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ABSTRACT

We develop a framework based on energy kicks for the evolution of high-eccentricity long-period orbits in the
circular planar restricted three-body problem with Jacobi constant close to 3 and with secondary-to-primary mass
ratio �T1. We use this framework to explore mean motion resonances between the test particle and the massive
bodies. This approach leads to a redefinition of resonance orders for the high-eccentricity regime, in which a
p : ( pþ q) resonance is called ‘‘pth order’’ instead of the usual ‘‘qth order’’ to reflect the importance of inter-
actions at periapse. This approach also produces a pendulum-like equation describing the librations of resonance
orbits about fixed points that correspond to periodic trajectories in the rotating frame. A striking analogy exists
between these new fixed points and the Lagrangian points, as well as between librations around the fixed points
and the well-known tadpole and horseshoe orbits; we call the new fixed points the ‘‘generalized Lagrangian
points.’’ Finally, our approach gives a condition a� ��2=5 for the onset of chaos at large semimajor axis a; a range
� <�5 ; 10�6 in secondary mass for which a test particle initially close to the secondary cannot escape from the
system, at least in the planar problem; and a simple explanation for the presence of asymmetric librations in
exterior 1 :N resonances and the absence of these librations in other exterior resonances.
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1. INTRODUCTION

The three-body problem, or the dynamics of three masses
due to their mutual gravitational influences, has a number of
well-known special cases. One of these, the circular planar
restricted case, requires that the primary and secondary bodies,
m1 and m2, follow circular orbits about their common center of
mass and that the third body be a massless test particle moving
in the massive bodies’ orbit plane. These conditions simplify
the three-body problem enough to produce an integral of the
motion: the Jacobi constant CJ ¼ �2(E � �h), where E is the
particle’s energy,1 h is the particle’s angular momentum, and �
is the massive bodies’ constant angular velocity.

Still, the circular planar restricted case has important appli-
cations to the dynamics of our solar system. Many of the orbits
of major planets about the Sun are nearly circular and are
roughly confined to a plane; the same goes for many of the
orbits of large moons about their planets. Common examples
of applications for the circular planar restricted case include
the effects of Jupiter on the asteroid belt, of Neptune on the
Kuiper belt, of moons on planetary rings, and of giant planets
on comets.

This paper describes a study of this problem in the regime
where m2Tm1, the test particle’s eccentricity is large, and the
Jacobi constant is greater than but close to 3 in the standard
system of units where G ¼ 1, the primary-secondary separa-
tion is 1, 1 ¼ m1 þ m2 ’ m1, and, therefore, � ¼ 1. Since
values of CJ near 3 correspond to test particles on circular
orbits close to the secondary, this special regime includes
particles originally in circular orbits around a star close enough

to a planet for the planet to perturb them into very eccentric
orbits. Our interest in this regime arises from an intent to in-
vestigate the paths through which small particles are perturbed
by a planet until they escape or are captured. This problem was
studied by Ford et al. (2001) and Rasio & Ford (1996) by
means of numerical simulations of three massive bodies in
three dimensions. As a result of this motivation, we use ‘‘star’’
and ‘‘planet’’ to refer to the primary and secondary in the re-
mainder of this paper.
In x 2, we derive to first order in � ¼ m2=(m1 þ m2) ¼ m2 the

energy kick received by a particle in a highly eccentric orbit
with semimajor axis a3 1 at each periapse passage. We show
that since the interaction is localized at periapse, this energy
kick is essentially independent of a and depends only on the
periapse distance and the azimuth difference between the planet
and particle at periapse. In xx 3, 4, and 5, we use these energy
kicks to find ‘‘fixed’’ particle orbits and describe motion near
them. These ‘‘fixed’’ orbits are located at planet-particle mean
motion resonances. When observed stroboscopically at peri-
apse only, they appear as fixed points just like the well-known
Lagrangian points. We use both a continuous approximation
and a discrete mapping in a derivation of the particle’s motion
around resonances, the resonance widths, and the libration
periods. When these librations are observed stroboscopically,
they likewise become analogies of the well-known tadpole and
horseshoe orbits. In x 6 we discuss types of chaos for large-
eccentricity orbits, and in x 7 we summarize and discuss our
findings.

2. ENERGY KICK TO FIRST ORDER IN �

Let �E be the change in the particle’s energy between its
consecutive apoapse passages. In our units, where the angular
velocity of the star-planet system is set to unity, the change in

1 We refer to the test particle as ‘‘the particle’’ and to its energy per unit
mass and angular momentum per unit mass (in the limit of a massless test
particle) as its ‘‘energy’’ and ‘‘angular momentum.’’
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angular momentum is also �E.2 Therefore, it can be calcu-
lated by integrating the torque exerted on the particle:

�E ¼
Z

� @V

@f

����
r

dt; ð1Þ

where V is the gravitational potential produced by the planet
and star and f is the particle’s azimuth in inertial space.

To begin with, we estimate the energy kicks to first order in
�. We express �E as �E ¼ ��E1 þ O(�2). To evaluate �E1

we calculate the torque under the assumption that the particle
moves on a Keplerian trajectory around the star, with its focus
at the center of mass. The effect on �E of the deviation of the
trajectory from this description is of order �2 or higher.

