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ABSTRACT

A leading theory for the initiation of coronal mass ejections (CMEs) is the breakout model, in which magnetic
reconnection above a filament channel is responsible for disrupting the coronal magnetic field. We present the
first simulations of the complete breakout process including the initiation, the plasmoid formation and ejection,
and the eventual relaxation of the coronal field to a more potential state. These simulations were performed using
a new numerical code that solves the numerical cavitation problems that prevented previous simulations from
calculating a complete ejection. Furthermore, the position of the outer boundary in the new simulations is
increased out to 30 R�, which enables determination of the full structure and dynamics of the ejected plasmoid.
Our results show that the ejection occurs at a speed on the order of the coronal Alfvén speed and hence that the
breakout model can produce fast CMEs. Another key result is that the ejection speed is not sensitive to the
refinement level of the grid used in the calculations, which implies that, at least for the numerical resistivity of
these simulations, the speed is not sensitive to the Lundquist number. We also calculate, in detail, the helicity of
the system and show that the helicity is well conserved during the breakout process. Most of the helicity is
ejected from the Sun with the escaping plasmoid, but a significant fraction (of order 10%) remains in the corona.
The implications of these results for observation and prediction of CMEs and eruptive flares is discussed.

Subject headinggs: Sun: corona — Sun: coronal mass ejections (CMEs) — Sun: flares

1. INTRODUCTION

The most energetic and most dramatic manifestations of
solar activity are the giant disruptions of magnetic field and
plasma known as coronal mass ejections (CMEs)/eruptive
flares. A large CME can consist of more than 1016 g of coronal
plasma accelerated to more than 1000 km s�1 on a timescale of
�1000 s. ( In this paper, we emphasize fast CMEs typical of a
major CME/eruptive flare event, since these are the most im-
portant for space weather and the most difficult to explain
theoretically.) The overriding problem in understanding the
physics of fast CMEs is accounting for their explosive nature,
a topic of intense theoretical study (e.g., Sturrock 1989;
van Ballegooijen & Martens 1989; Forbes & Isenberg 1991;
Moore & Roumeliotis 1992; Low & Smith 1993; Mikić &
Linker 1994; Wu et al. 1995; Wolfson & Saran 1998; Amari
et al. 2000; Priest & Forbes 2000; Chen 2001). The basic en-
ergy source must be magnetic stress that comes through the
photosphere, either by direct motions or by emergence of
prestressed flux. However, the coronal system is driven very
slowly: �1 km s�1 footpoint speeds compared to its charac-
teristic Alfvén speed of �1000 km s�1. Furthermore, the co-
ronal field is free to expand outward quasi-statically, which is
the evolution usually observed and is expected from analytic
theory of the ideal behavior of a force-free coronal magnetic
field (Aly 1984, 1991; Sturrock 1991).

Because of these observational constraints, most of the
present models postulate that CMEs represent the explosive

release of magnetic energy stored in the corona, specifically, in
the strongly nonpotential magnetic field of a sheared neutral
line, or filament channel (see recent reviews by Low 1996;
Forbes 2000; Klimchuk 2001; Lin et al. 2003). Although a
filament eruption may not be observed with every CME, it is
well known that all major solar activity such as flares and
CMEs are associated with a sheared neutral line (e.g., Patty &
Hagyard 1986; Schmieder et al. 1996). Furthermore, filament
channels are the only locations in the Sun’s corona where the
field appears to be strongly nonpotential and hence where
large amounts of free energy can be stored. It appears highly
likely, therefore, that the underlying cause of CMEs, eruptive
flares, and filament ejections is the disruption of a force bal-
ance between the upward pressure of the sheared filament
channel field and the downward tension of overlying coronal
field that is quasi-potential.
A key point is that the upward pressure cannot increase

rapidly, because the magnetic shear/twist is produced by the
slow photospheric evolution (shear flows and/or flux emer-
gence). Therefore, explosive events such as CMEs must be
due fundamentally to the catastrophic removal of the down-
ward magnetic tension of the overlying coronal field. Recent
theory and simulation has focused on magnetic reconnection
as the mechanism for the removal of the magnetic tension
(Low 1996; Forbes 2000; Klimchuk 2001; Lin et al. 2003).
Only two reconnection models have been proposed that have
successfully demonstrated explosive eruption with full MHD
numerical simulations: flux cancellation (Amari et al. 2000)
and magnetic breakout (Antiochos et al. 1999). In the can-
cellation model, reconnection is postulated to occur at the
photospheric neutral line below a filament channel, producing
a twisted flux rope in the corona and eventually leading to a
loss of equilibrium (Forbes 2000). In the breakout model,
reconnection at a null point above a filament channel leads to
the removal of overlying flux and to an explosive outward
expansion (Antiochos 1998, 1999). At present, neither model
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can be considered to have been either definitively verified or
refuted by the observations. However, there have been a num-
ber of studies recently that strongly support a breakout inter-
pretation for some well-observed CME/eruptive flare events
(e.g., Aulanier et al. 2000; Sterling & Moore 2001).

It should be emphasized that both models predict a similar
evolution once the eruption is well underway. The rapid up-
ward expansion of the filament channel field causes a current
sheet to form below the erupting field, resulting in strong re-
connection there. This reconnection produces a highly twisted
plasmoid that escapes from the corona and leaves behind the
hot X-ray, flare loops, as in the standard model (Carmichael
1964; Sturrock 1966; Hirayama 1974; Kopp & Pneuman 1976).
An important issue for any model is the speed of the escaping
plasmoid. In order to account for fast CMEs, the erupting
plasma must be ejected from the Sun at speeds of order the
Alfvén velocity. But the previous numerical studies of break-
out could not calculate the actual ejection itself (Antiochos
et al. 1999). These studies were a critically important first step,
because they showed how a multipolar magnetic topology
could contain sufficient free energy to open up the filament
channel field and still be compatible with the Aly-Sturrock
energy limit (Aly 1991; Sturrock 1991), but they could not
verify that a fast CME would result. The problem was that
once the eruption picked up significant speed, the reconnec-
tion at the rapidly moving coronal null led to numerical cavi-
tation there (i.e., very low densities), and the simulations
developed severe numerical inaccuracies.

