutron star. This is the case for the measurements listed in
Table 1, whereas for the measurements based on BB spectral fits
listed in Table 2 only 1055�52 has a possibly acceptable R1,
but with very large errors due to the uncertainty in d. However,
BB models are overly simplistic. Nonmagnetic heavy-element
dominated atmospheres tend to have values of R1 factors of
2 to 3 larger than a BB (Romani 1987), so that essentially all
the sources listed in Table 2 satisfy this consistency check. For
the objects listed in Table 3, this consistency test is only mar-
ginally possible for J0205+6449 (3C 58).
Theoretical cooling calculations also give an effective tem-

perature T1
e and a luminosity L1 that are related to each other

by the equation (see also eq. [B9])

L1 � e2�(R)L(R) ¼ 4�R12�SBT
14
e ; ð2Þ

where we have used the superscript ‘‘1’’ to denote the the-
oretical values and subscript ‘‘1’’ for the observed values at
infinity in order to emphasize the difference. It is only for a
star for which the measured T1 and L1 satisfy equation (2)
and for which an accurate measurement of d exists (implying a
small error bar on L1) that comparison of cooling curves with
data in terms of T or L are equivalent. For the stars listed in
Table 2 that do not pass the above consistency test, the mea-
sured T1 is thus not an effective temperature and cannot be
directly compared with the calculated T1

e . In these cases, the
luminosity L1 is more representative of thermal emission
and should be used for comparison with L1. For this reason,
we have chosen to tabulate luminosities as well as tem-
peratures in Tables 1 and 2, and we have plotted both tem-
perature and luminosity in Figure 1. In Table 3, we have
reported only upper limits to L1, which is the quantity that
observation can usefully constrain and plotted them separately
in Figure 2.
One feature notable in Figures 1 and 2 is the sizes of the error

boxes, particularly in the age dimension. These uncertainties
represent an inherent difficulty in using these observations to
firmly constrain the details of neutron star cooling. For this rea-
son, instead of attempting to detail properties of the equation
of state, superconductivity, and/or neutrino emissivities from
the observations, our approach will be to model a reasonably

Fig. 1.—Inferred temperature T1 (top) and luminosity L1 (bottom) vs. age
for neutron stars with thermal emission. Data from Table 1 are marked as
‘‘H atmosphere fits’’ and data from Table 2 as ‘‘Blackbody fits.’’

Fig. 2.—Inferred upper limits on thermal luminosity L1, vs. age, for the
compact objects listed in Table 3.
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broad range of acceptable physical inputs in order to determine
ranges of parameters that might be excluded by the present
data.

3. INPUT PHYSICS

The standard general relativistic equations determining the
structure and thermal evolution of a neutron star are briefly
summarized in Appendix B. Given an equation of state (EOS),
described in x 3.1, we solve numerically the TOV equations
of hydrostatic equilibrium and build our stars. The equations
of energy conservation, equation (B2), and energy transport,
equation (B5), with their corresponding boundary conditions are
then solved numerically with a fully general relativistic Henyey-
type stellar evolution code specially developed for neutron stars
(Page 1989). The required physics input is described in the next
section. The outer boundary condition, equation (B6), is imple-
mented in terms of an envelope, described in x 4.

3.1. The Equation of State

The gross properties of a neutron star (such as its mass
and radius) and its interior composition (which influences the
thermal evolution) chiefly depend on the nature of strong in-
teractions in dense matter. Investigations of dense matter can be
conveniently grouped into three broad categories: nonrelativ-
istic potential models, effective field theoretical (EFT) models,
and relativisticDirac-Brueckner-Hartree-Fock (DBHF)models.
In addition to nucleons, the presence of softening components
such as hyperons, Bose condensates, or quark matter can be in-
corporated in each of these approaches. Some general attributes,
including references and typical compositions, of equations of
state (EOSs) in each of these approaches have recently been
summarized by Lattimer & Prakash (2001).

In this work, we employ four EOSs in the category of non-
relativistic potential models in which only nucleonic degrees
of freedom are considered. Two of these are taken from the
calculations of the Argonne and Urbana groups. The EOS la-
beled WFF3, from Wiringa et al. (1988), is based on the varia-
tional calculations using UV14+TNI potential, and that labeled
‘‘APR,’’ from Akmal et al. (1998), utilizes the AV18 potential
plus the UIX potential plus the �vb boost. APR represents
the most complete study to date of Akmal & Pandharipande
(1997), in which many-body and special relativistic corrections
are progressively incorporated into prior models including that
of WFF3.

For isospin symmetric matter, the equilibrium densities of
the WFF3 and APR models are n0 ¼ 0:163 and 0:16 fm�3,
respectively, with corresponding compression moduli of 269
and 274 MeV, respectively. In isospin asymmetric matter, the
density-dependent symmetry energy S(nb; x) is defined by the
relation

E(nb; x) ¼ E(nb; 1=2)þ S(nb; x); ð3Þ

where E is the energy per particle, nb ¼ nnþ np is the baryon
number density, and x ¼ np=nb is the proton fraction. In
practice, S(nb; x) can be expanded as

S(nb; x) ¼ S2(nb)(1� 2x)2 þ S4(nb)(1� 2x)4: : : ; ð4Þ

where the term involving S4 is generally very small. S(nb; x)
plays a crucial role in a neutron star’s thermal evolution
insofar as it determines the equilibrium proton fraction, which

in turn determines whether or not the direct Urca process,
n ! pþ e� þ �̄e, is permitted to occur in charge neutral beta-
equilibrated matter (Lattimer et al. 1991).

The equilibrium proton fraction is determined from the
condition

�e ¼ �̂ ¼ �n� �p ¼ �(@E=@x)

¼ 4(1� 2x)½S2(nb)þ 2S4(nb)(1� 2x)2 þ : : : �; ð5Þ

where �i (i ¼ e; n; p) are the chemical potentials. For ultra-
relativistic and degenerate electrons, �e ¼ fc (3�2nb x)

1=3, since
due to charge neutrality ne ¼ np in matter in which the only
leptons are electrons.

When the electron Fermi energy is large enough (i.e.,
greater than the muon mass), it is energetically favorable for
the electrons to convert to muons through e� ! �� þ �� þ �e.
Denoting the muon chemical potential by �� , the chemical
equilibrium established by the above process and its inverse
is given by �� ¼ �e . At the threshold for muons to appear,
�� ¼ m�c

2 ffi 105 MeV. Noting that the proton fraction at
nuclear density is small, one has the approximate relation-
ship 4S2(u)=m�c

2 � 1, where u ¼ nb=n0. Using a typical value
S2(u ¼ 1) ’ 30 MeV, one may expect muons to appear roughly
at nuclear density n0 ¼ 0:16 fm�3. Above the threshold density,

�e ¼ �̂ ¼ �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( fc)2(3�2nb x�)

2=3 þ m2
�c

4

q
; ð6Þ

where x� ¼ n�=nb is the muon fraction in matter. The charge
neutrality condition now takes the form neþ n� ¼ np, which,
together with the relation of chemical equilibrium in equa-
tion (6), establishes the lepton and proton fractions in matter.
The appearance of muons has the consequence that the electron
fraction xe ¼ ne=nb is lower than its value without the presence
of muons.

If S(nb; x) does not rise sufficiently rapidly with density, the
equilibrium proton fraction will remain below a critical value
(of order 11% in matter with e� only and 14% in matter with
both e� and ��) required for the direct Urca process. The
critical proton fraction is determined by requiring simultaneous
conservation of energy and momentum among the participat-
ing fermions. In this case, cooling occurs via the modified Urca
process, nþ n ! nþ pþ e� þ �̄e, and several other similar
processes (see x 3.5), modulated by effects of possible nucleon
superfluidity. Because of the additional fermions involved, the
emissivity of the modified Urca process is several orders of
magnitude lower than the direct Urca process.

The symmetry energies S2(n0) of the WFF3 and APR models
at their respective equilibrium densities n0 have the values 29.5
and 32.6 MeV, respectively. In the WFF3 model, the symmetry
energy S2(nb) rises slowly with density and x never reaches the
critical value for the direct Urca process. However, in the case
of the APR model, the direct Urca process becomes possible at
nB > 0:78 fm�3, which corresponds to a neutron star mass of
Mcr ¼ 1:97M�. For this model, we will therefore consider only
stars with masses below this threshold.

We also consider two EOSs from the phenomenological
nonrelativistic potential model of Prakash et al. (1997), which
is designed to reproduce the results of more microscopic cal-
culations at zero temperature, and which allows extensions to
finite temperature. The EOSs chosen are labeled BPAL21 and
BPAL31, which have bulk nuclear matter incompressibilities

COOLING OF NEUTRON STARS 627No. 2, 2004



Ks ¼ 180 or 240 MeV, respectively. In both cases, the sym-
metry energy, at the empirical symmetric matter equilibrium
density of n0 ¼ 0:16 fm�3, was chosen to be 30 MeV. Fur-
thermore, the potential part of S(nb; x) varies approximately
as nb=n0ð Þ1=2 in both cases, which is close to the behavior
exhibited in the EOS of APR.

In Figure 3, the symmetry energies (top panel ) and corre-
sponding proton fractions (bottom panel ) in charge-neutral
beta-stable neutron star matter are shown. In Figure 4, the
pressure of neutron star matter is shown as a function of
baryon density for the EOSs considered in this work. The
differences in the high-density behavior of these two EOSs are
largely attributed to differences in the underlying three-body
interactions.

The reason why we do not consider EOSs based on effec-
tive field-theoretical (EFT) and relativistic Dirac-Brueckner-
Hartree-Fock (DBHF) models in this work merits some
discussion. In EFT approaches based on the prototype Walecka
model, interactions between nucleons are mediated by the ex-
change of �-, !-, and �-mesons. At the mean field level, the
symmetry energy in this approach is given by (Horowitz &
Piekarewicz 2001)

S2(nb) ¼
k2F

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM 	2

p þ nb

8 (g2�=m
2
�)þ 2 f (�0; !0)

h i ; ð7Þ

where �0 , !0 , and �0 are the mean-field expectation values of
the fields, g� and g� are the �- and �-meson couplings to the
nucleon, and M	 ¼ M � g��0 is the nucleon’s Dirac effective
mass. The quantity f (�0; !0) summarizes effects of density-
dependent nonlinear interactions arising from �-, !-, and
�-mixings and have recently been employed to explore devi-
ations from the linear behavior of the second term with density

in the case f ¼ 0. When the symmetry energy rises linearly
with density, the critical proton fraction for the direct Urca
process is reached at 2–3 n0 , which is well within the central
densities of both 1.4 M� and maximum mass stars obtained
with these EOSs. It is possible, however, to forbid the direct
Urca process with a suitable choice of f 6¼ 0 (Steiner et al.
2004). These cases, however, resemble the potential models
considered above.
All DBHF calculations reported thus far in the literature

(e.g., Müther et al. 1987; Engvik et al. 1994) find that proton
fractions favorable for the direct Urca process to occur are
reached in stars whose masses are larger than �1.3 M�. Since
our intention here is to explore the extent to which model
predictions can account for observations without invoking the
direct Urca process and its variants involving hyperons, Bose
condensation, or quarks, we defer a discussion of these models
to a separate work.
In Figure 5, we show the mass versus radius and versus

central density curves for the four EOSs chosen. Features of
relevance to the discussion of cooling to note are the following:

1. The radii of maximum mass configurations (1:7< Mmax=
M� < 2:2) are confined to the narrow range 9–10 km.
2. The radii of 1.4M� stars lie in the narrow range 11–12 km.

Significant deviations from such a tight clustering of radii
occur only in those cases in which the following occurs:

1. Normal nucleonic matter is described through the use of
EFT or DBHF models. Lattimer & Prakash (2001) showed that
the neutron star radius increases with the density derivative of
the symmetry energy in the vicinity of nuclear matter density.
Therefore, in this case, relatively large radii for both 1.4 M�
and maximum mass configurations occur. Similarly, a relatively
large density dependence of the symmetry energy also permits
the direct Urca process to occur in this case.
2. Extreme softening is induced by the presence of ad-

ditional components such as hyperons, Bose condensates, or
quarks: In this case, significantly smaller radii are possible.
Such components also lead to relatively rapid cooling.

As mentioned earlier, both of these cases fall outside the ‘‘Min-
imal Cooling Scenario’’ and will be investigated separately.
For completeness, we note that in all four cases considered,

the crust-core transition occurs at nb � 0:1 fm�3 or equiva-
lently � � 1:6 ; 1014 g cm�3. For the EOS in the crust region,

Fig. 3.—Symmetry energy (top) and proton fraction (bottom) for the four
EOSs used in this work.

