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ABSTRACT. We have developed CHi-square cOde for parameterRized modeling and characterIZation of
phOtometry and Spectrophotmetry (CHORIZOS). CHORIZOS can use up to two intrinsic free parameters (e.g.,
temperature and gravity for stars, type and redshift for galaxies, or age and metallicity for stellar clusters) and
two extrinsic parameters (amount and type of extinction). The code uses minimization to find all models2x

compatible with the observed data in the model N-dimensional ( , 2, 3, 4) parameter space. CHORIZOSN p 1
can use either correlated or uncorrelated colors as input and is specially designed to identify possible parameter
degeneracies and multiple solutions. The code is written in IDL and is available to the astronomical community.
Here we present the techniques used, test the code, apply it to a few well-known astronomical problems, and
suggest possible applications. As a first scientific result from CHORIZOS, we confirm from photometry the need
for a revised temperature-spectral type scale for OB stars previously derived from spectroscopy.

1. INTRODUCTION

A general problem in astronomy is that of finding the cor-
respondence between the observed spectrophotometric and/or
photometric properties and a series of models parameterized
in terms of physical quantities. Perhaps the best well-known
example is the utilization of Johnson and colors toU�B B�V
measure the temperature and extinction of main-sequence stars
(see, e.g., Binney & Merrifield 1998), but the problem appears
in a variety of contexts, such as the calculation of photometric
redshifts with optical/IR photometry (Koo 1999; Benı́tez 2000),
of extinction laws using a combination of UV-to-IR spectros-
copy and photometry (Cardelli et al. 1989; Fitzpatrick 1999),
or of stellar cluster ages and metallicities using broadband col-
ors (Girardi 2000; Whitmore et al. 1999; de Grijs et al. 2003).
Each one of these cases has its own specific peculiarities, but
they can all be considered examples of the following general
problem. A family of spectral energy distribution (SED) models

is generated as a function of N parameters.f (l; p , p … , p )1 2 N

Some of those parameters might depend on the nature andpi

distance to the objects (e.g., temperature, age, metallicity, or
redshift) while others depend on the properties of the inter-
vening interstellar matter (amount and type of extinction). The
first type of parameters will be called intrinsic (to the object)
and the second type extrinsic (to the object). Our data consist

1 Affiliated with the Space Telescope Division of the European Space
Agency, ESTEC, Noordwijk, Netherlands.

2 The Space Telescope Science Institute is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA contract NAS
5-26555.

of one or several objects with measured magnitudes
( ), each with its independent uncertaintym , m … m M ≥ N1 2 M�1

from which we can derive M independent colors3s , s … s1 2 M�1

. The general problem can be then expressed asc , c … c1 2 M

finding what model SEDs are compatible with the observed
colors.4 The solution could be:

1. Unique, if the observed values for the colors and their
uncertainties determine a single set of connected SED models
(i.e., a connected volume in dimensional parameter space)N- N-
that can be described by a single set of parameters with their
corresponding uncertainties.

2. Multiple, if the provided colors do not allow differentiation
between two or more sets of connected SED models.

3. Nonexistent, if the properties of the object fall outside the
parameter range of the SED models, the chosen SED models
are an incorrect description of the object, or the photometry
has systematic errors.

Several related codes are discussed in the literature (see, e.g.,
Romaniello et al. 2002; Benı́tez 2000; de Grijs et al. 2003),
but they all have one shortcoming: they are designed to deal
only with a specific case of the general problem (stellar tem-
peratures, photometric redshifts, cluster ages). Furthermore,
some of the codes discussed in these articles are not available
to the astronomical community, thus hampering the testing of

3 Alternatively, we can have measured colors with their corresponding
uncertainties.

4 The photometric redshift case requires a slight reformulation of the prob-
lem, because one of the parameters, redshift, changes not only colors but also
magnitudes.
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Fig. 1.—Left: vs. color-color plot for main-sequence Kurucz atmospheric models. The line with circles indicates the location of the unreddenedU�B B�V Z p 0.0
values as a function of temperature, starting at K, with the circles marking those points at which the temperature is a multiple of 5000 K. The rest ofT p 50,000
the lines indicate the colors as a function of reddening using the Cardelli et al. (1989) law with for five different temperatures. Symbols are plottedR p 3.15495

at intervals of . Right: Same as the left, but plotting colors as a function of reddening for five different values of using the same familyDE(4405–5495) p 0.10 R5495

of extinction laws for a temperature of 50,000 K. The scale has been enlarged to include all unreddened models with K and all 50,000 K modelsT p 3500–50,000
up to .E(4405–5495) p 5.0

results by other groups. Finally, the treatment of how uncer-
tainties in the measured quantities affect the derived parameters
is, in many cases, poor or nonexistent (some photometric red-
shift codes are an exception; see, e.g., Benı́tez 2000).

We discuss in this paper CHORIZOS, a code that solves the
general problem of identifying which models are compatible with
an observed set of colors. In § 2 we analyze the problems that
have to be dealt with, and in § 3 we discuss the techniques to
overcome them. In § 4 we apply an implementation of the al-
gorithm to a number of cases, and we end in § 5 with a summary.