Our goal in this paper is to calculate the complete evolution
of the breakout eruption, including the formation and escape
of the plasmoid. The main issues that we focus on are the
speed of the eruption and the evolution of the magnetic he-
licity in the corona. We use the exact same 2.5-dimensional
geometry and magnetic topology as in Antiochos et al. (1999),
but we employ a more robust numerical code that mitigates
the effects of cavitation by applying a mass diffusion at grid
cells where the density exhibits too large a density drop. In
addition, we extend the computational domain out to 30 R� so
as to be able to follow the evolution of the plasmoid well after
it has been ejected from the corona. A larger outer radius also
helps minimize any effects from the boundary conditions
there. The physical model and the code are described in detail
below.

2. DESCRIPTION OF NUMERICAL MODEL

Our model follows that described in Antiochos et al. (1999)
in most details, and so we limit our description of it to a
summary of the essential features and a detailed exposition of
all significant modifications.

The idealized model has a complex initial field geometry
with azimuthal symmetry. It has four flux systems, as shown in
the first panel of Figure 1. An inner flux system is centered on
the equator. Mid-latitude flux systems are centered on latitude
�45

�
, and at large radius there is an overlying dipole system.

These four flux systems are bounded by two separatrix surfaces
that intersect in the corona at an X-point (actually an X-line due
to the axisymmetry). A footpoint shear is applied to the inner
equatorial flux system, which causes it to expand outward and
push against the overlying field, deforming the X-point to a
current sheet. Reconnection between the equatorial and over-
lying systems causes flux in the inner region to be transferred
to the mid-latitude flux systems, which induces the remaining
inner flux system to expand outward even faster. This feedback
causes an ever-increasing outward expansion of the field that

eventually leads to an explosive opening of the overlying field,
formation of a lower X-line and flux rope, and escape of some
of the sheared inner flux to infinity.

2.1. Equations

To model this scenario, we solve the equations of ideal
MHD including gravitational acceleration:

@�

@t
þ:= (�v) ¼ 0; ð1Þ

@

@t
(�v)þ:= (�vv)þ:p ¼ 1

4�
(:<B)<B� �g; ð2Þ

@U

@t
þ:= (U v)þ p:= v ¼ 0; ð3Þ

and

@B

@t
¼ :< (v< B); ð4Þ

where � is mass density, v is velocity, p is gas pressure, U ¼
3p=2 is the internal energy, B is magnetic induction, and g ¼
g0er=r

2 is gravitational acceleration.

2.2. Numerical Techniques

Our numerical code is a modified version of the code de-
scribed by DeVore (1991). It uses a multidimensional flux-
corrected transport (FCT) algorithm in spherical coordinates
and guarantees preserving the divergence-free condition on the
magnetic field to machine accuracy. The code is second-order
accurate in space and time for a uniformly spaced grid.

We have modified the application of the flux limiter to
achieve greater consistency in its use across the set of equa-
tions. The FCT algorithm can be viewed as a combination of
high- and low-order algorithms. The low-order algorithm is the
same as the high-order algorithm but has a known explicit
diffusion added to ensure that the low-order solution retains
positivity and monotonicity. For a given time step, the solution
for each equation is computed using the low-order scheme.
Antidiffusive fluxes are then computed that remove as much of
this additional diffusion as possible, under the constraint that
the antidiffusion step cannot introduce new extrema into the
solution or accentuate any existing extrema. For each equation,
the fraction of the antidiffusive flux that can be applied without
violating this constraint is recorded. We then take the minimum
of the fractions associated with the mass and energy densities
and apply these to limit the antidiffusive fluxes used to com-
plete the updated solutions for all the hydrodynamic variables.

From a numerical perspective, the most challenging aspect
of this simulation has been to develop an algorithm that is
robust enough to handle regions of ultralow density. In this
simulation we expect ultralow density regions to develop.
Where current sheets tear, we will have divergent flows at
Alfvénic speeds in an already low density plasma. We will also
have the cross section of a flux rope with helical field lines
expanding rapidly as it rises through an atmosphere in which
the density varies approximately as r�5. In any MHD code
these ultralow density regions pose problems associated with
the temporal and spatial accuracy of the algorithms discret-
ization and with the assumptions inherent in the nonrelativ-
istic MHD description.

If the density in our numerical solution drops to unphysical
ultralow values in regions of strong magnetic field, the Alfvén
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Fig. 1.—Snapshots of selected field lines in the inner region of the computational domain, projected onto the � ¼ 0 plane. Snapshot times are, from left to right and
top to bottom, 0, 50251, 70680, 79008, 85185, and 95020 s, respectively. The spatial scale in the last two frames is expanded to best show the evolving flux rope.



speed can grow to be a significant fraction of the speed of light.
To properly model this regime would require a kinetic de-
scription with relativistic equations. We would be forced to use
such short time steps to achieve stable and accurate solutions
that the calculation would be prohibitively expensive. Since we
do not believe these high-frequency modes are important in the
global evolution of CMEs, we retain a nonrelativistic MHD
approximation. However, we modify the momentum equation
following an approach pioneered by Boris (1970), commonly
known as the ‘‘Boris correction.’’5 The time derivative in the
momentum equation is replaced by

@

@t
(�v)�! @

@t
M; ð5Þ

M ¼ � v(1þ q2)� qq = v
� �

; ð6Þ

with

q ¼ Bffiffiffiffiffiffiffiffiffiffiffiffi
4��c2

p ¼ va
c
; ð7Þ

where vA is the Alfvén velocity. As the local Alfvén speed
becomes significant in comparison with the speed of light, this
has the effect of increasing the inertia associated with the
momentum in the direction perpendicular to the local mag-
netic field. By choosing artificially low values of c in equa-
tion (7), we effectively dampen cross-field accelerations in
regions of low mass density. In our code we chose a value of
c ¼ 3000 km s�1.