Fig. 4.—Pressure vs. baryon density for the four EOSs employed in this
work.
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we employ the EOS of Negele & Vautherin (1973) above neu-
tron drip and that of Haensel et al. (1989) below neutron drip.

For the four supernuclear EOSs chosen, the Fermi momenta
of neutrons and protons in beta-equilibrium with leptons are
shown in Figure 6.

3.2. Nucleon Effectivve Masses

Under degenerate conditions (TT�) and in the absence
of collective excitations close to the Fermi surface, physical
quantities such as the specific heat, entropy, and superfluid
gaps, and processes such as neutrino emission from particles
with energies in the neighborhood of the Fermi energy, depend
sensitively on the so-called Landau effective masses of par-
ticles. Formally, the Landau effective mass m	 of any degen-
erate fermion (n, p, e, and � in our case) is defined by

m	 � pF
@e( p)

@p

����
����
p¼pF

" #�1

; ð8Þ

where e( p) is the single-particle energy of the particle with
momentum p, and the derivative is evaluated at the Fermi
momentum pF. For nonrelativistic interacting nucleons, the
single particle energies of the neutron and proton can be
written as

en( p) ¼
p2

2m
þ Un(nb; p);

ep( p) ¼
p2

2m
þ Up(nb; p); ð9Þ

where m is the nucleon mass in vacuum, and Un and Up are
the neutron and proton single-particle momentum-dependent
potentials, which are obtained by appropriate functional differ-
entiations of the potential energy density.

From the Hamiltonian density in Appendix A of APR, the
neutron and proton Landau effective masses are

m	

m
¼ 1þ 2m

f2
( p3 þ zp5)nbe

�p4nb

� ��1

ð10Þ

where z ¼ (1� x) for neutrons and z ¼ x for protons, and
p3 ¼ 89:8 MeV fm5; p4 ¼ 0:457 fm3, and p5 ¼ �59 MeV fm5.
The solid curves in Figure 7 show the variation of the effective
masses with density for both neutrons and protons in charge-
neutral beta-stable matter corresponding to the EOS of APR.

To date, single-particle energies for the WFF3 model are
available only for symmetric nuclear matter up to nb ¼
0:5 fm�3 (Wiringa 1988). Using the parameterization from
equation (7) of Wiringa (1988), we find that

m	

m
¼ 1� 2m

f2�2
� 1þ k 2

F

�2

� ��2
" #�1

; ð11Þ

where the density-dependent parameters � and � are tabulated
in Table I of Wiringa (1988). The filled circles in Figure 7
show the symmetric matter Landau effective masses for this
case. Lacking further input, and encouraged by the fact that the
APR results for neutron and proton effective masses in beta-
stable isospin asymmetric matter bracket the WFF results in

Fig. 5.—Mass vs. radius (top) and vs. central baryon density (bottom) for
the four EOSs employed in this work.

Fig. 6.—Fermi momenta of neutrons (upper curves) and protons (lower
curves) vs. baryon density for the APR and BPAL EOSs (BPAL21 and
BPAL31 give nearly the same values).

COOLING OF NEUTRON STARS 629No. 2, 2004



isospin symmetric matter, we take the results of the APR model
to apply for the WFF model as well. As we will show, our final
results are not significantly affected by this approximation.

The neutron and proton Landau effective masses for the
BPAL21 and BPAL31 models can be obtained straightfor-
wardly from the single-particle potentials given in Prakash et al.
(1997). Explicitly,

m	

m
¼ 1�

X
i¼1;2

(�i þ �iz)u 1þ (2zu)2=3

R2
i

" #�2
8<
:

9=
;

�1

;

�i ¼
2

5

(2Ci þ 4ZI )

E 0
FR

2
i

; �i ¼
2

5

(Ci � 8ZI )

E 0
FR

2
i

; ð12Þ

where E 0
F is the Fermi energy at the equilibrium density n0 and

the parameters Ci, Zi, and Ri can be found in Tables 1 and 2 of
Prakash et al. (1997). The dash-dotted curves in Figure 7 show
the effective masses for the BPAL models.

The general trends to note in Figure 7 are as follows:

1. the steady decrease of m	
n and m	

p with density, and
2. m	

n > m	
p in charge-neutral beta-stable matter.

It is interesting to observe that there is more spread in the
model predictions for m	

n , particularly with increasing density,
than for m	

p .
For noninteracting relativistic particles, such as e and �, the

Landau effective masses are given by

m	c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2Fc

2

q
; ð13Þ

where m denotes the appropriate vacuum mass.

3.3. Pairingg

The Fermi surface of a degenerate system of fermions,
as are e, �, p, and n in a catalyzed neutron star, becomes
unstable in the presence of an attractive interaction between
the particles whose momenta lie close to the Fermi momen-
tum: this is the Cooper theorem (Cooper 1956). As a result of
this instability, the ground state of the system is reorganized
with a gap � in the energy spectrum around the value of the
Fermi energy; no particle can have an energy between EF��
and EFþ�.

This instability usually appears as a second-order phase
transition, the gap acting as the order parameter of the tran-
sition, which has a corresponding critical temperature Tc. For
T > Tc , the system behaves as a normal Fermi liquid, whereas
for T PTc the gap grows in magnitude, which results in su-
perfluidity or superconductivity. The precise value of Tc de-
pends on the nature of the pairing interaction.
There is no obvious attractive interaction between electrons

and/or muons in a neutron star and thus they are not expected
to become paired at temperatures relevant for our concerns
here (Baym & Pethick 1975).
For nucleons, the strong interaction provides several chan-

nels in which pairing is possible with Tc-values of order MeV.
Nucleon-nucleon scattering data in vacuum indicate that at low
momentum pairing should occur through Cooper pairs with
zero angular momentum L in a spin-singlet state, 1S0 , whereas
for larger momenta an L ¼ 1 spin-triplet (J ¼ Lþ S ¼ 2), 3P2

pairing becomes favorable. Starting from a knowledge of the
nucleon-nucleon interaction in vacuum, the difficulty of ob-
taining reliable values of the gap in a medium is illustrated by
considering the result for the solution of the gap equation in
the so-called BCS weak coupling approximation (Bardeen et al.
1957):

� � EFe
�1=V N (0); ð14Þ

where V is the in-medium pairing interaction in the corre-
sponding channel and N (0) � m	pF=�

2 f3 is the density of
states at the Fermi surface. Small variations of m	 and medium
effects on V affect � in an exponential manner.
The best-studied case is the n 1S0 gap in pure neutron matter.

The gap appears at densities of order n0 or lower, where m	
n

is well determined and the pairing interaction in vacuum for
the 1S0 channel is accurately known. Simple arguments (Pines
1971) show that medium polarization, the dominant medium
effect on V, should induce a reduction of the 1S0 gap (Clark
et al. 1976) from its value without medium polarization. Much
effort has been dedicated to take into account medium polari-
zation at various levels of approximation. With time and im-
proving many-body techniques, the results are beginning to
show a convergence for the maximum value of Tc, which is
in the range �(0:5 0:7) ; 1010 K, as can be seen in Figure 8.
The density range in which this gap is nonzero is still some-
what uncertain and corresponds to the inner part of the crust
and, possibly, the outermost part of the core.
Since the results shown in Figure 8 are for uniform pure

neutron matter, they will be altered by the presence of a small
fraction of protons in the outer core and the nonuniformity of
neutron density due to nuclei (or nuclear clusters) in the inner
crust. This latter effect has been studied recently by Barranco
et al. (1997), who show that it does not alter significantly the
results, at least at the level of accuracy required for the study
in the present paper.
The p 1S0 gap is similar to the n 1S0 gap and occurs at similar

Fermi momenta kF, but since protons represent only a small
fraction of the nucleons, this translates to high densities, which
allows the gap to persist in much deeper regions of the core
than the n 1S0 gap. The values of Tc from several calculations
are shown in Figure 9. An essential immediate difference com-
pared to the n 1S0 gap is that the p 1S0 gap is much smaller,
m	 being smaller for protons than for neutrons (see Fig. 7).
It should be noted that all calculations shown in this figure
have employed values of m	

p larger than the values we report
in Figure 7. Insofar as the results of Figure 7 for APR are

Fig. 7.—Ratio of the Landau effective mass m	 to the vacuum mass m for
neutrons and protons vs. density for the four EOSs.
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indicative of the likely magnitudes of m	
p, the values of Tc in

Figure 9 are likely overestimated, particularly at large kF.
Moreover, medium polarization effects on V are much more
difficult to take into account for the p 1S0 gap than for the
neutron gap. Such effects are expected to reduce the size of the
gap and, to date, only two works have attempted to include
them (Niskanen & Sauls 1981; Ainsworth et al. 1991). The
estimates of Ainsworth et al. (1991) show that medium po-
larization reduces the 1S0 gap roughly by a factor of 3 in the
stellar core. It is important to notice that all of these calcu-
lations find that Tc vanishes for kF > 1:5 fm�1 and in most cases
for kF > 1 fm�1.

The so-called n 3P2 gap actually occurs in the 3P2–
3F2

channel, since the tensor interaction couples channels with
�L ¼ 2. This coupling with the 3F2 channel increases the gap
(Takatsuka 1972a). We present an illustrative sample of pub-
lished Tc curves in Figure 10. The large differences among
these curves points to the inherent difficulty in pinning down
the magnitude of this gap. The gap possibly extends to high
densities where m	

n is uncertain. In addition, the presence of a
small fraction of protons has generally been ignored except in
the work of Elgarøy et al. (1996b), who found a reduction of
the gap by a factor�3 when considering neutron-proton matter
in �-equilibrium.

A fundamental problem, emphasized recently by Baldo et al.
(1998), is that even the best modern models of the nucleon-
nucleon interaction (in vacuum) fail to reproduce the experi-
mental phase shift in the 3P2 channel at laboratory energies
above 300 MeV (corresponding to the pion-production thresh-
old). Translating this energy into an equivalent density implies
that the bare pairing interaction is not understood at densities
k1.7n0. Moreover, medium polarization effects have not been
included in any of the calculations displayed in Figure 10.

Fig. 8.—Neutron 1S0 pairing critical temperature Tc vs. neutron Fermi
momentum kF from the calculations of Ainsworth et al. (1989) ( labeled as
‘‘AWP II’’ and ‘‘AWP III’’: two slightly different results), Wambach et al.
(1993) (‘‘WAP’’), Chen, et al. (1993) (‘‘CCDK’’), Schulze et al. (1996)
(‘‘SCLBL’’), and Schwenk et al. (2003) (‘‘SFB’’). The dotted curve shows the
results of Schulze et al. (1996) in the case where medium polarization is not
included. Medium polarization effects reduce the 1S0 gap by about a factor of 3.
The vertical dotted line shows the location of the crust-core boundary.

Fig. 9.—Proton 1S0 pairing critical temperature Tc vs. proton Fermi mo-
mentum kF from the calculations of Takatsuka (1973) (labeled as ‘‘T’’),
Amundsen & Østgaard (1985a) (‘‘AO’’), Chao et al. (1972) (‘‘CCY_ms’’ and
‘‘CCY_ps’’: two slightly different results), Chen, et al. (1993) (‘‘CCDK’’),
Baldo et al. (1992) (‘‘BCLL’’), Elgarøy et al. (1996a) (‘‘EEHO’’), Niskanen
& Sauls (1981) (‘‘NS’’). Only the calculation of Niskanen & Sauls (1981)
include medium polarization. The shaded region shows the estimates of
Ainsworth et al. (1991) of the range of values in which Tc should lie due to
medium polarization. The vertical dotted line shows the location of the crust-
core boundary.