2. DESCRIPTION

2.1. Problem Definition

We start by defining two different cases as a function of the
number of colors and parameters, and . ForM p N M 1 N

, we can establish as many equations (sets of modelM p N
parameters that produce a given color) as unknowns (model
parameters), and the problem can be treated as a search for an
exact solution to a (complicated) algebraic system of equations.
Barring strict degeneracies in the system of equations, one can
find either zero, one, or a finite number of solutions in di-N-
mensional parameter space depending on the specific topology
of the volume defined in dimensional color space by allN- M-
the possible parameter combinations. Adding the corresponding
uncertainties associated with each color produces at least one
connected volume around each of the solutions in parameterN-
space and can also generate new volumes unconnected fromN-

any of the strict solutions and/or establish connections between
solutions.5 For , the problem has more equations thanM 1 N
unknowns, and no exact solutions should be expected. How-
ever, approximate solutions that are compatible with the mea-
sured uncertainties can still be found. In this case, our goal
should be to find that volume of approximate solutions byN-
using, e.g., minimization.2x

2.2. : The Main-Sequence vs. ExampleM p N B�V U�B

Given the complexity and nonlinearity of the general prob-
lem, different topologies can exist, leading to different solution
types as a function of the measured magnitudes. In order to
visualize them, we analyze the well-known example of using
Johnson and colors to measure stellar temperatureU�B B�V
and reddening ( ). We show in the left panel ofM p N p 2
Figure 1 the locations in two-dimensional color space of un-
reddened main-sequence stars, using as model atmospheres
those of R. L. Kurucz,6 with . The Kurucz atmospheresZ p 0.0
were extinguished using a Cardelli et al. (1989) law with

5 Strictly speaking, once uncertainties are included, any solution is possible.
In practice, we normally consider that the probability of a color having a real
value many j away from its measured one is zero.

6 These and other data are available at http://kurucz.harvard.edu.
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Fig. 2.— vs. color-color plot for the same conditions as inB�V U�B
Fig. 1. Here we include a higher number of extinguished models using a color
code to differentiate among temperature ranges that are relevant to determine
the number of possible temperature�reddening solutions for a given

color combination. Nine examples are marked, each of which(U�B) � (B�V)
with .j p j p j p 0.026U B V

from 7; five differentR p 3.1 E(4405–5495) p 0.0–5.05495

values of the temperature are shown. We also show a similar
plot in Figure 2, but with more temperature values (here some
of the symbols have been omitted for clarity). Nine examples
of measured magnitudes are shown in Figure 2, each one with
different measured magnitudes for U, B, V, but with the same
uncertainty in each case. The corre-j p j p j p 0.026U B V

sponding solutions (as calculated by CHORIZOS) are shown
in Figure 3 as likelihood contour plots. The examples have
been selected to reflect the different solution types.

1. Example 1 is the ideal observational situation: the mea-
sured colors correspond to a unique solution, and the inclusion
of uncertainties leads to a single set of connected solutions
around it. We can see that the corresponding shaded area in
Figure 2 is crossed only by blue lines, which correspond to
models with K, and this leads to a singleT p 9250–50,000
connected region in Figure 3.

2. Example 2 falls in a region where, due to the change in
direction experienced by the zero-extinction color-color curve
around K, two different sets of connected solutionsT p 9000
exist. Its shaded area in Figure 2 is crossed by both blue and
green lines, and tracing them back to the zero-extinction case,
we arrive at two possible different ranges of values for the
temperature.

3. Example 3 falls in the region in Figure 2 to the upper
right of where the zero-extinction color-color curve has
changed direction for the second time. As a result, the region
is crossed by lines corresponding to three temperature ranges
(represented in Fig. 2 in blue, green, and red, respectively),
and three different sets of connected solutions are possible.
This translates into three peaks in Figure 3.

4. Examples 4, 5, and 6 correspond to the situation in which
the measured and colors are incompatible with anyU�B B�V
of the models, but the inclusion of the corresponding uncer-
tainties generates a single connected region in Figure 3. In the
case of examples 4 and 5, the nearest edge of the volumeN-
of allowed colors in Figure 2 corresponds to an extreme in

dimensional parameter space (maximum temperatureN-
[50,000 K] for example 4, minimum [0.0 K]E(4405–5495)
for example 5). Therefore, the corresponding likelihood contour
plots in Figure 3 show abrupt edges. On the other hand, the
nearest edge of the volume of allowed colors for example 6N-
does not correspond to such an extreme; instead, it is caused
by the change in direction of the zero-extinction color-color
curve around K. Therefore, its likelihood contourT p 9000
plot does not show an abrupt edge.

5. For example 7, the measured and values fallU�B B�V
outside the volume of allowed colors, but in this case thereM-

7 and are the monochromatic equivalents toE(4405–5495) R E(B�V)5495

and , respectively. The values 4405 and 5495 are the assumed central wave-RV

lengths (in Å) of the B and V filters, respectively. Monochromatic quantities
are used because and depend not only on the amount and type ofE(B�V) RV

dust, but also on the stellar atmospheres.

are two nearby boundaries—one of the same type as that of
example 5, and another of the same type as that of example 6.
This translates into two peaks in Figure 3—one with an abrupt
edge and another one without it.

6. Examples 8 and 9 correspond to the cases in which at
least one solution exists for the measured colors (one for ex-
ample 8, two for example 9). Here, the inclusion of uncertain-
ties not only generates a connected region around each one of
them, but also a new one, leading to the existence of two peaks
in Figure 3 for example 8 and of three peaks for example 9.

7. Finally, although we have not plotted them, we can de-
scribe two possible additional situations. One would be the
case in which the shaded region in Figure 2 was outside the

volume of allowed colors and far from an edge. That wouldM-
indicate that the data and the models are incompatible. Another
situation would be reached by increasing the uncertainties in,
e.g., example 2. In that case, we could make the two solutions
merge into a single connected one, since the shaded region in
Figure 2 would extend to the line defined by the turnaround
point in temperature around 9000 K.