The Boris correction helps to reduce the risk of numerical
cavitation. We also follow the standard practice in MHD codes
of setting the field-aligned component of the Lorentz force to
zero. However, in an ideal MHD code, when rapid recon-
nection occurs, significant field-line curvature develops on
scales close to the grid cell size. Inevitably this leads to er-
rors due to spatial discretization. When these errors occur in
regions of low density, the potential for cavitation exists. In
our FCT code we conjecture that this potential can be com-
pounded by differences in the phase errors that occur in the
solutions to the mass and momentum density equations. In the
neighborhood of rapid reconnection, strong Lorentz forces
occur in close proximity to regions of divergent flow with low
density. If phase errors cause excess momentum to bleed into
these low-density regions, the result is excessively large ve-
locities that can drive the evolution of the magnetic field in
unphysical ways.

To avoid this problem we have developed a tunable method
for additional limiting of the antidiffusive fluxes in the neigh-
borhood of very low densities. The factor by which the anti-
diffusive fluxes are reduced is multiplied by the function

h(r; �; t) ¼ 1� h�(r; �; t); ð8Þ

evaluated on the faces of each grid cell. When h� ¼ 0, no
reduction in antidiffusion occurs. We set h� at cell center to be

h� ¼ min 1; 3� �

�min

� �
2

3

� �2 !
if � < 3�min;

0 otherwise:

8><
>: ð9Þ

This choice is somewhat arbitrary and is designed to increase
smoothly from 0 to 1 as � drops below 3�min to 1:5�min. The
value of h� at each cell interface is then computed by averaging
the value in the cells on each side of the interface. In addition,
we apply a diffusive operator to h� to spread its influence into
the immediate neighborhood, with a diffusion coefficient that is
given by 1=(8dt). Finally, at the start of each time step we decay
the existing value of h� by 0.125 so that excess diffusion is
maintained only as long as it is required.

We set the value of �min to

�min ¼
1

40
� (r; t ¼ 0): ð10Þ

This approach is effective in reducing the severity of cavita-
tion events. It is applied to the hydrodynamic variables, but
not to the magnetic field. Since the only additional diffusion
that the magnetic field will experience is produced through the
indirect influence of the extra mass and momentum diffusion,
we expect this to be weak.

2.3. Numerical Grid

We assume azimuthal symmetry and consequently solve the
MHD equations above in 2.5 dimensions.6 The computational
domain extends from an inner radial boundary (1 R�) at the
solar surface to the outer radial boundary at 30 R�, and from
the north pole � ¼ 0 to the south pole � ¼ �. In principle the
equator represents a symmetry plane in this idealized model,
and we could choose to model only one hemisphere. However,
we believe there is an important symmetry breaking process in
this problem, associated with the development of magnetic
islands on the equatorial radius (see x 3.1). This may influence
the observed speed of eruption, and so we choose to model the
full �-range.

The numerical grid has a static adaptive refinement super-
posed on a base grid that is uniformly spaced in the �-direction.
The grid spacing is proportional to r in the radial direction, so
that the grid cell aspect ratios are constant and not a function
of r. The base grid has a resolution of 128 ; 256. In the inner
regions we have two additional refinement levels as shown in
Figure 2. Each refinement level has grid spacing reduced by a
factor of 2 over the previous refinement level, so that near the
equator on the inner radial boundary the resolution is equiva-
lent to a grid of 512 ; 1024. The figures in this paper show
results from runs with this grid, but for comparison we have
also performed simulations with larger and smaller refinement
levels.

The nonuniform radial spacing makes the code nominally
first-order accurate spatially. However, the second-order error
term introduced by the nonuniform spacing has a coefficient
whose magnitude is determined by the rate at which the grid
spacing changes. In our grids this spacing changes slowly. As
a result we believe that the contribution of this error term to
the total error is not larger than the contribution from the third-
order error terms for the resolution we have used. We have
validated the code by substituting a computationally expen-
sive fourth-order spatial interpolation function where appro-
priate, to make the code formally third-order accurate, and

5 The code used by Antiochos et al. (1999) employed a version of the
Boris correction that had no dependence on the local field direction.

6 The variables �; v;U ;B are functions of r and �, but not � since
@=@� ¼ 0, but the vectors v;B can have nonzero components in the
�-direction.
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have shown that this makes no significant qualitative differ-
ence to our results at the resolution of our current grid.