Fig. 10.—Neutron 3P2–
3F2 pairing critical temperature Tc vs. neutron Fermi

momentum kF. The three thin solid lines show the results of (1) Amundsen &
Østgaard (1985b), (2) Takatsuka (1972b), and (3) Elgarøy et al. (1996a). The
three dotted lines show results obtained assuming m	

n ¼ mn to illustrate the
strong reduction due to small m	

n: (0) Hoff berg et al. (1970), (1) Amundsen &
Østgaard (1985b), and (2) Takatsuka (1972b). The three thick solid lines, a, b,
and c, bracket the results of Baldo et al. (1998). The vertical dotted line shows
the location of the crust-core boundary.
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Estimates of such effects had shown that they should strongly
enhance the 3P2–

3F2 gap (Jackson et al. 1982), but the recent
results of Schwenk & Friman (2004) indicate that the medium-
induced spin-orbit interaction strongly suppresses this gap. For
this reason we will also consider the possibility that the n 3P2

gap is vanishingly small.
The J ¼ 2 with L ¼ 1 or 3 angular momentum and the

tensor coupling make the gap equation a system of coupled
integral equations, one for each value of the magnetic quantum
number mJ and the gap is not isotropic:� ¼ �(	; 
; T ), where
	 and 
 are the polar angles of the momentum k. Until recently
most works had looked for single-component solutions with
jmJ j ¼ 0, 1, or 2, but Zverev et al. (2003) have shown that
when considering multicomponent solutions there are at least
13 distinct phases: for seven of them�(	; 
; T ) vanishes on the
Fermi surface at some values of (	, 
), whereas the other six are
nodeless. Nodeless gaps are energetically favored over gaps
with nodes, but by a small amount (see, e.g., Amundsen &
Østgaard 1985b), and may become disfavored in the case of
very fast rotation of the star or in the presence of an ultrastrong
magnetic field (Muzikar et al. 1980). We will, in this work,
assume that the 3P2–

3F2 gaps are nodeless, since this max-
imizes the effect of pairing on cooling and seems energetically
favored, and more specifically assume its angular dependence
to be �(	; 
; T ) / (1þ 3 cos2	)1=2, corresponding to the pure
mJ ¼ 0 phase.

For both the isotropic 1S0 and the pure mJ ¼ 0 phase of the
3P2–

3F2 gap, the critical temperature Tc and the T ¼ 0 gap are
related by

kBTc � 0:57�0; ð15Þ

where �0 is �(T ¼ 0) for 1S0 and the angle averaged value of
�(	; 
; T ¼ 0)2 over the Fermi sphere for 3P2–

3F2 (Baldo et al.
1992). The temperature dependence of � for these two cases
has been calculated and fitted by simple analytical expressions
by Levenfish & Yakovlev (1994).

Once the energy gap � is given, the quasi- particle energy
spectrum near the vicinity of the Fermi surface can be ex-
pressed as

e(k) ¼ EF�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(k)2 þ � 2

p
for k < kF;

EFþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(k)2 þ � 2

p
for k > kF;

(
ð16Þ

where the quantity � is given by

� ¼ k 2

2m	 �
k2F
2m	

ffi kF

m	

� �
(k � kF) � vF(k � kF): ð17Þ

The effect of this change in the quasi-particle spectrum is
discussed below in xx 3.4 and 3.5.

Finally, it is instructive to consider Tc for the p
1S0 gap and

the n 3P2–
3F2 gap in terms of density and also in terms of the

volume in the stellar core, once an EOS and a stellar mass has
been chosen. (This is presented for a few cases in Figures 20
and 21 in a 1.4M� star built with the APR EOS.) The p 1S0 gap
vanishes or is very small in the inner core for most calculations,
whereas the n 3P2–

3F2 gap is more likely to reach the stellar
center with high values.

3.4. The Specific Heat

The total specific heat (per unit volume) at constant volume,
cv , receives contributions from all of the constituents inside the
star. In the homogeneous phase above nuclear density,

cv ¼
X

i¼e�; ��;n; p

ci; v: ð18Þ

For a given species of unpaired spin 1
2
fermions, cv is given by

cv ¼ 2

Z
d 3k

(2�)3
(e� �)

@f

@T

� T 2

Z
d 3k

(2�)3
@f

@T

� �2
2

Z
d 3k

(2�)3
@f

@�

� ��1

; ð19Þ

where e(k) is the single-particle spectrum, f is the Fermi-Dirac
distribution function, and � and T are the chemical potential
and temperature, respectively. Under the degenerate conditions
of interest here, TT�, the contribution from the second term
above can be safely neglected with the result

ci; v ¼ Ni(0)
�2

3
k 2
BT ¼ m	

i ni

p2
i;F

�2k 2
BT : ð20Þ

In writing the rightmost relation above, the density of states
at the Fermi surface Ni(0) has been expressed in terms of the
Landau effective mass m	

i (see eq. [8]) through the relations

Ni(0) ¼
3ni

kFvF
; vF ¼

@e

@k

����
����
kF

; ð21Þ

where vF denotes the velocity at the Fermi surface.
The effect of pairing interactions on the specific heat depends

on the disposition of T with respect to Tc . When T reaches Tc,
there is a sharp increase in the specific heat due to the large
fluctuations characteristic of a second-order phase transition.
Subsequently, when TTTc, a Boltzmann-like suppression
occurs due to the presence of a gap in the energy spectrum,
equation (16). In practice, these effects are taken into account by
using control functions that would multiply the unpaired values
of cv ; these functions have been calculated for nucleon pairing
in both the 1S0 and 3P2 channels by Levenfish & Yakovlev
(1994).
The cumulative contributions to cv are presented in Figure 11.

Once a nucleonic component becomes paired, its contribution
will ultimately be suppressed when TTTc, but in all cases the
lepton contribution will always remain. For different temper-
atures the various contributions all scale as T in the absence
of pairing and their relative importance hence remains the same
as illustrated in this figure.
The suppression by pairing is illustrated in Figure 12 for the

case of neutrons at various temperatures beginning with 109 K
as in Figure 11. The results in this figure, in conjunction with
those in Figure 13, show that beyond the initial strong en-
hancement at T PTc, cv will be almost completely suppressed
only when T < 0:1 to 0:2 ; Tc everywhere within the core.
In the crustal region, contributions to the specific heat arise

from the neutron gas in the inner crust, the degenerate electron
gas, and the nuclear lattice. The contribution of the neutron gas
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is strongly suppressed by the n 1S0 gap. The specific heat of the
crust is smaller than that of the leptons in the core, and is hence
not very important, but it is included in all our calculations.

3.5. Neutrino Emissivvities

Until the time that photon emission takes over the cooling of
the star, the thermal energy of the star is lost from both the
crustal layers and the core of the star chiefly by neutrino emis-
sion. The various neutrino emission processes that are included
in our study are summarized below.

In the crust of the star, we include neutrino pair emission
from plasmons according to Haft et al. (1994), or, from the prac-
tically equivalent results of Itoh et al. (1996), and from electron-
ion bremsstrahlung according to Kaminker et al. (1999). These
two processes are not affected by nucleon pairing. We also
consider neutrino pair emission from neutron-neutron brems-
strahlung and its suppression by neutron pairing. The treatment
of pairing suppressions is outlined below in the context of
similar suppressions in the core. In addition, we consider neu-
trino pair emissions from the formation and breaking of n 1S0
Cooper pairs, also described further below. In the presence
of a magnetic field, synchrotron neutrino pair emission from

Fig. 11.—Cumulative specific heats of e, �, p, and n vs. stellar volume in
the core of a 1.4 M� star built using the APR EOS, at temperature T ¼ 109 K.
Nucleons are assumed to be unpaired.

Fig. 12.—Specific heat of neutrons in the core of a 1.4 M� star built using
the APR EOS, at six different temperatures, from 0.99 down to 0.1 times 109 K
illustrating the effects of pairing. No gap is present for results shown by the
dotted lines. The n 3P2 gap ‘‘a’’ is assumed for solid curves. This gap has a
maximum Tc of 1 ; 109 K at � ¼ 3:61 ; 1014 g cm�3. the solid curves show
the jump of cv by a factor of 2.188 (see Fig. 13) at the two zones where T ¼ Tc
and its progressive suppression when TTTc in the layers in between.

Fig. 13.—Control functions for pairing effects in 1S0 (for neutrons and /or
protons) and 3P2 (neutrons) channels. The top panel shows the function rel-
evant for the specific heat (x 3.4), the central panel that for the neutron branch
of the modified Urca process with either p 1S0 or n

3P2 pairing (x 3.5) and the
bottom panel is for the PBF process (x 3.5).

COOLING OF NEUTRON STARS 633No. 2, 2004



electrons also occurs (Bezchastnov et al. 1997), but contri-
butions from this process are negligible. Photo-neutrino emis-
sion and neutrino pairs from eþe� pair annihilation are effective
only at low density and high temperature and are not relevant
here.

In the core of the star, we include (1) the modified Urca
processes and the similar nucleon bremsstrahlung processes
with their corresponding suppressions by nucleon pairing, and
(2) neutrino pair emission from the formation and breaking of
Cooper pairs. The emissivity from the neutron branch of the
modified Urca process

nþ n0 ! pþ n0 þ l þ �̄l;

pþ n0 þ l ! nþ n0 þ �l; ð22Þ

where l is either an electron or a muon and �l or �̄l is the
associated neutrino or antineutrino, is taken from Friman &
Maxwell (1979) and Yakovlev & Levenfish (1995). Explicitly,

qMUrcan
� ¼ 8:55 ; 1021

m	
n

mn

� �3 m	
p

mp

� �

;
kFe

kF0

� �
þ kF�

kF0

� �� �
�n�n

T

109 K

� �8

; ð23Þ

where kF0 ¼ 1:68 fm�1 is a fiducial normalization factor. The
emissivity from the proton branch of the modified Urca process

nþ p0 ! pþ p0 þ l þ �̄l;

pþ p0 þ l ! nþ p0 þ �l; ð24Þ

is taken from Yakovlev & Levenfish (1995) in the form

qMUrcap
� ¼ 8:55 ; 1021

m	
n

mn

� �
m	

p

mp

� �3

;
kFe

kF0

� �
1� kFe

4kFp

� �
þ kF�

kF0

� �
1� kFe

4kFp

� �� �

<�p�p

T

109 K

� �8

: ð25Þ

In equations (23) and (25), the coefficients �n, �p, �n, and �p

are of order unity and describe corrections due to the mo-
mentum transfer dependence of the matrix element in the Born
approximation (�n; p) and due to non-Born corrections and
strong interaction effects beyond the one pion exchange plus
Landau coefficients (�n; p) (Friman &Maxwell 1979; Yakovlev
& Levenfish 1995). To be specific, following Yakovlev &
Levenfish (1995) we use

�n ¼ �p ¼ 1:76� 0:63
kF0

kFn

� �2

;

�n ¼ �p ¼ 0:68: ð26Þ

In addition to the above two charged current modified Urca
processes, three neutral current bremsstrahlung processes

nþ n0 ! nþ n0 þ �l þ �̄l;

nþ p0 ! nþ p0 þ �l þ �̄l;

pþ p0 ! pþ p0 þ �l þ �̄l; ð27Þ

where the pairs �l�̄l can be an e, �, or  neutrino pair, also
contribute. Their emissivities are (Friman & Maxwell 1979;
Yakovlev & Levenfish 1995)
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and

qBrempp
� ¼ 3 ; 7:4 ; 1019

m	
p

mp

� �4

;
kFp

kF0

� �
�pp�pp

T

109 K

� �8

; ð30Þ

where the � - and �-values are corrections of order unity for
which we use (Yakovlev & Levenfish 1995)

�nn ¼ 0:59; �nn ¼ 0:56;

�np ¼ 1:06; �np ¼ 0:66;

�pp ¼ 0:11; �pp ¼ 0:70:

It is important to note that the emissivities of the modified Urca
and bremsstrahlung processes have not been accurately calcu-
lated, particularly at the highest densities reached in the cen-
ter of the stars we are considering. Voskresensky & Senatorov
(1986) have proposed that when the density approaches the
critical density for the onset of charged pion condensation,
the softening of the pion mode induces a strong increase in the
above emissivities. Since this approach assumes the occur-
rence of charged pion condensation, we will not consider it
here as part of the minimal scenario. Nevertheless, less dra-
matic medium effects are certainly at work. Recently, Hanhart
et al. (2001), Van Dalen et al. (2003), and Schwenk et al.
(2004) have revisited the bremsstrahlung processes, including
hadronic polarization up to the two loop level, and found a
reduction of the rates by a factor of about 4 at saturation
density. In view of this, we will at first take equations (23),
(25), (28), (29), and (30), with the quoted � - and �-values
at face value, but will, in addition, consider the effects of
‘‘cranking up’’ or ‘‘down’’ all modified Urca and bremsstrah-
lung emissivities by a significant factor in x 5.6.
Once the temperature T reaches the pairing critical temper-

ature Tc of either the neutrons or protons in a given layer of
the star, the corresponding neutrino emission process becomes
suppressed by the development of an energy gap �(T ) in the
single particle excitation spectrum (see eq. [16]). Similarly
to what happens for the specific heat, the neutrino emissiv-
ities are suppressed by factors that vary approximately like
exp ½��(T )=kBT �. In our calculations, we employ the accu-
rate calculations of these various control functions includ-
ing pre-exponential factors (see Yakovlev & Levenfish 1995
for details) for the two modified Urca processes and the three
bremsstrahlung processes, in the presence of n 1S0 or 3P2
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pairing and/or p 1S0 pairing. Two representative examples, for
the neutron branch of the modified Urca process, are plotted in
the central panel of Figure 13: for this specific case neutron
pairing has a much stronger effect than proton pairing since
three neutrons, but only one proton, participate in the reaction.