We can group our examples as a function of their solution
into the three categories described in the introduction: unique,
multiple, and nonexistent. It is important to differentiate be-
tween cases with unique and multiple solutions, for the fol-
lowing reason. For unique solutions (e.g., example 1), the de-
rived parameters can be correctly characterized by a single set
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Fig. 3.—Likelihood contour plots produced by CHORIZOS for the nine examples described in the text and shown in Fig. 2. The x-axis corresponds to the
temperature in K, and the y-axis to .E(4405–5495)

of mean values and and a covariance matrixT̄ E(4405–5495)
defined by , , and . In principle, onej j jT E(4405–5495) T, E(4405–5495)

could do the same for multiple solutions (e.g., example 2), but
that would not be a correct characterization, since in those cases
there are two or more peaks in the likelihood contour plot. In
those cases, given the strong deviations from a Gaussian dis-
tribution, it would be misleading to give mean parameter val-
ues, since those may fall in regions of very low probability
while the main peaks may be located at distances around or
above 1 j from them (see, e.g., example 2, in which the mean
values are K, , and the stan-T p 9910 E(4405–5495) p 0.383
dard deviations are K and .j p 1350 j p 0.139T E(4405–5495)

It is also important to note that even in those cases in which
a unique solution is found, there is typically a strong correlation
between the parameters. This is seen in Figure 3, in that if we
were to approximate each peak by an ellipsoid, the two prin-
cipal axes would be inclined with respect to the x- and y-axes.

This effect is commonly referred to in the literature as a de-
generacy between the two parameters. For instance, for ex-
ample 6 we could say that T and are degenerateE(4405–5495)
because our colors are compatible with a single set of connected
solutions in which likely deviations from the mean require
either (1) an increase in both temperature and reddening or (2)
a decrease in both—but not, e.g., an increase in temperature
and a decrease in reddening.

2.3. and Solution ExistenceM 1 N

The introduction of additional colors and parameters beyond
these two is straightforward if we keep (although it isM p N
not as easy to plot). Instead of dealing with the intersection
between ellipses and regions of a plane, we have to find the
intersection between ellipsoids and regions of an (or )M- N- M-
dimensional space, which does not introduce any new behavior
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Fig. 4.—Left: vs. vs. three-color plot for main-sequence Kurucz atmospheric models. The range plotted covers andV�I B�V U�B Z p 0.0 T p 3500–50,000
, and the extinction law used is that of Cardelli et al. (1989), with . The color surface marks the location in three-color space,E(4405–5495) p 0.0–2.0 R p 3.15495

while the black surface is the projection onto the – plane (see Figs. 1 and 2). Right: Basic topology for an , case such as the one(U�B) (B�V) M p 3 N p 2
shown in the left panel. Given that , the measured colors (blue circle) always lies outside the solution surface (red grid). However, including the uncertaintyM 1 N
ellipsoid (blue grid) yields an intersection surface (solid yellow) of likely solutions.

from the topological point of view in our description. The sit-
uation is different if . Take as an example andM 1 N M p 3

. There we find that the two available parameters generateN p 2
a surface ( volume) of possible solutions inside the volumeN-
( volume) of all possible color combinations. Given the dif-M-
ference in dimensions, a given set of three measured colors will
always fall outside the solution surface. However, adding un-
certainties to the measured colors will generate a finite ellipsoid
( ellipsoid) in color space that, barring problems with the dataM-
or the models, should intercept the solution surface. This is rep-
resented in the right panel of Figure 4 for the simple case in
which the solution surface is a plane that is perpendicular to the
major axis of the uncertainty ellipsoid. For more complex so-
lution surfaces, such as the one in the left panel of Figure 4, the
intersections can have more complex shapes, but the topological
classification into solution sets that are unique (one connected
intersection surface), multiple (two or more intersection sur-
faces), and nonexistent (no intersection) remains unchanged.

Therefore, for we cannot have strict solutions, butM 1 N
only approximate ones. We can characterize those by defining

for the case of uncorrelated uncertainties as2x

2M ( )c � cm m, mod
2x p , (1)� 2jmp1 m

where are the model colors and are the measured colorc jm, mod m

uncertainties. For Gaussian uncertainties, the likelihood is then

given by , and maximizing it is equivalent to2L p exp (�x /2)
finding the model(s) that minimize(s) . It can be shown (see,2x

e.g., Gould 2003) that the expected value of is , with2x M � Nmin

a standard deviation of . Note that those are the1/2(2[M � N])
results expected even for the case of , where we shouldM p N
find a model with the same exact colors as those measured and,
therefore, have a of exactly zero. Our definition of solution2xmin

existence for would be to have a that is reasonably2M 1 N xmin

close to in units of .1/2M � N (2[M � N])
An exception to the last statement should be noted. If the

measured value lies close to an -dimensional edge of(N � 1)
the solution volume, then the value of could be larger2N- xmin

than . An easy way to see this is with the most extremeM � N
case of . In examples 4–7 of § 2.2, we saw that it isM p N
reasonable to have measured colors that are incompatible with
the model colors if they fall just outside the edge of the region
spanned by the models. In those situations in which the data are
close to such an edge, it is then normal to find somewhat higher
values of : for the specific case of , one should then2x M p Nmin

only reject the existence of a solution if .2x k 1min

It is still possible to find data for which there are no solutions,
either for the case or for the ones. The followingM p N M 1 N
is a checklist of possible causes, some of which are general
and some specific to astronomical photometry:

1. Model validity.—The models may be an incorrect de-
scription of the real SED.
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2. Model applicability.—The type of object or the parameter
range selected may be incorrect.

3. Model approximations.—Make sure that you are deriving
your colors the right way. Common errors are using the wrong
extinction law and neglecting curvature effects in extinction
trajectories for large values of (see Fig. 1).E(4405–5495)

4. Photometric quality.—Were the data properly acquired
and calibrated?

5. Zero-point calibration.—Some filters require small mag-
nitude corrections before their magnitudes can be used for spec-
trophotometry (see, e.g., Cohen et al. 2003).

6. Filter-throughput errors.—Make sure that the throughputs
of your filter are correctly characterized. Be on the alert for
filters with red/blue leaks and long tails.

7. Color transformations.—Beware of transforming from
one filter system to another. Whenever possible, use the
throughput definitions for the filters used to acquire the data.