2.4. Initial Conditions

The initial magnetic field is potential and consists of a
combination of dipole and octopole components. Because of
the azimuthal symmetry, it is easily expressed in terms of
Euler potentials,

B ¼ :� (r; �)<:�; ð11Þ

where we choose

� (r; �) ¼ sin2�
R�

r
þ (3þ 5 cos 2�) sin2�

R3
�

2r 3
: ð12Þ

This form for the flux function � produces a field with four
distinct flux systems as shown in Figure 1. At large radius the

field is dominated by the dipole component. Near the solar
surface there is an inner flux system centered on the equator,
bounded at higher and lower latitudes by two additional flux
systems. There is a null point at a radius of r ¼

ffiffiffi
3

p
R�, and

the field lines passing through this point define separatrices
bounding the four flux systems.
Since the initial numerical magnetic field only samples the

analytic potential solution, the numerical Lorentz force will be
approximately zero, but not exactly zero. Therefore, we sub-
tract this small numerical Lorentz force associated with our
initial field from the time-dependent Lorentz force evaluated
during the simulation. As a result, the initial field is a true
equilibrium of our modified algorithm and does not evolve
until we perturb it.
The initial mass density is computed as a solution to the

equation of hydrostatic equilibrium, with a temperature profile
given by

T (r) ¼ T�
R�

r
K; ð13Þ

Fig. 2.—Grid used for this computation. Each box represents a block of 8 ; 8 grid cells. Frame (a) is the complete grid, while (b) and (c) show successively more
enlarged views of the inner equatorial region of the grid.
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and consequently an initial density profile of

�(r) ¼ ��

�
R�

r

�1��
; ð14Þ

with � ¼ 2kB T�=g�, where T� ¼ 2 ; 106 K is the tempera-
ture, �� ¼ 2 ; 108mp g cm�3 is the mass density, and g� ¼
2:7 ; 104 cm s�2 is the gravitational acceleration at the inner
radial boundary.7 The temperature and density profiles are
chosen so that the plasma � in the model is small, in agree-
ment with the real corona. For the form of � given above, we
find that at the solar surface the magnetic field strength is 2 G
at the equator and 10 G at the poles, which yields a value for
varying from 0.5 to 0.02 at the poles. The values for � along a
radial line at the equator and at 45

�
are shown in Figure 3. Of

course the � diverges at the magnetic null, but we note that
along the mid-latitude line, � remains smaller than unity out
to large radius.

2.5. Boundary Conditions

At the inner radial boundary (R�), we enforce a line-tied
condition on the magnetic field. This boundary is also as-
sumed to be impenetrable. More precisely, these conditions
are imposed by setting

@Br

@t
¼ 0; ð15Þ

vr ¼ 0 ð16Þ

on the boundary.
The system is driven by imposing a shear velocity profile in

the �-direction on the inner boundary. The shear is applied in a
narrow region centered about the equatorial neutral line. The
velocity is antisymmetric about the equator with a latitudinal
dependence given by

v� ¼
0 if j j > �;

V0( 
2 ��2)2 sin  if j j � �;

�

where  ¼ (�=2� �), � ¼ �=15 defines the latitudinal extent
of the shear region on each side of the equator, and the
shearing amplitude V0 ¼ 8682:52 R�(�=2). The shearing is
applied with a sinusoidal time profile of period 2� and is
imposed for a half cycle of the sinusoid, i.e., for a time interval
of � ¼ 100; 000 s. As a consequence of this shear, the maxi-
mum angular displacement in azimuth of a field line footpoint
at the photospheric boundary is �=2, which implies a maxi-
mum velocity less than 10 km s�1 and an average shear ve-
locity considerably less. From Figure 3 we note that in our
model corona the Alfvén speed can exceed 300 km s�1, which
indicates that although our system is not driven as slowly as
the real corona, it is still driven quasi-statically. It should be
emphasized that the photospheric shear assumed in our model
is merely a convenient method for driving the system; it is not
meant to represent the process by which a real filament
channel forms. Flux emergence is likely to play a major role
in the formation process, but modeling flux emergence in a
coronal simulation is very difficult computationally. As long
as the system is driven quasi-statically, we do not expect the
detailed process by which the shear forms to have a significant

effect on the eruption dynamics, at least, in the breakout
model.

In these simulations we attempted to place the outer radial
boundary as far out as computationally possible, r ¼ 30 R�, so
that it would have a negligible effect on the eruption structure
and evolution. As seen below, the eruption is well into its decay
phase before the shock or the ejected plasmoid reaches the
outer boundary. Open boundary conditions are imposed there.
At the polar boundaries, the boundary conditions are deter-
mined from the azimuthal symmetry constraint.

3. RESULTS

3.1. Evvolution of Velocity and Energgy

The evolution extends the initial results obtained by Antiochos
et al. (1999). The field and plasma evolution is illustrated
in a sequence of snapshots shown in Figures 1, 4, 5, and 6.

Fig. 3.—Top: Alfvén speed as a function of radius at t ¼ 0, along the
equatorial radius and along a radial line at 45� north. Bottom: Plasma � along
the same radial lines.

7 This density is twice the base density used by Antiochos et al. (1999).
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Fig. 4.—Mass density for the frames shown in Fig. 1. The color map represent mass density in units of g cm�3. Some field lines are superposed to help compare
features in the color map with the corresponding features in the field-line plots. Note that the color map scale is modified in the last three frames to highlight diffuse
structure in the expanding flux rope.
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Fig. 5.—Same as Fig. 4, except the color map represents radial velocity in cm s�1.
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Fig. 6.—Same as Fig. 4, except the color map represents helicity density. Note that the color map is altered for the last three frames to highlight the lower helicity
densities in the expanding flux rope.



Figures 4–6 show the evolution of the field superposed on color
density maps of the mass density, radial velocity, and helicity,
respectively. Note that the field lines in our model are three-
dimensional objects, since we solve for all three components of
B. To display them here we project them onto a single plane, by
plotting every point along each three-dimensional field line, not
at its true location (r; �; �), but instead at (r; �; 0). The field
lines in these figures have been drawn by choosing a set of
starting points in the � ¼ 0 plane and tracing the field lines (in
both positive and negative directions) beginning at each of
those points. We selected starting points on the inner boundary
and at points along the equatorial radial axis. Some field lines
are terminated prematurely if they extend beyond the range
��=4 < � < �=4, or after they have accumulated 3000 arc
segments, to avoid clutter. When comparing the frames at dif-
ferent times, it should be kept in mind that only those field lines
that are traced from starting points on the inner boundary are the
‘‘same’’ in the different frames and therefore show the motion
of a particular field line (assuming the evolution is ideal). In
order to show the plasmoid with disconnected field lines that
forms, we also use starting points along the equatorial radius.
Since these points are fixed in space, the field lines traced from
these points are not the same in the different frames, but they
can be used to illustrated the general position of the plasmoid.