As the temperature begins to approach Tc, new channels
for neutrino emission through the continuous formation and
breaking of Cooper pairs (Flowers et al. 1976; Voskresensky &
Senatorov 1987) begin to become operative. We take emis-
sivities from these ‘‘Pair Breaking and Formation’’ or PBF
processes as (Yakovlev & Levenfish 1995)

qp 1S0
� ¼ 2:6 ; 1021
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n0
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for p 1S0 pairing,
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� ¼ 1:0 ; 1022
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for n1 S0 pairing, and
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for n 3P2 pairing, assuming again that pairing in this last case
occurs in the mJ ¼ 0 phase. The control functions F̃1S0 (T=Tc)
and F̃3P2

(T=Tc) are shown in the lower panel of Figure 13
and give the dependence on Tc. These PBF processes can be
regarded as nn or pp bremsstrahlung processes with a strong
correlation in the initial state in the case of the breaking of a
Cooper pair, or in the final state in the case of the formation
of a Cooper pair, and exemplify an extreme case of medium
correction to the bremsstrahlung processes. Their efficiencies
are similar to those of the bremsstrahlung processes of equa-
tions (28), (29), and (30). However, they are less sensitive to
the values of the nucleon effective masses because they are
proportional to m	 instead of m	4. Furthermore, the T 7 de-
pendence of the PBF processes, compared to the T 8 dependence
of the bremsstrahlung processes, allows the PBF processes to
eventually dominate the total neutrino luminosity. The precise
value of Tc for the neutron and/or proton pairing determines
when this dominance occurs, as will become apparent in x 5.4.
The form of the control functions (Fig. 13) shows clearly that
the PBF process turns on when T reaches Tc, increases its
efficiency as T decreases, and becomes exponentially sup-
pressed when the gap approaches its maximum size �(0)
when T P 0:2Tc.

4. THE NEUTRON STAR ENVELOPE

It is customary to separate cooling models into the interior
and the envelope, the latter being the upper layer in which a
strong temperature gradient exists, whereas the interior desig-

nates everything inside which becomes isothermal within a few
years after the birth of the neutron star.

Precisely, the envelope can be defined as the layer extending
from the photosphere, the uppermost layer where the emitted
spectrum is determined, down to a boundary density �b such
that the luminosity in the envelope is equal to the total surface
luminosity of the star, L(r) ¼ L(R). The thermal relaxation
timescale of the envelope is much shorter than the cooling
timescale of the interior so that it can be treated separately as a
layer constantly in a stationary state. Equation (B2) therefore
implies that the neutrino emission is negligible in the envelope.
Since the thickness of the envelope is of the order 100 meters
or less, the envelope can be treated in the plane parallel ap-
proximation. Within these approximations, integration of the
heat transport and hydrostatic equilibrium equations gives a
relationship between the temperature at the bottom of the en-
velope, Tb, and the flux F going through it, or, equivalently, a
relationship between the effective temperature Te and F: F �
�SBT

4
e . This relationship is commonly termed as the ‘‘Te-Tb

relationship.’’
Detailed numerical calculations along this line were presented

by Gundmundsson et al. 1982, 1983) and an analytical approx-
imation to these results was provided by Hernquist & Applegate
(1984), who assumed that the chemical composition of matter
corresponds to that in beta-equilibrium. Gundmundsson et al.
(1982) found a simple analytical relationship

Te ¼ 0:87 ; 106(gs14)
1=4(Tb=10

8 K)0:55; ð34Þ

where gs14 is surface gravity gs measured in 1014 cgs units. (As
a rule of thumb, this gives Te / T1=2

b
and Te � 106 K when

Tb � 108 K.) This equation illustrates the fact that the depen-
dence of the envelope structure on M and R is entirely con-
tained in gs and that Te=g

1=4
s14 is independent of M and R. This

allows us to use ‘‘generic’’ envelope models and glue them to
the upper layer of any stellar model.

4.1. The Sensitivvity Strip: Effects of Chemical Composition
and Maggnetic Fields

The most important finding of Gundmundsson et al. (1982,
1983) is that the Te-Tb relationship is mostly determined by the
value of the thermal conductivity k in a thin layer in which ions
are in the liquid phase and where k is dominated by electron
conduction. This layer was thus called the ‘‘sensitivity strip’’ in
the �-T plane. The sensitivity strip is located at lower densities
for lower temperatures and spans about one and a half orders
of magnitude in density depth.

The presence of light elements (e.g., H, He, C, or O) in the
envelope can significantly affect the Te-Tb relationship if the
sensitivity strip is populated by these elements (Chabrier et al.
1997). Lighter elements will burn into heavier ones in the
thermonuclear regime at high enough T and in the pycnonu-
clear regime at high enough �, but conditions in the envelope
are usually such that H may be present up to densities �107 g
cm�3, He up to �109 g cm�3 and C up to �1010 g cm�3. The
critical temperatures for thermonuclear burning and densities
for pycnonuclear burning are well within the sensitivity strip
and one can thus expect a strong effect of light element pres-
ence on the Tb-Te relationship. This problem was studied in
detail by Chabrier et al. (1997), who performed numerical
calculations of envelope structure with a pure iron plus cata-
lyzed matter chemical composition and with various amounts
of light elements. These authors found that the presence of
light elements can significantly raise the surface temperature Ts
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for a given Tb if they are present in sufficient amounts. The
larger the amount of light elements present, the higher the
temperature at which their effect will be felt due to the tem-
perature dependence of the location of the sensitivity strip. But
at very high temperatures, the light elements have practically
no effect because they cannot penetrate deep enough. The
resulting T1

e -Tb relationships for various amounts of light
elements are shown in Figure 14.

The presence of a magnetic field can also affect the structure
of the envelope (Greenstein & Hartke 1983). The effect is to
enhance heat transport along the field and inhibit transport
along directions perpendicular to the field. This results in a
nonuniform surface temperature distribution, with a very cold
region in which the field is almost tangential to the surface as,
e.g., around the magnetic equator for a dipolar field, and a
corresponding modification of the T1

e -Tb relationship (Page
1995). However, the overall effect is not very large but is
somewhat sensitive to the presence of strongly nondipolar
surface fields (Page & Sarmiento 1996). For a field of the order
of 1011–1012 G, one obtains a slight reduction of T1

e compared
to the field-free case, whereas for a higher field T1

e begins
to be enhanced. The enhancement of T1

e is, however, much
smaller than what is obtained by the presence of light elements
(Potekhin et al. 2003). Moreover, there are possible insta-
bilities due to the nonuniformity of the temperature (Urpin
2004) that have not yet been taken into account in magnetized
envelope calculations and may somewhat affect these results,
but we do not expect significant changes. Hence, the important
case for our purpose would be the maximal reduction of T1

e

obtained for a pure heavy element envelope at B ¼ 1011 G,
which is illustrated in Figure 14.

One must finally mention that our calculations are based on
the assumption of spherical symmetry in the interior and that
the only asymmetries considered, due to the presence of a
magnetic field, are within the envelope and hence included
into this outer boundary condition. However, this assumption
is questionable in some magnetic field configurations where
the field is confined to the stellar crust. As shown by Geppert

et al. (2004), the crust is highly nonisothermal in such cases
and this can affect the thermal evolution because the resulting
photon luminosity is lowered compared to the isothermal crust
case.

5. A GENERAL STUDY OF NEUTRON STAR COOLING
WITHIN THE ‘‘MINIMAL SCENARIO’’

In this section, we will consider the individual effects of
the chief physical ingredients that enter into the modeling of
the cooling of an isolated neutron star. Our purpose here is
twofold:

1. to determine the sensitivity of results to uncertainties in
input physics in order to obtain a broad range of predictions
that, we hope, encompasses all possible variations within the
minimal cooling scenario;
2. to provide us with the means to identify the types of

models that will result in the coldest possible neutron stars
within this paradigm.

Theoretical refutations of the critical physical ingredients
needed for these coldest models could allow us to raise the
temperature predictions and possibly provide more, or stron-
ger, evidence for ‘‘enhanced cooling.’’ The task of identifying
the minimally cooling coldest star will be taken up in x 6. An
object colder than such a star could be considered as evidence
for the presence of physics beyond the minimal paradigm.
All results in this section use stars built using the APR EOS,

except for x 5.8, where the effects of the EOS are studied for a
star of 1.4 M�, and for x 5.7, where effects of the stellar mass
are studied.

5.1. Neutrino vversus Photon Coolingg Eras
and the Effect of the Envvelope

The basic features of the thermal evolution of a neutron star
can be easily understood by considering the global thermal en-
ergy balance of the star

dEth

dt
� CV

dT

dt
¼ �L�� L�; ð35Þ

where Eth is the total thermal energy content of the star and
CV its total specific heat. This equation is accurate when the
star is isothermal, which is the case for ages larger than a few
decades. Since the dominant neutrino processes all have a T 8

temperature dependence, the neutrino luminosity can be ex-
pressed as

L� ¼ NT8: ð36Þ

Furthermore, most of the specific heat comes from the de-
generate fermions in the core for which

CV ¼ CT ð37Þ

in the absence of pairing interactions. The photon luminosity
can be written as

L� � 4�R2�SBT
4
e ¼ ST 2þ4� ; ð38Þ

where Te, the effective temperature, is converted into the in-
ternal temperature T through an envelope model with a power-
law dependence: Te / T 0:5þ� with �T1 (see eq. [34] and

Fig. 14.—Relationship between the effective temperature T1
e and the in-

terior temperature Tb at the bottom of the envelope assuming various amounts
of light elements parametrized by � � g2

s14�ML=M (�ML is the mass in light
elements in the envelope, gs14 the surface gravity in units of 1014 cm s�1, and
M is the star’s mass), in the absence of a magnetic field (Potekhin et al. 1997).
Also shown are the T1

e -Tb relationships for an envelope of heavy elements
with and without the presence of a dipolar field of strength of 1011 G following
Potekhin & Yakovlev (2001).
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Fig. 14). Equation (35) is easily integrated in the dominantly
neutrino and photon cooling eras.

1. The neutrino cooling era (L�3L�).—In this case,

t ¼ C

6N

1

T 6
� 1

T 6
0

� �
; ð39Þ

where T0 is the initial temperature at time t0 � 0. For TTT0 ,
this gives

T ¼ C

6N

� �1=6

t�1=6 and Te�/ t�1=12: ð40Þ

The very small exponent in the Te evolution during neutrino
cooling is a direct consequence of the strong temperature de-
pendence of L� .

2. The photon cooling era (L� 3L�).—In this case,

t ¼ t1 þ
C

4�S

1

T4�
� 1

T4�
1

� �
; ð41Þ

where T1 is the temperature at time t1. When t3 t1 and
TTT1, we have

T ¼ C

4�S

� �1=4�

t�1=4� and Te�/ t�1=8� : ð42Þ

Since �T1, we see that, during the photon cooing era, the
evolution is very sensitive to the nature of the envelope, i.e., �
and S, and to changes in the specific heat, as induced by nu-
cleon pairing.

Figure 15 shows the evolution of T1
e , T1

center , L
1
� , and L1�

in a simplified model in which no pairing has been included,
but two extreme cases of envelope chemical composition, iron-
like elements and light elements, are considered. The L1� curves
of panel C are analogous to the T1

e curves of panel A, since
L1� ¼ 4�R2

1�SBT
14
e . For both envelope models the T1

e versus t
and T1

center versus t curves follow power laws (i.e., straight lines
on a log-log plot) in both the neutrino cooling and photon
cooling eras. For t P104 yr, both models have the same T1

center

because the envelopes do not contribute to energy loss, neither
through neutrino emission (due to their low density and very
small mass) nor through photon emission (since L1� TL1� ). At
these times, the model with a light element envelope, however,
has a higher T1

e , and thus L1� , due to the more efficient trans-
port of heat in this envelope, and will consequently shift from
neutrino to photon cooling at a much earlier time. This trend
will not be modified by the inclusion of more realistic physics.
During the neutrino cooling era, T1

e simply follows the evo-
lution of the interior temperature and models with light element
envelopes appear hotter to an external observer than models
with an iron-like envelope, but they enter the photon cooling era
sooner and subsequently cool much faster. Neutron stars with
lesser amounts of light elements in the envelope will cool in-
termediately between the extremes of light-element and heavy-
element dominated atmospheres, as displayed in Figure 16.