3. TECHNIQUES

Apparently, two different techniques are needed to solve the
two different cases defined in § 2. In practice, both can be
solved using a minimization algorithm. This is because for2x

, the algebraic solution to the system of equations isM p N
also the solution that makes , which is obviously the2x p 0
minimum possible value for . Furthermore, since2x L p

independently of the number of degrees of free-2exp (�x /2)
dom, we can use that definition to estimate the uncertainties
in our parameters not only for , but also for .M 1 N M p N

CHORIZOS works by computing over the dimensional2x N-
parameter grid and calculating the corresponding likelihood at
each grid point. The current version of the code is written in
IDL and handles up to : two parameters from the intrinsicN p 4
properties of the SED family, plus two extinction-related param-
eters, and the extinction law type. The latter in-E(4405–5495)
cludes the -dependent family of extinction laws of CardelliR5495

et al. (1989), the average LMC and LMC2 laws of Misselt et
al. (1999), and the SMC law of Gordon & Clayton (1998).
CHORIZOS starts by reading the unreddened SED models, ex-
tinguishing them, and obtaining the synthetic photometry at each
point in a (coarse) four-dimensional grid. This is done in order
to correctly deal with nonlinear extinction effects. This prelim-
inary step needs to be executed only once, and the result can be
stored in the form of binary FITS tables for later use. Currently,
CHORIZOS includes precalculated tables for Kurucz (see foot-
note 6), Lejeune (Lejeune et al. 1997), and TLUSTY (Lanz &
Hubeny 2003) stellar models and Starburst 99 (Leitherer et al.
1999) cluster models using a total of 78 filter passbands (in-
cluding the Johnson, Strömgren, Two Micron All Sky Survey,
and several Hubble Space Telescope instrument systems). The
two intrinsic parameters are temperature and gravity for the stel-
lar models, and age and metallicity for the cluster models. More
models and passbands will be included in the future, and the
user will also be able to add his/her own.

The program first reads the photometry from a user-provided
table, in addition to a series of input parameters, such as which
model family should be used and how fine a parameter grid
should be employed. At this point, the user can restrict any of
the four parameters for any of the objects (stars, clusters, or
galaxies) in the input table, using either a specific value or a
range between a minimum and a maximum. CHORIZOS then
reads the model photometry from the previously calculated
tables and interpolates to the user-selected (fine) grid. For each
object, the likelihood is calculated at each grid point, the av-
erage values of the four parameters and their (output) 4 # 4
covariance matrix are computed, and the result is written in an
individual file for each star. This file is read by a second pro-
gram that produces the graphical output and allows for further
manipulation of the results, such as calculation of stellar ab-
solute magnitudes or cluster stellar masses.

There are several issues regarding algorithm details and the
interpretation of results for a program of this type that need to
be discussed. First, if one directly measures magnitudes and
then calculates two different colors that include one filter in
common (e.g., B in the example discussed in the previous
section), then the probability distributions for the two colors
will be correlated (see, e.g., the data plotted in Fig. 2). It can
be easily shown that for the case of the two colors andX � Y

formed from the three filters X, Y, and Z, the input (orY � Z
color) covariance matrix is

2 2 2j � j �jX Y YC p cov(X � Y, Y � Z) p , (2)X�Y, Y�Z 2 2 2( )�j j � jY Y Z

where , , and are the uncertainties that correspond toj j jX Y Z

each filter. For correlated uncertainties, equation (1) is no longer
valid and one has to use (see, e.g., Gould 2003)

M M

2 ( ) ( )x p c � c B c � c , (3)� � l l, mod lm m m, mod
lp1 mp1

where , the inverse of the input (or color)�1B { C M # M
covariance matrix. Note, however, that in some cases two colors
such as and can be considered to be in a firstU�B B�V
approximation as uncorrelated. This would be the case if those
colors were built from the combination of a large number of
independent measurements of and , a situation thatU�B B�V
one might encounter when collecting data from the literature.
CHORIZOS allows either option to be used: if individual mag-
nitudes are inputted, then the full input covariance matrix is
utilized; if colors are chosen, then only the corresponding di-
agonal terms are used. Given the relative complexity of the
algorithm implementation, we conducted an independent test
using a Monte Carlo simulation in which the measured colors
were varied according to the input covariance matrix, and the
solution that minimized was selected in each case. The2x

Monte Carlo simulation was run with 1000 samples, and the
results were combined to produce a likelihood map that was
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then compared to the CHORIZOS output using a variety of
input data and models.8 Results agreed in all cases.

Another issue is grid size. When calculating the solution,
CHORIZOS also checks whether the width of the resulting dis-
tribution in parameter space is comparable to that of the grid
size near the optimum solution and warns the user if it finds that
condition is not met so that a new run with a finer grid can be
executed. A related issue is that of the value of for the case2xmin

. As we have mentioned, it should be zero, unless theM p N
measured colors are incompatible with the models (e.g., the so-
lution falls outside the volume of allowed colors). Therefore,N-
the value of can be used to check such a circumstance. Since2xmin

we are using a grid to evaluate , the minimum value will not2x

be zero, but if the grid is fine enough, it should be K1. But what
if the grid is not fine enough? To solve this problem, after CHO-
RIZOS finds the solution that minimizes , it interpolates the2x

colors from the adjacent points into an ultrafine grid in order to
obtain a more accurate value for the minimum. This value can
then be used to decide whether or not the measured colors fall
outside the volume of allowed colors.N-

A problem also arises when the measured colors fall exactly
at the edge of the N-volume of allowed colors. One example
would be if, in the temperature-reddening case using andU�B

, the measured colors were to correspond to those of aB�V
star with zero reddening (the resulting likelihood diagram could
be similar to that of example 5 in Fig. 3). In that case, the
resulting mean reddening value from the likelihood data would
be greater than zero, and if we were to measure a number of
stars with real , we would obtain positiveE(4405–5495) p 0
values in all cases, leading us to an incorrect estimation of the
value of the reddening. One solution that is implemented as
an option in CHORIZOS is to extrapolate the grid to values
beyond those provided by the original models. Using that op-
tion, the likelihood plot for example 5 in Figure 3 would show
the full ellipsoid, and the correct mean value could be obtained
(which in that specific case would be negative, given the lo-
cation of point 5 in Fig. 2). This option should be used with
caution, however, since extending the grid too much can easily
lead to the inadvertent introduction of false additional solutions.
In addition, in some cases the use of extrapolated values is not
recommended, because of the existence of color near-degen-
eracies at the grid edges (e.g., the optical colors at the high-
temperature end for O stars).