It is evident from Figure 1 that as the inner flux system is
stressed it expands outward, pushing up against the overlying
field that inhibits its expansion. The X-point between the
two systems deforms into a current sheet elongated in the
�-direction. When the thickness of this current sheet reaches
the grid scale, the effects of numerical diffusion become signifi-
cant and the two systems begin to reconnect. We will refer to
this reconnection as the ‘‘breakout’’ reconnection. Field lines
at the outer edges of the inner flux system reconnect with over-
lying field and subsequently snap back to join the inner mid-
latitude flux systems, allowing the remaining inner flux system
to expand further outward. As a result of the large outward
expansion, the field lines deep in the inner system begin to
approach an open geometry, and hence a radial current sheet
develops there. Again, when the current sheet thickness be-
comes of order the grid scale, diffusion becomes significant
and reconnection sets in. We will refer to this as the ‘‘flare’’
reconnection. The flare reconnection produces a disconnected
flux rope (plasmoid) between the inner and outer flux systems,
which continues to rise. The plasmoid eventually escapes from
the system, and the inner field relaxes back to a configuration
that is similar in general features to its original configuration
but with much less shear. We emphasize that the flare recon-
nection and the production of a disconnected flux rope are cer-
tainly not unique to the breakout model. They are an inevitable
consequence of eruption and are well-known features of essen-
tially every 2.5-dimensional model (e.g., Mikić & Linker 1994).

Another feature that is evident in Figure 1, especially in the
late stages of the eruption, is the appearance of a large mag-
netic island in front of the ejected plasmoid. The origin of this
island is the artificial symmetry in the simulation. When the
breakout current sheet becomes sufficiently extended in the
�-direction so that its length-to-width ratio begins to exceed a
factor of 10 or so, magnetic tearing occurs, causing the sheet to
break up into multiple islands (Furth et al. 1963). Island for-
mation is a ubiquitous feature of 2.5-dimensional reconnec-
tion, especially in simulations with high spatial resolution so
that long current sheet can develop (e.g., Karpen et al. 1996;
Shibata et al. 1992). Note that in our simulation, magnetic
islands also form in the flare current sheet along the radial

direction. But these islands are short-lived and remain small
because they rapidly migrate either up or down along the radial
current sheet and merge with the inner or outer flux systems.
We expect that, in reality, islands forming in the breakout
current sheet would also be short-lived, but the mathematical
problem that we solve has a symmetry plane at the equator,
with �; p;U ; vr;B�;B� symmetric and v�;Br antisymmetric
with respect to reflection in the equatorial plane. If an island
forms that is centered about the equator, as is almost certain to
occur, then because of the equatorial symmetry such an island
cannot move either up or down along the current sheet and
disappear. An equatorially symmetric island can only grow
indefinitely. Note that such an island chokes off the breakout
reconnection by converting the X-point to an O-point. All the
mass and field accumulated in the island must be ejected out-
ward along with the plasmoid; hence, the island slows down
the eruption. By simulating the full �-range rather than only a
single hemisphere, as discussed in x 2.3, we break the sym-
metry numerically and mitigate these effects. Islands form al-
most immediately in the breakout current sheet, but early in the
eruption they are small and there is enough numerical asym-
metry present to move them up or down. It is only in the late
stages when the ejection is moving near the Alfvén speed that a
large persistent island forms.

The critical issue for any CME model is the speed of the
eruption. To account for fast CMEs, the ejection speed must be
of order the Alfvén velocity. Furthermore, since all numerical
simulations have effective resistivity orders of magnitude
higher than the solar value, any viable CMEmodel must predict
a negligible dependence of ejection speed on the Lundquist
number. In order to determine the ejection speed in the simu-
lation, we define the leading edge of the eruption to be the
position of the X-point ahead of the plasmoid. This quantity is
shown as a function of time in Figure 7. SinceB� changes sign at
the null, we can accurately obtain the position of the X-point by
calculating the location of the outermost extremum in the radial
integral of the B� flux through the equatorial plane,

Z r

R�

B�(r
0; �; t)r 0 sin � dr 0: ð17Þ

Fig. 7.—This plot tracks the extremum in the radial integral of the flux of
B� across the equator, corresponding to the location of the outer X-point.
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This procedure has the added advantage of taking into account
the fact that the X-point changes to an O-point late in the
evolution.

As the inner flux system expands, the X-point moves out-
ward at a speed determined by the slope of this curve. Just
before the plasmoid pinches off because of the onset of flare
reconnection, this slope indicates an expansion speed of 50 km
s�1. Once the flux rope pinches off, at about 73,000 s, the outer
X-point accelerates rapidly, reaching an ‘‘ejection’’ speed of
365 km s�1 before it reaches the outer limit of our simulation.
Almost all the acceleration occurs below 3 R�. For compari-
son, the Alfvén speed at the equator at 3 R� before the flux rope
arrives is 65 km s�1, and at 45� north it is 160 km s�1 (Fig. 3).
As the plasmoid moves outward, it creates a density enhance-
ment around it as it sweeps up coronal material (Fig. 4). Since
the plasmoid is moving at supersonic and super-Alfvénic speeds,
a magnetoacoustic shock forms at the leading edge of this
enhancement (Fig. 5). These results verify that, at least for this
simulation, the breakout model does produce a fast CME.