5.2. Time Evvolvvingg Envvelopes

We consider here the possibility of time evolution of the
chemical composition of the envelope. We assume that the

mass of the envelope consisting of light elements decays with
time as

�ML(t) ¼ e�t=�ML(0); ð43Þ

where �ML(0) is the initial mass in light elements. This decay
could be due to the pulsar mechanism, which injects light ele-
ments into the magnetosphere, or to nuclear reactions, which
convert these elements into heavy ones (Chang & Bildsten
2003, 2004). One can expect from this that the star will shift
from a cooling trajectory corresponding to a light element en-
velope toward a trajectory with heavy elements envelope as
�ML decreases. Figure 17 illustrates this evolution and shows
that this shift happens in a short time in the case of an expo-
nential mass reduction. This fast evolution is in agreement with
the Te-Tb relationships shown in Figure 14, where one sees Te
changing from the light element case to the heavy element one

Fig. 15.—Neutrino and photon cooling eras for two models of non-
magnetized envelopes formed by heavy iron-like elements (labeled ‘‘H’’) and
a maximum amount of light elements (labeled ‘‘L’’). The (a) effective tem-
perature, (b) central temperature, and (c) neutrino (solid lines) and photon
(dotted lines) luminosities, all redshifted to infinity, are shown as a function of
time. Pairing effects are not included in these calculations.
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within a small range of variation of �ML, at a value of Tb
depending strongly on �ML.

5.3. Basic Effects of Pairingg

In this subsection, we briefly illustrate the first two signif-
icant effects of pairing, suppressions of q� and cv. The third
effect, neutrino emission through the PBF process, is studied in
the next section. The solid lines in Figure 18 compare thermal
evolutions of the same neutron star with and without nucleon
pairing (the gaps have been chosen so as to maximize effects of
suppression). The results are very natural: during the neutrino
cooling era the paired star cools more slowly than the unpaired
one since its neutrino luminosity L� is severely suppressed,
whereas during the photon cooling era it cools faster due to its
much reduced specific heat. During the neutrino cooling era,
the suppression of cv is present, but its effect is not so dramatic
for three reasons:

1. the lepton contribution to CV is not suppressed, whereas
L� is reduced by many orders of magnitude as only the very

inefficient electron-ion bremsstrahlung process in the crust is
not suppressed;
2. when T is not very much less than Tc, as is partially the

case in this example during the neutrino cooling era, the sup-
pression of cv is preceded by a phase of enhancement (see, e.g.,
Fig. 12); and
3. the cooling curve has a relatively small slope when

T � T0. From equation (39), and as represented schematically
in Figure 19, one sees that the shift to the T / t�1=6 power law
occurs at a time t0�� determined by the ratio C=6N . This ratio is
increased by pairing and results in a delayed shift, but this
amounts to a horizontal translation of the cooling curve and

Fig. 16.—Effect on the cooling of various amounts�ML (in solar masses) of
light elements in the envelope. The two dashed curves, ‘‘H’’ and ‘‘L,’’ are the
same as in Fig. 15. Pairing effects are not included in these calculations.

Fig. 17.—Transition of cooling trajectories between a model with a heavy
element envelope (dotted curve labeled ‘‘H’’ ) and a light element envelope of
maximum mass (dotted curve labeled ‘‘L’’ ). Solid curves show evolution of
models with ‘‘decaying’’ envelopes (see eq. [43]) with various decay times 
as indicated. Also indicated are masses of the light element envelopes at the
moment the star begins its shift toward the heavy element envelope trajectory.

Fig. 18.—Comparison of the cooling of a 1.4M� star, built using the EOS of
APR, without and with nucleon pairing. In the model with pairing neutrino
emission by the PBF process has been either artificially turned off (solid line) or
allowed (dotted line). Neutron 1S0 pairing is from AWP, 3P2 pairing from our
case ‘‘c’’ and p 1S0 pairing from AO, as labeled in Figs. 8, 10, and 9, respec-
tively. The envelope is assumed to be composed of heavy elements.

Fig. 19.—Schematic representation of the power-law cooling behaviors and
the effect of pairing. The time t0�� denotes when the central temperature falls to
a value small enough that T / t�1=6 becomes valid. The time T��� denotes the
transition from neutrino to photon cooling eras.

PAGE ET AL.638 Vol. 155



hence shows no spectacular effect. In contradistinction, during
the photon cooling era, the shift in the transition time t��� from
neutrino to photon cooling (this occurs earlier with pairing than
without pairing due to the smaller value of C=4�S in eq. [42])
acts on a power-law evolution with large slope.

However, the neutrino emission by the PBF process (artifi-
cially turned off in this example) alters significantly these
simple results as can be seen from the dotted line in Figure 18
and is described below.

5.4. The PBF Neutrino Process

We consider here in detail the effect of the PBF neutrino
process. Given the strong T 7F(T=�) temperature dependence
and the density dependence of�, the overall effect can only be
assessed by complete calculations presented here and in x 7.

As a first step, we consider separately the temperature de-
pendence of the luminosities due to the n 3P2 and p 1S0 gaps in
the core of a 1.4M� star built with the EOS of APR. Results for
four different n3 P2 gaps are shown in Figure 20. The lower
panel shows the Tc profiles of these four gaps as a function of
the volume of the core (left-hand scale) and the density (right-
hand scale). A vertical line in this panel, which corresponds
to an isothermal core, allows one to visualize the amount of
the core’s volume that is paired. The upper panel shows the
corresponding PBF neutrino luminosity LPBF� . Also plotted
are the surface photon luminosity corresponding to an iron-
like envelope (dotted line) and the total neutrino luminosity
from the modified Urca and bremsstrahlung processes without
pairing suppression. Notice that when T k109 K, the star is
usually not isothermal: the crust is warmer than the core and
thus L� is larger than indicated in this figure.

When T decreases, LPBF� grows very sharply for each gap
when T reaches the maximum Tc of the gap reached in the core
(PBF neutrino emission turns on) and then decreases with a
T dependence that is between a T 8 and a T 7 power law. This
results from the overall T 7F(T=�) temperature dependence of
the PBF neutrino emissivity combined with the density de-
pendence of Tc, which determines how much of the core, at
this given T, is contributing to LPBF� . Once T is much below
the minimum value of Tc reached in the core, LPBF� becomes
exponentially suppressed. In the cases of gaps ‘‘b’’ and ‘‘c,’’
this suppression appears at TT109 K, for gap ‘‘a’’ when
TT2 ; 108 K, whereas for the gaps ‘‘T72’’ this suppression
does not appear since Tc reaches very low values and for any T
there is always a significant volume of the core where T � Tc.

When T P108 K, L� dominates over L� so that the important
range of T to consider is 108–109 K and in this range the figure
shows clearly that the relatively small n 3P2 gaps as ‘‘T73’’ and
‘‘a’’ generate a LPBF� that is higher, by about 1 order of mag-
nitude, than the combined L� that the modified Urca and
bremsstrahlung processes would produce when no pairing is
present (dashed line in the figure). The modified Urca and
bremsstrahlung processes are of course strongly suppressed in
the presence of pairing, but these results show that, compared
to the no pairing case, pairing can actually increase the total
neutrino luminosity through the PBF neutrino emission if the
gaps have the appropriate size.

Very similar results are obtained when considering the PBF
neutrino emission due to the p 1S0 gaps, as shown in Figure 21.
The three differences with respect to the n 3P2 case are, first,
that no calculation of the p 1S0 gap reaches a Tc as high as our
case ‘‘c’’ for the n 3P2; second, all p

1S0 gaps vanish in the inner
part of the core, which implies that the suppression of LPBF� at

low T does not show up; and third, the volume of the core in the
superconducting state is generally smaller than the volume in
the n superfluid state, resulting in lower values of LPBF� for p
than for n.

5.5. Comparison of Various Neutrino Luminosities

Having compared, in the previous subsection, the neutrino
luminosities from PBF assuming an isothermal interior, we
now proceed to analyze them, together with other processes, in
realistic cooling calculations that take into account the exact
temperature profile within the star. The results are shown in
Figure 22. We use a 1.4 M� star built with the EOS of APR,
and we fix the n and p 1S0 gaps considering that the major
uncertainty in the neutrino luminosity is due to uncertainty in
the size of the n 3P2 gap (see the results of x 5.4). We consider
the three cases ‘‘a,’’ ‘‘b,’’ and ‘‘c’’ for the magnitude of the
n 3P2 gap.

The three panels of Figure 22 show clearly that at very early
times the cooling is driven by the modified Urca and nucleon
bremsstrahlung processes, but that once pairing occurs the
neutrino emission from the PBF process takes over because of
its efficiency and because the other processes are suppressed.

At ages relevant for the presently available data, tk102 yr,
we find in all cases that the PBF neutrinos are the main cooling
agent, until photon emission takes over at t �105 yr. There is a
competition between the neutrino emission from n 3P2 and
p 1S0 pairing: the smallest gap drives the cooling between
102 and 105 yr. With the assumed p 1S0 gap from AO, we see

Fig. 20.—Upper panel: neutrino luminosities vs. temperature from the PBF
process for four different n 3P2 gaps labeled as in Fig. 10. Lower panel: Tc for
the four neutron 3P2 gaps vs. density and enclosed volume.
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that in case ‘‘a’’ the n3 P2 gap drives the cooling (Fig. 22, left),
whereas in case ‘‘b’’ or ‘‘c’’ (Fig. 22, center and right, re-
spectively) the proton pairing drives the cooling.

This is in agreement with the results of Figure 20, which
show that the case ‘‘a’’ n 3P2 gap is the most efficient and that
even smaller gaps, as in T72, do not result in a significant
enhancement of the PBF neutrino luminosity or do it too late,
i.e., at a time when photon emission dominates the cooling.
Comparison of Figure 20 with Figure 21 shows that in the

case of a larger n 3P2 gap, one can expect that the p 1S0 PBF
neutrinos will dominate the cooling, in agreement with our
findings of this subsection. Finally, we compare cooling tra-
jectories with our three n 3P2 gaps and a vanishing gap in
Figure 23 explicitly confirming that n 3P2 gaps with Tc of the
order of 109 K are the most efficient gaps with regard to neu-
trino cooling through the PBF process.

5.6. More Modified Urca Coolingg

The modified Urca and bremsstrahlung processes all involve
four nucleons and are processes in which energy-momentum
transfer occurs via strong interactions in the medium. The as-
sociated emissivities are sensitive to one’s assumptions about
in-medium strong interactions and their efficiencies are difficult
to assess with certainty. Given this, we consider it important to
study the effect of this uncertainty in a simple, but drastic way:
we simply multiply the qMUrca

� and qBrem� emissivities by a
constant factor F, taking F to be 1/10, 10, or 100. A factor 1/10
or 10 could be acceptable, whereas a factor of 100 is probably
exaggerated.
The results of Figures 20 and 21 showed that in the presence

of n 3P2 and p 1S0 pairing, most reasonable gaps produce a
neutrino emission by the PBF process that is much more in-
tense than the modified Urca and bremsstrahlung in the ab-
sence of pairing by at least 1 order of magnitude in the
important temperature range T �108 109 K. Thus, in a real-
istic calculation a factor F ¼ 10 is not expected to lead to a
significant change in the cooling. This is confirmed by our
results shown in Figure 24. The models with no pairing clearly
show enhanced cooling when F ¼ 10 or 100 and reduce
cooling when F ¼ 1=10, whereas when pairing is included the
models with F ¼ 10 and 1/10 are practically indistinguishable
from the unenhanced case and only the, probably unrealistic,
case F ¼ 100 leads to a faster cooling.
These results are important and fortunate, since they show

that the uncertainty in the actual efficiency of the modified Urca
rate has no significant effect on the predictions of the minimal

Fig. 21.—Upper panel: neutrino luminosities vs. temperature from the PBF
process for three different p 1S0 gaps labeled as in Fig. 8. Lower panel: critical
temperature Tc for the 3 p 1S0 gaps vs. density and enclosed volume.

Fig. 22.—Comparison of luminosities from various processes during three
realistic cooling histories: photon (‘‘�’’), all �-processes (‘‘Total �’’), modified
Urca and nucleon bremsstrahlung (‘‘MU-Br. �’’), and PBF (‘‘PBF �’’) from
n 3P2 and p 1S0 pairing marked by ‘‘n’’ and ‘‘p,’’ respectively. PBF neutrinos
from the n 1S0 gap are not shown explicitly, since their contribution is always
dominated by other processes, but they are included in the total � luminosity.
In all three cases, the p 1S0 gap is from AO, the n 1S0 gap from AWP, whereas
the n 3P2 gap is our model ‘‘a’’ (left), ‘‘b’’ (center), and ‘‘c’’ (right).