Finally, the validity of the derived mean values and covar-
iance matrix, when the calculated parameter distribution is far
from being a Gaussian (e.g., when multiple solutions exist),
has to be analyzed. We do this in the following section, where
we discuss some sample applications of CHORIZOS.

8 Note that a Monte Carlo method is a valid alternative way of attacking
this problem, but it is more costly from the computational point of view.

4. SAMPLE APPLICATIONS

4.1. Multiple Solutions for Stars Using Johnson-Cousins
Photometry

As we have seen, and colors alone are not enoughU�B B�V
to provide a single solution under all circumstances for main-
sequence stellar atmospheres using a fixed extinction law. But
what if we use additional filters in the Johnson-Cousins set?
If we add the I filter and use as a third color, we have theV�I
situation represented in the left panel of Figure 4. We can see
that in this case a third color eliminates most or all of the
multiple solutions. However, since we now have M p 3 1

, the problem does not have an exact solution for anN p 2
arbitrary combination of colors, and we are forced into using
a minimization or similar technique.2x

We analyze here a similar case using five Johnson-Cousins
filters and a total of four colors ( , , , and ) toU�B B�V V�R V�I
measure the temperature and reddening of a main-sequence star.
We use and main-sequence Kurucz atmospheres, restrictZ p 0.0
the extinction law to that of Cardelli et al. (1989), with R p5495

, and fix the uncertainties in all five passbands to 0.01 mag.3.1
The grid was extrapolated in , but not in T. In orderE(4405–5495)
to compare the results obtained using the full UBVRI photometry
with those of UBV alone, we ran CHORIZOS in test mode. In
that mode, CHORIZOS is fed the true model colors and is executed
to see if it is able to reproduce them. If there is a single well-
behaved solution, the measured mean parameters should be very
similar to the input parameters; if there are multiple solutions, that
may not be the case. One way to quantify the effect is to use
the mean calculated temperature and reddening andT̄

and their uncertainties estimated from their stan-E(4405–5495)
dard deviations, and , to calculate their normalizedj jT E(4405–5495)

distances from the input value:

¯d p (T � T )/j , (4)T input T

E(4405–5495) � E(4405–5495)input

d p . (5)E(4405–5495)
jE(4405–5495)

For a single well-behaved solution, one expects low values
of and (unless the input uncertainties themselvesj jT E(4405–5495)

are large) and, more importantly, values of andFd FT
(and typically lower than 0.5). If there areFd F ! 1.0E(4405–5495)

two or more solutions, the normalized distances can easily be
larger than 1.0, because for such a distribution (formed by, e.g.,
two well-separated narrow quasi-Gaussians), the maxima can
be separated from the mean by more than one standard devi-
ation. In Figure 5 we have plotted those four quantities for the
test case with only UBV photometry.

The results are as follows:

1. For K, CHORIZOS detects the existent uniqueT 1 15,000
solutions, as evidenced by the relatively low values of the
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Fig. 5.—Top: Plots of (left) and (right) for sample application 1 (main-sequence Kurucz models with ) as a function of (in K)j j R p 3.1 log TT E(4405–5495) 5495

and , calculated for UBV photometry with uncertainties of 0.01 mag for each filter. Bottom: Plots of (left) and (right), correspondingE(4405–5495) d dT E(4405–5495)

to the same case.
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Fig. 6.—Same as Fig. 5, but for UBVRI photometry.

uncertainties and absolute values of the normalized distances.
Two minor points can be noted: the somewhat larger values of

around 37,000 K are caused by the near-degeneracy of thejT

optical colors of O stars. Also, the green region at the right
border of the normalized distance plots is caused by edge effects
(we did not extrapolate in temperature).

2. For K, CHORIZOS generally produces muchT ! 15,000
larger values of the uncertainties (especially for ),E[4405–5495]
and the normalized distances are of the order of or larger
than 1.0 (in absolute value) for most of the region. This is
caused by the existence of multiple solutions.
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Fig. 7.—Likelihood contour diagrams for four selected cases in sample
application 1 using UBV (left) and UBVRI data (right). Temperature (in K) is
plotted in the horizontal axis, and in the vertical axis. A whiteE(4405–5495)
star is used to indicate the true temperature and reddening. The irregularities
in the contour diagram for the third star are caused by grid size effects.

Fig. 8.—Same as Fig. 7, for two additional cases.

These results are simply what we expected. The interesting
point is that this demonstrates that when CHORIZOS is run in
test mode, it can be used to predict which parameter ranges
can be measured with the existent colors and precisions, and
which ones cannot be measured. We now turn to Figure 6,
which has the same plots, but for the test case with the full
UBVRI data using the same color scale.

1. The values of the uncertainties are much lower, at less

than 500 K and 0.10 for and , respectively, overj jT E(4405–5495)

most of the analyzed range. The only significant deviations are
those for around K (where the introduction ofj T ≈ 40,000T

RI data alleviates the color near-degeneracy, but does not elim-
inate it completely) and for at certain regions nearjE(4405–5495)

the lower left of the diagram; both effects are quite minor.
2. The values of the normalized distances (in absolute value)

are also much smaller, with only a few regions coming close
to 1.0 (in some cases as a result of edge effects; see, however,
the comparison with Lejeune atmospheres below).