In order to determine the dependence on resistivity, we have
run identical simulations but with refinement levels one lower
and one higher than that shown in Figure 2, corresponding to
effective grids of 256 ; 512 and 1024 ; 2048, respectively.
Grids larger than 1024 ; 2048 are too CPU intensive to run in
reasonable times, and as will be discussed in x 3.3 grids smaller
than 256 ; 512 are too inaccurate. The evolution is qualita-
tively identical for all cases, with a plasmoid ejection as in
Figures 1–5. For quantitative comparison, Table 1 lists the
position and velocity of the outer X-point at approximately
85,000 s when the eruption is fully developed and is ap-
proaching its maximum velocity. It is evident that the speed
does not decrease with refinement level; in fact, it exhibits
a significant increase between the first and second case and
a small increase between the last two cases. We believe the
primary reason for this increase is that a larger grid implies a
smaller effective resistivity, and consequently, the system can
build up more free energy before it begins to reconnect. As
is evident from Figure 1, the onset of breakout reconnection
and the ejection of the plasmoid occurs well before the end of
the shearing phase, at t ¼ 100;000 s. Delaying the eruption
implies that it will release more free energy and therefore have
higher initial acceleration. Of course, the maximum velocities
in the system are limited by the Alfvén speed, and it appears
that the last two refinement cases are approaching this limit.

Another important issue for all models is the energetics of
the eruption. The fast ejection speed in our simulation implies
that the kinetic energy should play a major role. Figure 8 shows
the evolution of several important energy terms in the system.
Since the system is driven by the shear flow in the azimuthal
direction, the bulk of the free energy is stored in the azimuthal
field, B2

�. The azimuthal energy rises smoothly, reaching a
maximum at around 65,000 s, and then begins to decrease
because of the onset of outward expansion, even though the

shearing continues on until 100,000 s. Between 65,000 and
80,000 s the free energy in the nonazimuthal components, B2

r þ
B2
�, rises rapidly, implying that the energy is being transferred

from the azimuthal to nonazimuthal components of the field.
This time period corresponds to the creation of the radial cur-
rent sheet deep in the inner flux system and to the onset of re-
connection there. From 80,000 to 90,000 s, the nonazimuthal
field decreases sharply, corresponding to a steep rise in kinetic
energy. We note that the kinetic energy accounts for approxi-
mately half the energy lost by the field. The rest is taken up
primarily by the increase in gravitational energy, and to a lesser
extent by internal energy at the current sheets and shocks.
Since not all the azimuthal field is injected into the plasmoid—
a fraction remains in the closed field region that does not
erupt—we also show in Figure 8 the azimuthal magnetic en-
ergy below 1.5 R�. Comparison of the total azimuthal energy
with that below 1.5 R� indicates that by the end of the simu-
lation, 120,000 s, almost all the azimuthal magnetic energy in
the ejected plasmoid has been lost because of the plasmoid’s
large expansion.

3.2. The Rapid Acceleration Phase

In Figure 7 we see that the outward radial expansion of the
sheared flux is slow and gradually accelerating at first but
begins a period of rapid acceleration around 70,000 s. What
triggers this rapid acceleration phase?
The first point to recall is that, since we solve the ideal

equations, the resistivity in our calculation is numerical, which
means that it is strongly scale-dependent. For regions where the
gradients in magnetic field are well resolved, scale lengths
greater than 10 grid points, the effective Reynolds number is of
order 10,000 or higher. But once the scale lengths decrease to
the size of a few grid points, or less, the effective Reynolds
number becomes of order unity. We expect that on the real Sun
a similar situation holds in that once a coronal current sheet
becomes strong enough, some current-driven instability or ki-
netic effect kicks in, increasing the effective resistivity. Hence,
the trigger mechanism for the eruption in our simulations is the

TABLE 1

Upper X-Point Position and Speed at Time of Maximum Velocity

Maximum Resolution

Radius

(R�)

Velocity

(km s�1)

256 ; 512 ............................................................ 3.6 170

512 ; 1024 .......................................................... 4.3 233

1024 ; 2048 ........................................................ 4.4 233

Note.—Data refer to time 85,000 s in each case.

Fig. 8.—Energy components as a function of time. The lines represent
azimuthal magnetic energy (solid line), the azimuthal magnetic energy below
1.5 R� (dash-dotted line), the change in nonazimuthal magnetic energy from
the original field (dashed line), and the kinetic energy (dotted line). The units
of energy are ergs divided by the volume R3

�.
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onset of reconnection at the upper null due to the turn-on of a
large numerical resistivity, but in fact such a clear-cut trigger
may not be necessary for the model.

At the start of our simulations the magnetic field is potential
and the scale for the gradients at the coronal null is large, tens
of grid points. But as the neutral line shear increases, the
coronal field expands outward, deforming the field at the null.
As discussed in Antiochos et al. (1999), the scale at the null
(width of the currents there) decreases inversely with the radius
of the null point (amount of expansion). We find that as long as
the magnetic scale at the null is large compared to the grid size,
there is no measurable reconnection (on the timescale of the
runs). The system appears to be in a stable equilibrium with no
evidence for either instability or loss of equilibrium. This is
true even if the energy in the field increases to a value well
above the minimum open field energy. It should be emphasized
that such a stable energy buildup phase is necessary for any fast
CME model to be viable.

But as the shearing continues, the width of the current
structure at the null eventually drops to the grid scale and
reconnection begins. Once reconnection appears, we find that
the expansion simply runs away, even if one stops the shearing
at this point. This result is the motivation for our argument
concerning the feedback mechanism.

One could claim that the trigger mechanism in our model is
actually the ‘‘turn-on’’ of numerical resistivity due to its grid
dependence, and for our particular calculation this is certainly
justified. (It may also be the case for the real Sun). But we
question whether such an abrupt turn-on of resistivity is really
necessary for the model to operate.