Fig. 23.—Comparison of cooling trajectories with vanishing n 3P2 gaps,
labeled ‘‘0,’’ and our three model gaps ‘‘a,’’ ‘‘b,’’ and ‘‘c’’ (see Fig. 10). The
n 1S0 gap is from AWPIII and the p 1S0 gap from AO (see Figs. 8 and 9). Results
are for a 1.4M� star built using the EOS of APRwith a heavy element envelope.
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scenario when pairing, and the corresponding neutrino emis-
sion from the PBF process, is included in a realistic way.

5.7. Effects of Neutron Star Mass

In the case that neutrino cooling occurs only through the
modified Urca and bremsstrahlung processes, as required by
the tenets of the minimal cooling scenario, one can expect
that the cooling curves in the neutrino cooling era will show
practically no variation with neutron star mass, because there
are no energy or density thresholds for these processes. This
situation will change drastically for the case in which en-
hanced cooling through direct Urca processes becomes pos-
sible either through nucleons or due to the presence of exotica.

Figure 25 confirms that in the absence of pairing, there is
almost no mass effect, both during the neutrino and the photon
cooling era. Similarly, when n, but not p, pairing is included,
the mass dependence is also small, though larger than with no
pairing at all. When the p gap is included, the main variation
with mass occurs in the photon cooling era in which more
massive stars cool more slowly. This is a direct consequence
of the lesser suppression of the proton specific heat with in-
creasing mass, since the p 1S0 gap vanishes at high density and
there is an increasingly larger unpaired region when M in-
creases [CV ( p) is larger for larger M ]. The chosen n 3P2 gap
reaches the center of the star in all cases, and thus CV (n) is
strongly reduced for all masses, which explains the small mass
dependence when only n gaps are taken into account. In the
case that the n 3P2 gap would also vanish at high density, we
would obtain an additional mass dependence.

5.8. Effects of the Equation of State

In exploring the high density EOS, one can expect three
sources of effects:

1. general relativistic effects due to change in the star’s
compactness;

2. differences in the n and p effective masses; and
3. differences in the volume of the star in the various paired

states.

Figure 26 shows results for the four EOSs selected in x 3.1.
When no pairing is included, there is little variation with the
EOS, and slight variations exist when pairing is considered.
The reasons are essentially the same as those discussed in
conjunction with the stellar mass (see the previous subsection)
and are due to the density dependence of the p 1S0 gap and, to
a much lesser degree, that of the n 3P2 gap. The very small
differences in the unpaired models simply reflect that the four
chosen EOSs are rather similar because of constraints imposed
by the minimal cooling scenario: the differences in the stars’
compactness and nucleon effective masses are very small.

6. MINIMALLY COOLING COLDEST NEUTRON STARS

One of the main goals in this work is to determine how cold
an observed neutron star should become to be incompatible
with the predictions of the minimal scenario. Armed with the
results of the previous section, we can now identify the fastest
cooling models within this scenario.

6.1. Neutrino Coolingg Era

During the neutrino cooling era, Figure 23 shows that the
lowest Te-values are obtained due to the PBF process when
the n 3P2 gaps are of the size of model ‘‘a,’’ i.e., with Tc-values
of order at most 109 K in most of the stellar core. The p 1S0
gaps cannot compete with the most efficient n 3P2 gaps, be-
cause proton gaps are restricted to a smaller volume; compare
Figures 20, 21, and 22. These fastest neutrino cooling models
have a very weak dependence on the mass of the star (Fig. 25).
These models also require that the envelope be made of heavy

Fig. 25.—Effects of the stellar mass: cooling of stars of various masses
built using the EOS of APR, with and without pairing. Models with pairing
have n 1S0 gap from AWP and n 3P2 gaps from our model ‘‘a’’ and either no
p 1S0 gap (dashed curves) or p 1S0 gap from AO (solid curves). Stellar masses
are indicated in the cases with the three types of pairing, whereas for similar
cases without proton pairing or with no pairing at all the trajectories are too
similar to be separately labeled. The envelope is assumed to be composed of
heavy elements.

Fig. 24.—Cooling with adjusted modified Urca, for F ¼ 1=10, 1, 10, and
100 as indicated, with and without nucleon pairing. Assumed pairing gaps are
from our model ‘‘a’’ for n 3P2 and from AO for p 1S0 (and n 1S0 pairing from
AWP for which the effect is very small). The envelope is assumed to be
composed of heavy elements.
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elements or, if it contains light elements, their amounts should
be much smaller than 10�11 M� (see Fig. 16).

6.2. Photon Coolingg Era

The physical processes that control cooling in the photon
cooling era are quite different from those in the neutrino cooling
era. Neutrino emission from any of the possible processes make
only a small contribution in the photon cooling era.

The two crucial ingredients are the envelope, which de-
termines the photon luminosity and pairing, which controls
the specific heat (see x 5.1). A light element envelope, pro-
ducing a higher Te and hence a higher L for a given core
temperature, leads to fast cooling; an amount above 10�9 M�
of these elements is necessary (see Fig. 16). Concerning the
total specific heat, the strongest reduction can be achieved by
pushing baryon pairing to the extreme, and this means con-
sidering low mass neutron stars so that the p 1S0 gap is more
likely to reach the center of the star. Pursuing the trend indi-
cated in Figure 25, we consider effects of the various p 1S0 gaps
of Figure 9 for a low mass, 1.1 M�, neutron star. Results are
shown in Figure 27. The proton kF at the center of this star has
a value of 1.1 fm�1 (see Figs. 5 and 6); the inset of Figure 27
shows a direct mapping of the density at which the p 1S0 gap
vanishes with Te at these times. The fastest cooling model
corresponds to the p 1S0 gap ‘‘CCDK,’’ which has a Tc of
1:44 ; 109 K at the center of the star and hence produces a
complete suppression of the proton specific heat in the photon
cooling era. A p 1S0 gap with a higher Tc at the center of the
star, or a gap that vanishes at higher densities (not reached in
this star), would lead to the same cooling curve. Similar con-
siderations apply to the n 3P2 gap. To illustrate this, we used
our model gap ‘‘a’’ in Figure 27. Any other gap with a Tc
higher than a few times 108 K would result in the same total
suppression of the neutron specific heat and, therefore, to ex-
actly the same cooling curve.

These results will be important when comparing our pre-
dictions with data in the next section, particularly for young
stars with ages of the order of a few times 104 yr, such as the
Vela pulsar and PSR 1706�44.

7. COMPARISON OF THE MINIMAL COOLING
SCENARIO WITH DATA

In x 5, we analyzed in some detail the effect of each physical
ingredient that shapes the cooling history of a neutron star
within the minimal scenario. In x 6, we identified the fastest
cooling neutron star models in this scenario. The combined
effects of these ingredients in realistic models, together with
comparisons to the presently available temperature and lumi-
nosity measurements, are presented below.
Our task is greatly simplified by the fact that the EOS is

considerably constrained by the tenets of the minimal scenario
(see results of x 5.8). Moreover, as shown in x 5.7, the precise
mass of the neutron star also has little effect, with the possible
exception of low mass stars at ages around a few times 104 yr.
(This, of course, is changed drastically once we go beyond the
minimal scenario and allow for enhanced neutrino emission
processes to occur at high density.) We can therefore restrict
our attention mostly to the thermal evolution of a ‘‘canonical’’
1.4 M� neutron star built with the EOS of APR. In contrast ,
the chemical composition of the envelope and the extent of
pairing of both neutrons and protons will play significant roles.
As shown in x 5.1, the presence of light elements in the

envelopes of young neutron stars leads to effective temperatures
that are larger than those without any light elements during the
neutrino cooling era, whereas it implies a faster cooling during
the later photon cooling era. Thus, for an assumed high density
structure of the star, there exists a whole family of models
limited by the two extreme cases of envelopes: those with only
heavy elements, and those with a maximum amount of light
elements. Stars with envelopes containing only a small amount

Fig. 27.—Cooling of a 1.1 M� star (solid lines) and with various p 1S0 gaps
(as labeled in the inset): 1-NS, 2-T, 3-AO, 4-BCLL, 5-CCY_ms, and 6-CCDK
(see Fig. 9 for notation). The n 1S0 gap is from AWP, and the n 3P2 gap from
our model ‘‘a.’’ The dotted line is the same 1.1 M� star, but without any
pairing and the dashed line is for a 1.4 M� star, with the same pairing gaps as
in Fig. 25. Envelopes are all assumed to be composed of light elements.

Fig. 26.—Effects of the EOS: cooling of 1.4 M� stars built using the four
chosen EOSs. EOSs are labeled in the cases with pairing, whereas for similar
cases without pairing the trajectories are too similar to be separately labeled.
Pairing gaps: n 1S0 from AWP, n 3P2 from our model ‘‘a’’ and p 1S0 from AO.
The envelope is assumed to be composed of heavy elements.
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of light elements will evolve on intermediate tracks shifting
from a track close to the former one toward the latter one as
illustrated in Figure 16. Conversely, stars can evolve in the
opposite direction if the envelope composition changes with
time from light elements toward heavy elements; such an
evolution is very abrupt, as shown in Figure 17.

On the other hand, the occurrence of pairing also accelerates
cooling during the photon cooling era through the reduction of
the specific heat (see x 5.3), whereas pairing effects during the
neutrino cooling era are more delicate. Neutrino emission from
the modified Urca and bremsstrahlung processes is suppressed,
but the breaking and formation of Cooper pairs can easily, with
appropriate gaps, become vastly more efficient than the former
processes. As a result, depending on its size and density de-
pendence, pairing can lead to faster or slower cooling during the
neutrino cooling era; its effect has to be considered carefully.

Our main results are presented in Figure 28 and compared
with data. For the reasons discussed in x 2.3, we present them
in two forms: effective temperature T1

e versus time and lu-

minosity L1 versus time. We divide our results into three
subclasses depending on the size of the n 3P2 gap, given that
this gap is the most uncertain one: a vanishingly small gap and
our gap models ‘‘a’’ and ‘‘b.’’ Figure 22 showed that case ‘‘c’’
results in neutrino emissions very similar to that of model ‘‘b,’’
and Figure 23 confirmed that the resulting cooling trajectories
are practically identical for these two large n 3P2 gaps and we
therefore do not need to include results for the gap ‘‘c’’ here.
For each assumed neutron 3P2 gap, it is still necessary to
consider uncertainties in the n and p 1S0 gaps. Varying these
gaps is less dramatic than varying the n 3P2 gap and we con-
sider 15 different combinations (see the caption of Fig. 28),
which we plot together. We obtain, for each assumed n 3P2 gap,
two sets of very closely packed curves, one for each envelope
composition. The size and extent of the n 1S0 gap has very little
effect, since it is mostly restricted to the crust and encompasses
only a small part of the star’s volume. This leads to small
differences in the early cooling when the star has not yet
reached isothermality, at ages �3–100 yr, and the surface

Fig. 28.—Comparison of predictions of the minimal cooling scenario with data, all models being 1.4 M� stars built using the EOS of APR. Left panels: effective
temperature T1

e vs. age. Right panels: luminosity L1 vs. age. The upper, middle, and lower panels correspond to three different assumptions about the size of the
n 3P2 gap as indicated in the panels. In each panel, the two sets of curves correspond to the two extreme models of envelope chemical composition: light elements or
heavy elements, as labeled in the upper left panel. For each set of curves, the 15 different curves correspond to three different choices of the n 1S0 gap (‘‘AWPII,’’
‘‘AWPIII,’’ and ‘‘SCLBL’’ as labeled in Fig. 8) and five different p 1S0 gaps (‘‘CCYms,’’ ‘‘T,’’ ‘‘NS,’’ ‘‘AO,’’ and ‘‘BCLL’’ as labeled in Fig. 9).
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temperature is still controlled by the evolution of the crust.
Among the p 1S0 gaps, the ones that can reach higher densities
will lead to slightly faster cooling both during the neutrino
cooling era, because of the enhanced neutrino emission from
the PBF process, and during the photon cooling era, due to the
resulting smaller specific heat.