3. A comparison between the likelihood plots produced by
CHORIZOS from UBV and UBVRI data are shown in Figures 7
and 8. The first of those two figures shows four examples in
which the introduction of RI data yields excellent solutions, in
some cases eliminating one of the multiple solutions, and in
others simply reducing the extent of the possible range of val-
ues. The second figure shows two of the cases in which Fd FT
and are close to 1.0 even for the UBVRI data. WeFd FE(4405–5495)

can see that even in those “bad” cases, the introduction of RI
data is useful in further constraining the values of the param-
eters. The reasons for the high values of the normalized dis-
tances are, on the one hand, the persistence of two solutions
(with a narrowing of each peak), and on the other hand, the
reduction to a single solution with an asymmetrical distribution.

The importance of extending the grid for some parameters
can be seen in Figure 9, where we plot the values of

for two test runs that are identical to the ones justdE(4405–5495)

described, with the only exception of not using the grid extension
option. Here we see how is significantly largerFd FE(4405–5495)

around and 5.0.E(4405–5495) p 0.0
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Fig. 9.—Plots of for sample application 1 without grid extrapolation in for the UBV (left) and UBVRI cases (right).d E(4405–5495)E(4405–5495)

In order to test this application using real data, we selected
a sample of main-sequence stars from the list of MK standard
stars by Garcı́a (1989), and we obtained their UBVRI photom-
etry from the online catalog of Mermilliod et al. (1997). The
stars were selected for spectral types between B and M (an
example with O-type stars is analyzed in § 4.2). The results
are shown in Table 1, where the reference temperature–spectral
type conversion has been obtained from Bessell et al. (1998)
for B stars, and from Carroll & Ostlie (1996) for the rest of
the spectral types. When using real data for this application,
we are testing not only the existence of multiple solutions for
a given color combination, but also the accuracy of the atmo-
sphere models. For that reason, we executed CHORIZOS using
both Kurucz and Lejeune atmospheres.

1. For A–K stars, both runs (with Kurucz and Lejeune
atmospheres) produce good results, once the expected un-
certainty in the reference temperature for a given spectral type
is included. values are low, and a single solution2x /(M � N)min

of the correct temperature appears in the likelihood plots (see
Fig. 10). The only significant difference between the two
atmosphere models for these spectral types occurs with F
stars, for which the Lejeune atmospheres provide a slightly
better fit than the Kurucz.

2. For B stars, both runs provide essentially identical results,
but the temperature scale appears to be offset by ∼3000 K for
the earliest subtypes. This could be a continuation of the similar
effect detected for O stars by Garcı́a & Bianchi (2004) and
other authors using spectroscopic data, as described in § 4.2.

3. For M stars, the Kurucz run yields bad fits (large values
of ) and clearly incorrect temperatures. This in-2x /[M � N]min

dicates that the Kurucz atmospheres do not provide a good
representation for some of the optical colors of M dwarfs, as
already pointed out by other authors (see, e.g., Lejeune et al.
1998). The Lejeune run yields low values of 2x /(M � N)min

(except for HD 209290) and acceptable values of T, but with
large uncertainties. The explanation for the Lejeune results can
be seen in the lower two plots of Figure 10: two solutions are
present, the correct one around 3650 K, and another one around
10,000 K. This implies that the Lejeune atmospheres provide
a better representation of the colors of M dwarfs, but that
UBVRI photometry alone is not enough to distinguish between
M stars and reddened late-B stars.

The conclusion is that the addition of RI data to UBV pho-
tometry is very useful for constraining the temperature and
extinction of stars (under certain assumptions, such as the
knowledge of the extinction law and luminosity type) and that
CHORIZOS can be successfully used to derive those param-
eters. One possible application of the code would be to auto-
matically generate temperatures and extinctions from photo-
metric surveys, such as the one planned for the Global
Astrometric Interferometer for Astrophysics (GAIA) mission.

4.2. Measuring Optical-IR Extinction Laws

As a second example, we use Johnson UBV and 2MASS
JHKs data to determine the extinction and extinction law ex-
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TABLE 1
FITMODEL Temperature Measurements from Johnson UBVRI Photometry

Temperature
(K) 2x /(M � N)min

Star Spectral Type Reference Kurucz Lejeune Kurucz Lejeune

HD 36512 . . . . . . . B0 V 29,800 25,989 � 678 25,990 � 679 0.17 0.17
HD 37018 . . . . . . . B1 V 26,600 22,704 � 721 22,707 � 721 2.39 2.39
HD 74280 . . . . . . . B3 V 18,750 16,593 � 368 16,595 � 369 0.12 0.12
HD 219688 . . . . . . B5 V 15,350 13,821 � 219 13,830 � 215 0.15 0.16
HD 222661 . . . . . . B9.5 V 10,300 10,109 � 206 10,135 � 129 0.09 0.02
HD 18331 . . . . . . . A1 V 9230 9239 � 405 9097 � 528 0.78 0.50
HD 216956 . . . . . . A3 V 8720 8812 � 235 8595 � 402 1.45 1.41
HD 26911 . . . . . . . F3 V 6700 7417 � 75 6988 � 70 0.88 0.64
HD 27534 . . . . . . . F5 V 6440 7226 � 95 6811 � 98 1.14 0.02
HD 222368 . . . . . . F7 V 6300 6707 � 243 6321 � 202 0.43 0.38
HD 102870 . . . . . . F9 V 6100 5906 � 227 5945 � 545 2.27 0.90
HD 141004 . . . . . . G0 V 6030 5895 � 76 5799 � 368 0.67 0.62
HD 27836 . . . . . . . G1 V 5950 6566 � 622 6524 � 418 3.02 0.81
HD 1835 . . . . . . . . . G2.5 V 5830 5547 � 44 5399 � 37 0.55 0.32
HD 20630 . . . . . . . G5 V 5770 5722 � 49 5529 � 37 0.02 1.03
HD 20794 . . . . . . . G8 V 5570 5776 � 52 5570 � 71 0.35 0.30
HD 26965 . . . . . . . K0.5 V 5160 5363 � 36 5263 � 26 0.92 0.15
HD 22049 . . . . . . . K2 V 4900 5153 � 34 5122 � 21 0.22 0.44
HD 196795 . . . . . . K5 V 4350 4335 � 454 4021 � 42 0.53 2.15
HD 209290 . . . . . . M0.5 V 3780 5303 � 143 4714 � 722 3.94 3.27
HD 131976 . . . . . . M1.5 V 3650 10,080 � 188 5975 � 3134 3.10 0.14
HD 36395 . . . . . . . M1.5 V 3650 10,083 � 168 5812 � 3070 3.83 0.19
HD 119850 . . . . . . M2 V 3580 10,880 � 566 8924 � 3139 3.09 0.92