Even if the resistivity were constant and independent of grid
scale, the magnetic diffusion rate would still have a strong scale
dependence (varying as the square of the scale); therefore, it is
likely that one would still obtain an evolution similar to that
described above. For small shear the rate of reconnection at the
null would be negligible compared to the rate of shearing and
expansion, so that one would still have a stable energy buildup
phase. Furthermore, one would expect the scale at the null
point to decrease with expansion until eventually the rate of
reconnection there became significant compared to the ideal
evolution rates. The critical question is how the reconnection
affects the subsequent evolution. The ongoing reconnection
continually acts to drive the system further out of force balance,
which accelerates the rate at which the flux tries to move
through the X-line (including also the lower X-line, once it
appears). Thus, as long as some finite resistivity is present, a
feedback occurs that rapidly accelerates the outward expan-
sion. Consequently, we expect that even with a constant re-
sistivity, the evolution of the null point would resemble that
shown in Figure 7, in that one should see a nearly non-
reconnecting, linear expansion phase followed by an expo-
nentially increasing expansion phase, but probably with a less
abrupt turnover from linear to exponential. If so, then the key
feature of the model is the positive feedback between recon-
nection and expansion, not the fact that the resistivity has a
sharp turn-on. On the other hand, there is no doubt that the use
of numerical resistivity in the present simulations helps define
a clear trigger to the eruption.

The lower X-line appears and a flux rope begins to form at
about the same time as the onset of rapid outward expansion. It
might be argued that this timing indicates that the rapid ex-
pansion phase is due to a loss of equilibrium, rather than the
reconnection feedback mechanism. A loss of equilibrium has
been seen in a number of flux rope studies and is the trigger

mechanism for the flux cancellation models. If true, this would
bring the flux cancellation and breakout models into a common
physical framework. However, while we recognize that this
simulation does not answer the question definitively, we doubt
that a loss of equilibrium is operating in our simulations, be-
cause the system begins its rapid outward expansion well be-
fore a substantial plasmoid forms. By 73,000 s, when the lower
X-line first appears, the system has already entered its rapid
acceleration phase, and a substantial plasmoid is not present
until around 80,000 s, at which time the eruption is near its
final velocity.8 In the flux cancellation models, equilibrium is
lost only after the plasmoid contains a substantial amount of
flux. For example, in the recent paper by Lin et al. (2004), these
authors estimate that the initial stable, preeruption flux rope
contains roughly half the ejected flux. Of course, this fraction
will depend on the particular magnetic configuration, but it
seems inevitable that in order for a flux rope to produce a loss
of equilibrium, the rope must contain a significant fraction of
the flux in the system. This is not true for our simulations.

3.3. Evvolution of Helicity

The role of helicity in CMEs has received considerable at-
tention in recent years. Several authors have argued that CMEs
are the primary mechanism by which the Sun sheds excess
helicity and toroidal flux, and consequently, CMEs may play
a key role in the solar cycle (e.g., Bieber & Rust 1995; Kumar
& Rust 1996; Low 2001; Rust 2001; Demoulin et al. 2002;
Nindos et al. 2003; Gopalswamy et al. 2003). It is important,
therefore, to understand the evolution of helicity in models of
CME initiation such as breakout. We can investigate this
question in detail with our simulations.

Since the solar surface does not represent a flux surface, the
helicity

K ¼
Z

A =B dV ð18Þ

is not conserved in ideal MHD. However, the relative helicity
(Berger & Field 1984; Finn & Antonsen 1985),

Kr ¼
Z

(Aþ Ap) = (B� Bp) dV ; ð19Þ

is conserved, where Bp is the potential field with the same flux
distribution through the surfaces bounding the computational
domain as B. If we choose Bp to be the initial potential field
given by equations (5) and (6), then this condition is satisfied,
since our line-tying boundary condition at the solar surface
requires that Br not change with time. Under conditions of
azimuthal symmetry, the helicity density can be written as
(Antiochos et al. 2002)

kr (r; �; t) ¼ 2A�B�; ð20Þ

so the total relative helicity at time t is given by

Kr ¼
Z

kr(r; �; t) dV : ð21Þ

8 The magnetic flux crossing the equator between the inner X-line and the
center point of the flux rope is 2:1 ; 1021 G cm2 at 75,000 s, or 9% of the total
of 2:3 ; 1022 G cm2 in the original inner flux system. By 80,000 s this rises to
5:1 ; 1021 G cm2 (22%), and by 82,500 s it reaches 9:3 ; 1021 G cm2 (40%).
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In Figure 6 we show the distribution of helicity density at
various stages in the evolution of the system. The helicity shed
by the ejection of the plasmoid represents approximately 80%
of the total originally injected into the system. This result
suggests that although CMEs remove the bulk of the coronal
helicity, a significant fraction remains behind, which implies
that some other mechanism operating in the corona itself must
be responsible for dissipating the rest of the helicity. There
are several caveats, however, to this conclusion, the main one
being that in our simulation we consider only the helicity
associated with the neutral line shear. This limits all the he-
licity carried off by the ejected plasmoid to be contained in an
inner core region of the plasmoid comprised of the sheared
field. In the real corona there is likely to be considerable he-
licity associated with large-scale magnetic fields because of
the effects of differential rotation (DeVore 2000) and active
region motions on a global scale. If this overlying field opens
up during the eruption, then it will lose essentially all its
helicity, and the fraction of coronal helicity carried away by
a CME could be substantially greater than 80% of the pre-
eruption value.