Figure 23 demonstrated that models with the n 3P2 gap ‘‘a’’
yield the coldest stars, and Figure 28 shows that the spread in
results due to the variation of the other two 1S0 gaps is much
smaller that in the other two scenarios. This is because the n 3P2

gap ‘‘a’’ maximizes neutrino emission by the PBF process (see
Fig. 20) and because the neutrino luminosity due to the proton
PBF process is lower (compare Fig. 21 with Fig. 20). We have
studied many other models with a n 3P2 gap similar to our case
‘‘a,’’ but with slightly different maximum values of Tc and
different density dependences, and discerned negligible dif-
ferences. We are thus confident that the results presented here
reflect the smallest temperatures possible within the constraints
of the minimal scenario. We can obtain a slightly faster cooling
in the photon cooling era for low mass neutron stars (near 1 to
1.2 M�) as discussed in x 6.2, and this case will be presented
separately at the end of this section.

We now compare observational data for specific neutron
stars with the suite of models encompassing the minimal
cooling scenario.

7.1. RX J0822�4247 and 1E 1207�52

These two are young and are the hottest known stars. Their
inferred temperatures are higher than the predictions of all our
models with heavy element envelopes but are compatible with
all models with light element envelopes. This may be consid-
ered as possible evidence for the presence of a significant
amount of light elements in the upper layers of these stars.
However, when considering luminosities, for select values of
the n 3P2 gap, 1E 1207�52 is compatible with having a heavy
elements envelope. RX J0822�4247, however, remains more
luminous than any of the heavy-element envelope models but
is compatible with light-element envelope models.

7.2. PSR 0656+14, PSR 1055�52, Gemingga,
RX J1856.5�3754, and RX J0720.4�3125

These are the five oldest observed stars. Fits of their spectrum
to light-element atmospheres result in radii too large to be
compatible with the neutron star hypothesis. Blackbody spec-
tral fits result in too-small radii, but it is possible for heavy-
element atmospheres or two-temperature blackbodies to be

constructed that produce compatible radii. For consistency, we
have restricted the data appearing in these plots to be a result
of either light-element atmosphere fits or single-temperature
blackbody fits. Inferred temperatures are more sensitive to the
assumed atmospheric composition than are luminosities, and
for these five objects, the L versus age plots are probably
more reliable and representative of the observational uncer-
tainties. Consequently, blackbody fits result in relative posi-
tions for temperatures that are quite different than those of the
luminosities.
Except for RX J1856.5�3754, the large uncertainties on the

age and the luminosity of these objects preclude definite con-
clusions. If we consider the upper limits to their age and/or
luminosities, we find them too bright and must invoke the
presence of some strong heating process. On the other hand,
considering the lower limits to ages and/or luminosities they
appear compatible with the minimal scenario independently of
assumptions about pairing.

7.3. Vela and PSR 1706�44

Very intriguing objects are the pulsars PSR 0833�45
(‘‘Vela’’) and PSR 1706�44. Vela has been repeatedly pro-
posed as a candidate for enhanced cooling or exotic matter, but
our results are inconclusive with respect to these claims. For
this star, the effective area is compatible with emission from
almost the entire surface of a neutron star and both types of
plots, T or L versus age, are equivalent. With an n 3P2 gap
chosen to maximize neutrino emission from the PBF process,
as in our case ‘‘a,’’ the discrepancy of Vela with the theoretical
prediction is not significant, whereas for a vanishing n 3P2 gap
it is very large. However, for any nonvanishing n 3P2 gap and
a low assumed stellar mass (see Fig. 29), several of the light
element envelope models reach the temperature of Vela at
an age of 20,000 yr, i.e., well within its age uncertainty and
even less than some estimates of the supernova remnant age,
(1:8 � 0:9) ; 104 yr (Aschenbach et al. 1995). These models
correspond to p 1S0 gaps that extend to relatively high densities
and hence result in strong suppression of the proton specific
heat in most of, if not all, the core (see x 6). An interesting
feature of these models is the very fast decrease of temperature

�Te

Te
� �0:85

�t

t
; ð44Þ

which for an age of 20,000 yr gives a decrease of the observ-
able X-ray flux of 0.17% every decade. In this case one could

Fig. 29.—Same as the central panels of Fig. 28, but for a 1.1 M� star built using the EOS of APR.
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interpret these results as indicating that the Vela pulsar is a low
mass neutron star with a thick light element envelope and in
which neutrons and protons are paired in the entire core. On the
other hand, they could favor a neutron star whose core neutrons
have a Tc of the order of 109 K, without any constraint about
the proton pairing and the stellar mass, but this star must have
a heavy element envelope with at most 10�13 M� of light ele-
ments at the surface (see Fig. 16).

PSR 1706�44 is in a similar situation, but with larger
uncertainties both in T and in L1, due to the large distance and
age uncertainties. Confirmation of its association with the su-
pernova remnant G 343.1�2.3 (McAdam et al. 1993) would
help constrain both its distance and age.

7.4. Barely Detected and Undetected Objects

Sources that have negligible or no observed thermal emis-
sions, listed in Table 3 and plotted in Figure 2, are compared
with our results in Figure 30. The upper luminosity limits for
the two objects CXO J232327.8+584842 (in Cas A) and PSR
J0154+61 are well within the prediction of the minimal sce-
nario, whereas the limit of PSR J1124�5916 is on the lower
side, but still compatible.

Most interesting are the two stars PSR J0205+6449 (in
3C 58) and RX J0007.0+7302 (in CTA 1), whose upper limits
are clearly below our predictions. The remaining four objects,
with no pointlike emissions of any kind observed to date,
would provide definitive evidence for enhanced cooling if it
could be shown that neutron stars in fact exist in any of them.

8. COMPARISON WITH OTHER WORKS

The literature on neutron star cooling is extensive and dates
back to the early 1960s. Detailed studies of the ‘‘standard’’
cooling of isolated neutron stars have been presented, e.g., by
Nomoto & Tsuruta (1987), van Riper (1988), and Schaab et al.
(1996), but none of these works had included the neutrino
emission from the PBF process. Models incorporating the PBF
process were first presented by Schaab et al. (1997) and sub-
sequently by Page (1998). These two works, however, did not
explore effects of various EOSs and/or various sets of pairing
gaps within the framework of the ‘‘standard’’ scenario. Our

present results are in agreement with the results of Nomoto &
Tsuruta (1987), van Riper (1988), and Page (1998) when sim-
ilar input physics are used and allow a close comparison.

We find, however, large differences with the results of
Schaab et al. (1996) and Schaab et al. (1997) during the photon
cooling era in which the models of these authors cool much
more slowly than our models. This discrepancy is probably
attributable to differences in the specific heat. For example,
during the photon cooling era, the Schaab et al. models in
which pairing is considered cool in almost the same way as
models in which the effects of pairing are neglected. The
models without pairing have luminosities about 1 order of
magnitude higher than our corresponding models at ages in the
range 106–107 yr.

Extensive calculations of the effect of the PBF process have
been presented by Levenfish et al. (1999) in a simplified model
in which both the p 1S0 and n 3P2 gaps were assumed to be
constant in the entire core of the star. This simplification of
uniform Tc (which implies that protons are paired in the entire
core of their stars, whereas in our models the protons in the
central part of the star are unpaired for 1.4 M� stars) has the
effect of overestimating the neutrino emission by the PBF
process. Their results are consistent with our findings in that
they obtain somewhat cooler stars. For example, they can reach
log T1

e ¼ 5:8 at age t ¼ 104 yr, whereas our coolest model
with n 3P2 gap of our model ‘‘a’’ has log T1

e ¼ 5:9 at the same
age.

Subsequent works of Yakovlev et al. (2002) and Yakovlev
& Haensel (2003), which explored more realistic, density-
dependent gaps, obtained results that are in good agreement
with ours. For models in which no enhanced neutrino emission
is at work, these two works obtain a minimal log T1

e of 5.9,
as we do, at an age of t ¼ 104 yr.

Several recent works, Kaminker et al. (2001, 2002),
Yakovlev et al. (2001), and Tsuruta et al. (2002), studied the
cooling of neutron stars within the ‘‘standard’’ scenario (in-
cluding the PBF processes), but with enhanced neutrino emis-
sion at high density. In addition, they did not explore the range
of parameters that are considered here. Consequently, these
studies cannot be compared to the minimal scenario presented
here.

In a recent review, Yakovlev & Pethick (2004) have exam-
ined standard and enhanced cooling in an attempt to fit all the
data within one model. In this work, the data on individual
objects are fitted by treating the mass of the star as a free pa-
rameter. Models in which the n 3P2 gap is taken to be van-
ishingly small (Schwenk & Friman 2004) are favored, together
with a p 1S0 gap that persists up to very high densities and with
a Tc of the order of 7 ; 109 K. This latter feature is incom-
patible with all calculations of this gap we report in Figure 9,
but is not absolutely excluded. Our models for 1.1 M� with
nucleon pairing in the entire core (see Fig. 29) are similar to
those of Yakovlev & Pethick with nonvanishing n 3P2 gaps,
whereas our models of heavier stars with extensive neutron
pairing but a large volume of unpaired protons are similar to
their models with vanishing n 3P2 gaps and extensive proton
pairing (see Fig. 28).

9. DISCUSSION AND CONCLUSIONS

We have presented a detailed study of the thermal evolution
of an isolated neutron star using what we term as the minimal
cooling scenario. This scenario is an extension of the well-
known ‘‘standard cooling’’ scenario to include the effects of
nucleon pairing and complements neutrino emission by the

Fig. 30.—Global comparison of the upper luminosity limits for sources
lacking apparent thermal emissions with cooling trajectories, satisfying the
minimal cooling scenario. The area with the darkest gray shading contains
models with heavy-element dominated envelopes, whereas that with the in-
termediate shading contains models with light-element envelopes. The region
with the lightest shading contains models with intermediate compositions.
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modified Urca and nucleon bremsstrahlung processes with the
pair breaking and formation (PBF) process. We have confirmed
the results of previous works by others that for many models of
nucleon pairing, the PBF process actually dominates the cool-
ing of the star (see x 5.4) and hence is an essential ingredient
of the minimal cooling scenario.

Among the four parameters we proposed for an overall
classification of neutron star cooling models, we found that
the EOS at supranuclear densities is well constrained by the
requirements of the minimal cooling scenario. Moreover, we
showed that the stellar mass has little effect on the results. We
emphasize that for scenarios beyond the minimal one, i.e.,
when new particles and neutrino emission processes appear,
these two parameters definitely gain importance. The other two
parameters we considered, pairing properties of the nucleons
and chemical composition of the envelope, introduce the larg-
est uncertainties in our theoretical predictions.

We singled out three subclasses of scenarios due to uncer-
tainties in the size and extent of the n 3P2 gap. For this gap, we
considered three different cases: a vanishingly small gap, a
somewhat small gap (our model ‘‘a’’), and a relatively large
gap (model ‘‘b’’). Within each of these cases, variations of the
n and p 1S0 gaps covering the published ranges of these gaps
were also considered.

With respect to the chemical composition of the envelope,
we singled out two extreme cases: an envelope consisting of
heavy iron-like elements and an envelope containing essen-
tially only light elements. For each choice of the n 3P2 gap, we
obtained two families of closely packed cooling curves rep-
resenting each of the two extreme envelope cases, with some
spreads due to variations of the n and p 1S0 gaps. Intermediate
envelope chemical compositions, or its possible temporal evo-
lution, result in cooling trajectories intermediate between the
extremities (see Figs. 16 and 17).

Comparing our results with observationally inferred tem-
peratures T1 and luminosities L1 of 11 isolated neutron stars
(Figs. 28 and 29), we found that the observations were in
overall good agreement with the minimal cooling scenario
taking into account the uncertainties of envelope and pairing
properties as well as those of the ages and inferred T1 and
L1 for these stars. It is probably not possible to understand
these data within a single model with a unique envelope
chemical composition. Considering that the compositions of
the upper layers are strongly dependent on poorly understood
processes that occurred during and soon after the birth of the
star, and possibly later due to the dynamics, it appears likely
that different stars have envelopes with different chemical
compositions.