Fig. 10.—Likelihood contour diagrams for four of the stars in Table 1 using
Lejeune atmospheres. From left to right and top to bottom, the cases shown
are HD 18331 (A1 V), HD 20794 (G8 V), HD 131976 (M1.5 V), and HD
36395 (M1.5 V). Temperature (in K) is plotted in the horizontal axis, and

in the vertical axis.E(4405–5495)

perienced by an early-type star. We select as input a 35,000 K,
, solar-metallicity Kurucz atmosphere model withlog g p 5.0

uncertainties of 0.01 mag in each of the six filters. The Kurucz
atmosphere is extinguished from to 5.0E(4405–5495) p 0.0
using Cardelli et al. (1989) laws from to 6.0.R p 2.05495

We first assume that we have an accurate spectral type for
the star and, therefore, that we know a priori the temperature
and gravity of the star. We do this by constraining the tem-
perature and gravity in CHORIZOS to a single value (the true
one). Grid extension is used for both andE(4405–5495)

. Results for this , case are shown in Fig-R M p 5 N p 25495

ure 11. The two lower plots demonstrate that UBVJHKs is an
adequate choice of filters to measure the extinction and ex-
tinction law experienced by hot stars. The values of both nor-
malized distances are very close to 0.0 everywhere, with the
only exception being the region around forE(4405–5495) p 0

. The latter is an expected behavior, since for low valuesdR5495

of the reddening all extinction laws produce similar results,
and for they are strictly degenerate. ThisE(4405–5495) p 0.0
is evidenced in the upper right plot of Figure 11: the value of

is kept lower than 0.10 for , but in-j E(4405–5495) 1 0.4R5495

creases rapidly as we approach , whereE(4405–5495) p 0.0
the lack of information on the extinction law provided by the
data manifests itself in large values of . Note, however,jR5495

that is not strongly affected by this, since its valuejE(4405–5495)

is kept below 0.0075 everywhere.
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Fig. 11.—Top: Plots of (left) and (right) for sample application 2 (main-sequence 35,000 K Kurucz model) as a function of andj j E(4405–5495)E(4405–5495) R5495

, calculated for UBVJHK photometry with uncertainties of 0.01 mag for each filter and restricting the model temperature to its true value. Bottom: Plots ofR5495

(left) and (right), corresponding to the same case.d dE(4405–5495) R5495

Now suppose that we know that the star is of an early type,
but we cannot constrain its temperature farther than that, be-
cause of the lack of an accurate spectral type. We can simulate
such a case in CHORIZOS by leaving the temperature uncon-
strained and selecting main-sequence Kurucz models. Results
for this , case are shown in Figure 12. We seeM p 5 N p 3

in the two lower plots that the normalized distances are slightly
worse than in the previous case, but they are still within ac-
ceptable ranges. The degeneracy in is still present forR5495

, as expected, but the information on theE(4405–5495) p 0.0
photometry is accurate enough to yield good estimates of both

and . The loss of information caused byE(4405–5495) R5495
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Fig. 12.—Same as Fig. 11, but without placing constraints on the model temperature.

the unconstrained temperature only translates into larger un-
certainties in the measured quantities, but even those are smaller
than 0.03 in all instances for and are lower thanjE(4405–5495)

0.25 for for .j E(4405–5495) 1 0.4R5495

We also tested the measurement of optical-IR extinction laws
with CHORIZOS using real data from the literature. We se-
lected from the sample used by Cardelli et al. (1989) to derive
their extinction law the four stars present in the Galactic O

star catalog of Maı́z-Apellániz et al. (2004), which have (1)
UBVJHKs data in the catalog, and (2) values of mea-E(B�V )
sured by Cardelli et al. (1989) that are greater than 0.45. CHO-
RIZOS was run using the UBVJHKs photometry ( ) andM p 5
TLUSTY atmospheres twice, first constraining the tempera-
tures and gravities to fixed values ( ), and then leavingN p 2
them unconstrained ( ). The values for the temperaturesN p 4
and gravities were derived from the spectral types by using an
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TABLE 2
Comparison between FITMODEL and Cardelli et al. (1989) Results for the Reddening and Extinction Law of Four O Stars

Cardelli et
al. (1989) Constrained T and ( , )log g M p 5 N p 2

Star Spectral Type E(B�V) RV

T
(K) log g E(4405–5495) R5495

2x /(M � N)min

HD 46202 . . . . . . . . . . . . O9 V 0.47 3.12 32,500 4.00 0.478 � 0.013 3.05 � 0.12 1.70
HD 73882 . . . . . . . . . . . . O8.5 V ((n)) 0.72 3.39 32,500 4.00 0.704 � 0.017 3.42 � 0.10 3.78
HD 229196 . . . . . . . . . . O6 III (n)(f) 1.22 3.12 37,500 3.75 1.221 � 0.014 3.16 � 0.05 0.47
CPD �59�2600 . . . . . . O6 V ((f)) 0.53 4.17 37,500 4.00 0.507 � 0.023 4.13 � 0.21 1.14