3.3.1. Influence of Spatial Resolution

The helicity density is a useful quantity for investigating not
only the physics of the eruption but also the numerics of the
simulation. Since we do not solve an equation for the evolu-
tion of helicity density, we can use this quantity as a stringent
error measure for the calculation. The rate at which relative
helicity is injected into the model at the solar surface is given
by the surface integral

dKr

dt
¼ �2

Z
Br A�v� dS; ð22Þ

where dS is an element of the surface.
Based on Taylor’s conjecture (Woltjer 1958; Taylor 1974;

Berger 1984), we expect the relative helicity to be conserved
to a good approximation, because the reconnection caused by
numerical diffusion occurs in only a small fraction of the
simulation volume. If we compare the time integral of the
helicity injection rate with the volume-integrated relative he-
licity density, we can check whether this is the case. These
quantities are compared in Figure 9, which shows that at the
resolution of our calculation, helicity is well conserved even
during the strong reconnection and eruption phase. This test is
highly sensitive to the spatial resolution. For the same simu-
lation on a grid of 256 ; 512 points we found that helicity
was misconserved by 20%, and on a grid of 128 ; 256 points
helicity was misconserved by more than 50%. The ultrahigh
resolution 1024 ; 2048 run showed an even better agree-
ment between injected and measured helicity than in Figure 9.
These results indicate that a grid of 512 ; 1024 is an optimal
resolution for the simulation. Larger grids do not add signif-
icantly more accuracy, whereas smaller grids start to degrade
the calculation noticeably. Figure 9 also demonstrates the ro-
bustness and low diffusivity of our code and the advantages of
using an adaptive mesh for physical systems in the breakout
model where we expect current sheets to form in only a few
locations.

4. DISCUSSION

We have presented in this paper the first simulations of a
complete breakout CME. These calculations have allowed us

to answer a number of major questions concerning the erup-
tion. The most important result concerns the speed of the
eruption. We find that the model does indeed produce fast
CMEs with ejection velocities of order the Alfvén speed. Even
more important, the ejection speed does not appear to be
sensitive to the refinement level of the calculation, i.e., to the
effective resistivity, at least, for a resistivity with a spatial
scale dependence similar to that of numerical resistivity. These
two conclusions show that the breakout model efficiently
converts the free magnetic energy stored in the system to ki-
netic energy. One caveat, however, is that the simulations
presented here are only 2.5-dimensional, whereas a real CME
is fully three-dimensional. There will clearly be major differ-
ences between three-dimensional and 2.5-dimensional calcu-
lations; in particular, a disconnected flux rope will not form in
three-dimensional. But the underlying topology of a multi-
polar flux system with null points in the corona remains un-
changed in three dimensions (e.g., Antiochos 1998; Aulanier
et al. 2000); therefore, we believe it likely that many of the
important results in this paper, such as ejection speed and the
general evolution shown in Figures 1–5, are likely to remain
valid in three-dimensional geometries.
Another important result of the simulations is that although

most of the helicity in the system is ejected during eruption, a
significant fraction remains in the corona. In fact, this result is to
be expected. It is well known observationally that neutral-line
shear does not disappear during an eruptive flare (e.g., Wang
et al. 1994). CMEs may be responsible for most of the helicity
loss of the corona, but it seems clear that some other mecha-
nism, possibly small-scale diffusion, eliminates the remaining
neutral line shear. This conclusion raises the interesting ques-
tion as to whether CMEs are essential for eliminating coronal
helicity, as has been argued by numerous authors.
The work presented here also raises interesting questions

concerning observational tests of the breakout model and the
implications for CME/eruptive flare prediction. The most
convincing observation would be to detect evidence of break-
out reconnection before a CME and the accompanying flare.

Fig. 9.—Total relative helicity (solid line) in units of 1010 R3
� as a function

of time, compared with the time integral of the injection rate of relative
helicity (dashed line).
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A critical question therefore is the amount of breakout recon-
nection that one would expect to observe before CME and flare
onset. The answer can be obtained from Figure 10, which plots
the total flux below the outer X-point as a function of time. It is
evident that by the end of the simulation, approximately half of
the original flux overlying the sheared neutral line has been
removed by breakout reconnection. The key point is that most
of this reconnection occurs after 80,000 s, i.e., after the rapid
acceleration (Fig. 7) and the flare reconnection (Fig. 1) have
clearly started. We emphasize, however, that even though the

bulk of the breakout reconnection occurs during what would be
observed as the eruption/flare itself, this reconnection is es-
sential for the event to take place. As discussed in Antiochos
et al. (1999), the sheared field configuration does not have
enough energy to open up the overlying restraining field. This
restraining field must be moved out of the way by reconnection.

The implications of our results for observations are that the
strongest signatures of breakout are likely to be present during
the flare impulsive phase. In retrospect, this finding is not
surprising. Breakout reconnection is driven by outward ex-
pansion of the field and hence will be strongest during the
CME rapid acceleration phase when the outward expansion is
largest. But a large outward expansion will inevitably produce
a current sheet below the erupting flux, which will drive flare
reconnection there. In fact, our analysis of the 1998 July 14
eruptive flare showed exactly this behavior (Aulanier et al.
2000). In that event, there was clear evidence of breakout re-
connection before flare onset, but the most pronounced sig-
natures were observed during the flare impulsive phase. Our
results on the relative timing of breakout reconnection, CME
acceleration, and flare onset also appear to be in agreement
with recent observations by Zhang et al. (2001) and Gallagher
et al. (2003), who find that flare-associated CMEs have a
slowly rising initiation phase, followed by a fast acceleration
phase roughly coincident with the flare impulsive phase. With
further data analysis and theoretical modeling, especially in
three dimensions, it should be possible to determine whether
this CME initiation phase and rapid acceleration are due to
magnetic breakout.
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attention to detail prompted us to clarify our discussion of
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