The Vela pulsar 0833�45, and possibly, but with much larger
uncertainties, PSR 1706�44, are marginal candidates for en-
hanced cooling as their inferred temperatures and luminosities
are lower than most of our models. Nevertheless, we found that
low mass neutron stars, �1.1–1.2 M�, with a light element
envelope and extensive nucleon pairing covering essentially

the entire core, could reach the inferred values, T1 ’ 105:8 K
at an age of �20,000 yr (Fig. 29), which is within the range of
estimated age of the associated supernova remnant.
An essential component of the minimal cooling scenario

is neutrino emission by the PBF process, which leads, in the
presence of appropriate nucleon gaps, to more rapid cooling
than possible in the standard cooling scenario. The low ob-
served temperatures of the two pulsars, Vela and 1706�44, can
be accommodated by the PBF process with a n 3P2 gap of
sufficient size. However, if this gap were vanishingly small
(Schwenk & Friman 2004), then the temperature and thermal
luminosity measurements of these two objects would be evi-
dence for the presence of processes beyond the minimal
cooling paradigm.
The five older stars, PSR 0656+14, PSR 1055�52, PSR

0633+1748 (Geminga), and RX J0720.4�3125, unfortunately
have such large uncertainties on both their ages and thermal
luminosities that their interpretation is delicate. They do not
require the occurrence of enhanced neutrino emission and can
be accommodated within the minimal cooling scenario when
the lowest values for T and L1 are chosen. But, should the
upper limits for T and L1 prevail, they would be good candi-
dates for the occurrence of some ‘‘heating mechanism,’’ i.e.,
dissipative processes, which inject heat into the star (see, e.g.,
Umeda et al. 1993; Schaab et al. 1999). In the case of RX
J1856.5�3754, which has a much more tightly constrained age
and luminosity, the agreement with the minimal scenario is
excellent.
The two objects standing apart from the other observed

neutron stars are J0205+6449 (in the supernova remnant
3C 58) and RX J0007.0+7302 (in CTA 1). Upper limits on
their luminosities are well below the predicted values for any
of our models. These two objects are the best candidates, to
date, for the necessity to go beyond the minimal scenario.
Finally, the four upper luminosity limits on the undetected

objects in shell supernova remnants (G084.2�0.8, G093.3+6.9,
G127.1+0.5, and G315.4�2.3) recently found by Kaplan et al.
(2004) are so low that they will constitute the strongest evi-
dence for enhanced neutrino emission well beyond the minimal
scenario if it can be demonstrated that they actually correspond
to neutron stars and not quiescent black holes.
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APPENDIX A

OBSERVATIONAL DATA

A1. SUPERNOVA REMNANTS G084.2�0.8, G093.3+6.9, G127.1+0.5, AND G315.4�2.3

These four SNRs are considered to be the product of core-collapse supernovae and are hence expected to contain either a neutron
star or a black hole. Nevertheless, the searches of Kaplan et al. (2004) found no evidence of any sort for the presence of compact
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objects. In case a neutron star is present, these observations provide us with upper limits on the thermal luminosity of the star,
which we take from the Figure 37 of Kaplan et al. (2004) and report in our Table 3.

A2. CXO J232327.8+584842 IN CAS A

Discovered in the first light of the Chandra observatory, this object is still enigmatic but evidence points toward an isolated
neutron star (Mereghetti et al. 2002). We take the upper limit on L1 from Pavlov et al. (2000), which results from a composite model
of a hot polar cap and a warm (but barely detected) surface. The age is from the association with the supernova SN 1680.

A3. PSR RX J0205+6449 IN 3C 58

A first upper limit on T1 had been obtained by Slane et al. (2002) from the nondetection of a thermal component in the pulsar
spectrum. Analysis of a deeper Chandra observation (Slane et al. 2004a) requires the presence of a thermal component and leads to a
lower upper limit on L1 reported in Table 3. This value is a conservative estimate since even lower values are possible when an
atmosphere model is used in the spectral fits. The association with the historical remnant of SN 1181 gives an age of 822 yr. The
pulsar spin-down age is about 5400 yr (Murray et al. 2002). The distance estimate is from 21 cm (H i) absorption (Roberts et al.
1993).

A4. PSR J1124�5916 IN G292.0+1.8

This X-ray and radio pulsar is seen as a point source in a composite SNR. The Chandra spectrum of the pulsar (Hughes et al.
2003) is adequately fitted by a power law, with no evidence for thermal emission, and provides an upper limit on the thermal
luminosity. Distance and kinematic age estimates are taken from Camilo et al. (2002).

A5. PSR RX J0822�4247 IN PUPPIS A

The ages are taken from spin-down (8000 yr) and from motions of filaments in the Puppis A supernova remnant. The distance is
estimated from 21 cm (H) absorption. Both quantities are discussed in Zavlin et al. (1999) and references therein. Blackbody and
H atmosphere spectral fitting, from ROSAT and ASCA data, are also from Zavlin et al. (1999).

A6. PSR 1E 1207�5209 IN G296.9+10.0

Estimates of the kinematic age are from Roger et al. (1988) and the distance are from Giacani et al. (2000). The spin-down age is
from Pavlov et al. (2002). Blackbody spectral fitting is from Mereghetti et al. (1996) from ROSAT and Zavlin et al. (1998) from
ROSAT+ASCA.

This is one of the very few isolated neutron stars that shows spectral lines in its spectrum (Sanwal et al. 2002), but the phase
variation of these lines (Mereghetti et al. 2002) may indicate they are of magnotespheric origin. Moreover, its peculiar spin-down
behavior may be a sign of accretion, making the interpretation of this star as an isolated cooling neutron star questionable (Zavlin
et al. 2004).

A7. RX J0002+6246

Spectral fitting for both H atmosphere and blackbody surfaces are from Chandra observations (G. G. Pavlov 2002, private
communication) and are consistent with ROSAT observations reported by Hailey & Craig (1995).

A8. RX J0007.0+7302 IN CTA 1

An X-ray point source within a pulsar wind nebula in a composite SNR. No pulsations are detected, but the general morphology
of the object makes it very similar to Vela, including a very likely association with the EGRET �-ray source 3EG J0010+7309.
The X-ray spectrum of the point source, from either XMM-Newton (Slane et al. 2004b) or Chandra (Halpern et al. 2004), is fitted
by a power law plus a thermal component. The latter could be either originating from a hot polar cap or the cooler entire stellar
surface. The upper value for the thermal luminosity we use is from Halpern et al. (2004), because the high angular resolution of
Chandra allows a better estimate than the XMM-Newton data. Distance and kinematic age estimates are taken from Slane et al.
(2004b).

A9. PSR 0833�45 (VELA)

Spectral fitting from Chandra for both H atmosphere and blackbody surfaces are from Pavlov et al. (2001), and the spin-down age
is also quoted there. The kinematic age of the SNR is from Aschenbach et al. (1995) and the VLBI interferometric distance
measurement of 250 pc is due to Dodson et al. (2003). This is probably the most reliable data point available and the first isolated
neutron star whose radius is well determined because of a well-known distance (Page et al. 1996).

A10. PSR 1706+44

Blackbody spectral fitting for the Chandra data is from Gotthelf et al. (2002), and spin-down age is quoted in the same source,
whereas H atmosphere spectral fitting for the XMM-Newton data is from McGowan et al. (2004). Estimates of distance are from
Taylor & Cordes (1993) and Koribalski et al. (1995).
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A11. PSR 0538+2817

We employ the results of spectral fitting from Chandra by Marshall & Schulz (2002) for both blackbody and magnetized
hydrogen models. We assume a typical error of 0.1 on log10T and of 0.5 on log10L, since these authors do not report any uncertainty
estimates.

A12. PSR J0154+61

We use the results of an XMM-Newton observation by Gonzalez et al. (2004) for L1. The distance and tsd-values are taken from
the same paper.

A13. PSR 0656+14

We employ the results of spectral fitting from Chandra (Marshall & Schulz 2002), which result in a lower temperature than the
ROSAT value log10T1 ¼ 5:96þ0:02

�:03 quoted by Possenti et al. (1996). Marshall & Schulz (2002) also suggest there is a hard
component with a temperature of 2 ; 106 K. The spin-down age is from Taylor, Manchester & Lyne (1993). As with other objects
in this study, we employ the softer component’s temperature as being more characteristic of the underlying surface temperature.
The distance to this object is constrained by the VLBA parallax measurement of Brisken et al. (2003).

A14. PSR 0633+1748 (GEMINGA)

Blackbody spectral fitting with ROSAT data is from Halpern & Wang (1997); later analyses have not changed these results
significantly. The distance is the result of parallax measurements by Caraveo et al. (1996); however, G. G. Pavlov (2002, private
communication) suggests these measurements may not be reliable.

A15. PSR 1055�52

G. G. Pavlov (2002, private communication) quotes results from Chandra observations of two thermal components: a soft
component with temperature (8:9 � 0:01) ; 105 K and emitting radius 13d1000 km and a hard component with temperature
(1:9 � 0:1) ; 106 K and emitting radius of 0:5 � 0:1d1000 km. These temperatures are consistent with ASCA results quoted in
Greiveldinger et al. (1996) and ROSAT results in Ögelman (1995). We employ the soft component temperature as being characteristic
of the average surface temperature.

A16. RX J1856�3754

Absence of spectral lines in the high resolution Chandra LETGS data rules out nonmagnetic, nonrotating heavy element
atmosphere models (Burwitz et al. 2001). Blackbodies provide the best fits to the X-ray data, but the optical data require the presence
of a colder blackbody component (Pons et al. 2002). We take the blackbody spectral fitting from Drake et al. (2002) and Burwitz
et al. (2003) for the warm component and fits for the colder component from Pons et al. (2002). The range of T1 listed in Table 2
corresponds to these two, cold and warm, components. The cold blackbody component gives the lower bound on the radius but it
makes a very small contribution (�5%) to the luminosity.

A17. RX J0720.4�3125

As for RX J1856�3754, fitting of both the X-ray and optical data requires a two blackbody model. We take both warm and cold
blackbody fits from Kaplan et al. (2003), which gives us the range of T1 we report in Table 2. The luminosity has a significant
contribution from the cold component. The distance is unknown, and the values we report are a guess based on the observed low
absorption of the X-ray spectrum. This distance results in a large uncertainty in L1. Notice also that the spectrum is known to vary
on long timescales (de Vries et al. 2004) and contains a phase-dependent absorption line (Haberl et al. 2004). Both P and Ṗ are from
Cropper et al. (2004).

APPENDIX B

THE EQUATIONS OF STRUCTURE AND EVOLUTION

We employ the standard structure equations derived from spherically symmetric, general relativistic, considerations. It should be
mentioned that the stellar surface in our computation is fixed by

R ¼ Rstar ¼ r (� ¼ �b); ðB1Þ

where �b ¼ 1010 g cm�3. This guarantees that the EOS is temperature independent. The layers at densities below �b, called the
envelope, are treated separately (see x 4).

At the temperatures of interest here, neutrinos have a mean free path much larger than the radius of the star (Shapiro & Teukolsky
1983) and thus leave the star once they are produced. Energy balance arguments (see, e.g., Thorne 1966) then imply

d(le2�)

dr
¼ � 4�r 2e�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2Gm=c2r
p d�

dt
þ e�(q�� qh)

� �
; ðB2Þ
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where � is the gravitational potential, l is the internal luminosity, � is the internal energy per unit volume, and q� and qh are,
respectively, the neutrino emissivity and heating rate, both per unit volume. The corresponding inner boundary condition for l is

l(r ¼ 0) ¼ 0: ðB3Þ

The time derivative of � can be written in the form

d�

dt
¼ d�

dT

dT

dt
¼ cv

dT

dt
; ðB4Þ

where T is the local temperature and cv is the specific heat per unit volume at constant volume, which for degenerate matter is the
same as the specific heat at constant pressure cP.

The energy transport equation is

d(Te�)

dr
¼ � 1

k
le�

4�r 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Gm=c2r

p ; ðB5Þ

where k is the thermal conductivity. (Notice that within the relativistic framework, an ‘‘isothermal’’ configuration is defined by
e
T ¼ constant, instead of T ¼ constant.) The associated boundary condition is

Tb ¼ Tb(lb); ðB6Þ

which relates the temperature Tb at the outer boundary (defined more precisely further below) to the luminosity lb in this layer. The
location of this outer boundary layer is chosen such that lb is equal to the total photon luminosity of the star, lb ¼ l(r ¼ R) � L. L is
commonly expressed through the ‘‘effective’’ temperature Te, which is defined by

L � 4�R2�SBT
4
e ; ðB7Þ

where �SB is the Stefan-Boltzmann constant. We emphasize that L and Te are, modulo R, essentially equivalent quantities. We can
thus write equation (B6) as Tb ¼ Tb(Te); this ‘‘Te-Tb relationship’’ is discussed further in x 4.

We will present our results of thermal evolution by using the ‘‘effective temperature at infinity,’’

T1
e � Tee

�(R); ðB8Þ

related to the ‘‘luminosity at infinity’’ L1 through the ‘‘radiation radius’’ R1 � Re��(R) by

L1 � e2�(R)L(R) ¼ 4�R12�SBT
14
e : ðB9Þ

The three quantities T1
e , L1, and R1, are, in principle, measurable. In particular, R1 would be the areal radius of the star that an

observer ‘‘at infinity’’ would measure with an extremely high angular resolution instrument (Page 1995).
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