Cardelli et
al. (1989) Unconstrained T and ( , )log g M p 5 N p 4

Star Spectral Type E(B�V) RV

T
(K) log g E(4405–5495) R5495

2x /(M � N)min

HD 46202 . . . . . . . . . . . . O9 V 0.47 3.12 28,900 � 1 800 4.13 � 0.46 0.448 � 0.020 3.14 � 0.14 0.57
HD 73882 . . . . . . . . . . . . O8.5 V ((n)) 0.72 3.39 28,600 � 1 900 4.21 � 0.43 0.679 � 0.021 3.44 � 0.10 5.64
HD 229196 . . . . . . . . . . O6 III (n)(f) 1.22 3.12 37,400 � 3 400 3.88 � 0.56 1.214 � 0.028 3.16 � 0.06 1.32
CPD �59�2600 . . . . . . O6 V ((f)) 0.53 4.17 36,500 � 3 500 3.90 � 0.56 0.492 � 0.033 4.14 � 0.23 2.17

intermediate scale between the ones proposed by Vacca et al.
(1996) and Garcı́a & Bianchi (2004), and then selecting the
closest TLUSTY model. Results are shown in Table 2.

1. CHORIZOS results for are in excellent agreementR5495

with those of Cardelli et al. (1989). That paper does not provide
error estimates, but our results are always within 1 j and are
also small enough for the output to be meaningful.

2. CHORIZOS results for are also in veryE(4405–5495)
good agreement with the reference values, although the un-
constrained results are, in all cases, lower than the ones pro-
vided by Cardelli et al. (1989) (but always within 2 j). The
likely origin of this minor difference is the use of values be-
tween �0.30 and �0.32 for the colors of O stars by(B�V )0

those authors. TLUSTY atmospheres predict redder colors by
∼0.02 mag. Once that difference is included, the agreement is
excellent.

3. The values indicate very good fits in all cases except2xmin

for HD 73882, which is still acceptable.
4. Assuming that no biases (e.g., systematic errors in the

TLUSTY atmospheric models) are present, the unconstrained
results favor the lower temperature scale of Garcı́a & Bianchi
(2004) (O4 dwarfs around 40,000 K, and O6 dwarfs around
32,000–35,000 K, implying a boundary between O and B
dwarfs below 30,000 K) over that of Vacca et al. (1996) (with
O4 dwarfs close to 50,000 K, and a boundary between O and
B dwarfs at 34,000 K).

In summary, CHORIZOS can be used to measure reddenings
and extinction laws with good precision, even when accurate
spectral types are not available.

4.3. What Precision is Required to Measure Gravity
for O Stars Using Only Optical Photometry?

For our third example, we investigate the possibility of using
Strömgren photometry to measure the surface gravity of O stars
of unknown temperature and extinction (but with a known
extinction law). This is obviously a difficult task, since O-star
optical colors are quasi-degenerate in temperature and even
more so in gravity. Our goal here is to determine what kind
of photometric precision would be required and to assess
whether such accuracy is attainable.

We use TLUSTY atmospheres with solar metallicity T p
K and between 3.25 and 4.75, observed with35,000 log g

Strömgren ubvy photometry. The extinction law is restricted
to the Cardelli et al. (1989) type, with , but noR p 3.15495

constraints are placed on the possible values of T, , orlog g
, yielding an , case. Grid extensionE(4405–5495) M p 3 N p 3

is used for , but not for T or , because ofE(4405–5495) log g
the incompleteness of the model grid in these two last param-
eters (Lanz & Hubeny 2003).

In a first run, values of 0.003 were used for the uncertainties
in the measured magnitudes. Results for and are shownj dlog g log g

in the left panels of Figure 13. Here we see that the supplied
photometry does not yield enough information to measure grav-
ities. The high values of both and are characteristicd jlog g log g

of an almost constant output result of ∼ for ,4.0 � 0.5 log g
independent of the input values for the gravity and reddening.

In a second run, we use values of 0.001 for the uncertainties.
Results are shown in the right panels of Figure 13. Now the
values for and show that some discrimination isd jlog g log g

possible among gravities, with typical uncertainties in atlog g
around 0.10–0.20, which is enough to differentiate between
main-sequence stars and supergiants.
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Fig. 13.—Top: Plots of for sample application 3 (TLUSTY solar metallicity 35,000 K models) as a function of and , calculated forj log g E(4405–5495)log g

Strömgren photometry with uncertainties of 0.003 (left) and 0.001 mag (right) for each filter. Bottom: Plots of corresponding to the same cases.dlog g

A hypothetical observer should now ask: Am I convinced
that the atmosphere models are correct to within 0.001 mag?
Can I calibrate the photometry to levels that are good enough
to accurately measure differences of 1 mmag? At the current
level of knowledge and technology, the answers to both ques-

tions are likely to be no, hence it can be deduced that at the
present time, optical photometry alone cannot be used to ac-
curately measure O-star gravities. However, future improve-
ments in atmosphere modeling and photometric accuracies may
change the situation.
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5. SUMMARY

CHORIZOS is a multipurpose -minimization SED-fitting2x

code that can be applied to either photometric or spectropho-
tometric data. In this paper, we have described the techniques
it employs and have applied it to several astronomical exam-
ples. At the time of this writing, a beta version of the program
with a limited number of SED models and 78 filter passbands
is available online.9 In the future, a full version will be made
available that will include user-defined filter sets or wavelength
ranges, in addition to the option of adding other SED models.

9 Seehttp://www.stsci.edu/∼jmaiz .

Besides the obvious application of selecting the model(s) that
are compatible with a given set of observed data, CHORIZOS
can be used for a number of other astronomical applications. It
can be utilized to select the optimum choice of filters and min-
imum signal-to-noise ratio requirements when planning an ob-
servation, to test atmospheric models and extinction laws, or to
calibrate the zero points of a filter system, to name a few.

I would like to thank Leonardo Úbeda for his help with the
testing of the code, an anonymous referee for his or her helpful
comments, and Rodolfo Xeneize Barbá for his christening
suggestions.
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