Since we are considering only the time elapsed between two
consecutive apoapses, we choose coordinates such that the
time t ¼ 0 when the particle is at periapse and the direction of
periapse is along the positive x-axis. The planet and star are in
uniform circular motion, so we can write V ¼ V (�; r), where �
is the angle between the planet and the particle and r is the
particle’s distance from the origin. This gives

�E ¼
Z

@V

@�

����
r

dt: ð2Þ

V is given explicitly by

V ¼ Vplanet þ Vstar ¼ � �

jr� rplanetj
� 1

jr� rstarj
; ð3Þ

to first order in �, this gives

V ¼ � 1

r
� �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1� 2r cos �

p � cos �

r2

� �
: ð4Þ

Let � be the angle between the planet and the particle at
periapse,3 so that � ¼ �þ t � f . Then the derivative with re-
spect to � at fixed r that appears in equation (2) can be replaced
by a derivative with respect to �. To first order in �, the particle
trajectory r(t) can be assumed fixed and independent of �,
so we can move the � derivative outside the integral of
equation (2). Using the first-order expression for V, we obtain

�E1 ¼ � dU 1

d�
; ð5Þ

where the effective potential U1 is given by

U 1 ¼
Z �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1� 2r cos �

p

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1þ 2r cos (t � f )

p
� cos �þ cos (t � f )

r2

�
dt: ð6Þ

The integration is performed over one Keplerian orbit of the
particle.

In this expression for U1, the first term in brackets is the
‘‘direct’’ term; it represents the planet’s contribution. The
second term does not contribute to �E1; it keeps U1 from
diverging when a ! 1 and is obtained from the first term by
substituting � ¼ �. The third term is the ‘‘indirect’’ term; it
represents interactions with the star. �E1 and its effective
potential U1 are functions of �, �, and the shape of the parti-
cle’s trajectory, which determines r and f as a function of t.
Note that up to a constant, the effective potential U1 is simply
the time-integrated potential over the trajectory of the particle.

When the apoapse distance a(1þ e) is much larger than both
1 and the periapse distance rp ¼ a(1� e), the perturbing effects
of the star and planet on the particle near periapse dominate
over perturbing effects on the particle elsewhere in its orbit. In
this regime, the entire energy kick �E occurring between
consecutive apoapse passages can be thought of as a discrete
event associated with a particular periapse passage. In the limit
as a diverges as a result of energy kicks but CJ remains con-
stant, e ! 1, rp approaches a constant, and except near apoapse
the entire trajectory approaches a parabola independent of a:
a ! 1. If the particle is outside the planet’s Hill sphere,

lim
a!1

rp ¼ lim
a!1

�
� 1

2
CJ þ

1

a

� �
1ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
�2

¼ C2
J

8
; ð7Þ

r ¼ 2rp

1þ cos f
;

df

dt
¼ (1þ cos f )2

(2rp)
3=2

; ð8Þ

t ¼ (2rp)
3=2 1

6
tan

f

2

�
3þ tan2

f

2

�
: ð9Þ

For particles that start close to the orbit of the planet, the peri-
apse distance is therefore rp ¼ 9=8.

Given this asymptotic form for the orbit, we can calcu-
late the asymptotic forms of U 1(a; e; �) ! U1(rp; �) and
�E1(a; e; �) ! �E1(rp; �) in the large-a limit. For CJ ¼ 3, the
computed values of U1 and its derivative �E1 as a function
of � are shown in Figures 1 and 2. Near � ¼ 0, �E1 is dom-
inated by the direct particle-planet interaction because the
minimum planet-particle distance is much less than the star-
particle distance. When � ¼ 0,�E1 ¼ 0 because of symmetry.
When �< 0 but j�jT1, the planet lags the particle for most
of the time the particle spends near periapse, so �E1 < 0:
Similarly, when �> 0 and j�jT1, �E1 > 0.

When j j�j�� jT1, the indirect contribution �E1
ind due to

the star’s reflex motion dominates because the star passes
closer to the particle. From the �-dependent part of star’s
contribution to the integral in equation (6), �E1

ind is a sinu-
soidal function of �:

@

@�

Z 1

�1

cos �

r2
dt ¼ � sin �ffiffiffiffiffiffiffi

2rp
p Z �

��

cos (t � f )df

’ �2:0 sin �; ð10Þ

where in the last step we use rp ¼ 9=8 as an example in eval-
uating the coefficient.

The integral in equation (10) seems to suggest that star-
particle interactions over all intervals in f should contribute
significantly to �E1

ind. However, as equation (9) shows, | t |
increases much faster than | f | as | f | approaches �. As a result,
oscillations in cos (t � f ) kill contributions to the integral at
| f | near � and the star-particle interaction is important only
near periapse.

2
Since the angular momentum is always perpendicular to the orbit plane,

only one of its components is nonzero. We therefore treat the torque and the
change in angular momentum as scalars equal to the components of the vector
torque and the vector change in angular momentum that are perpendicular to
the orbit plane.

3
Thus defined, � is the usual resonant argument measured at periapse only.
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We can also obtain the total contribution of terms that are
second-order or above in �: this is just the difference between
values of �E found by numerical integration of the equations
of motion and values of � �E1 given by equation (6) (see
Fig. 1).

3. FIRST-ORDER RESONANCES

Resonances occur when the particle completes p orbits in
exactly the time needed for the planet to complete pþ q orbits
for some integers p and q. This situation is known as a
p : ( pþ q) resonance. In the standard treatment of these res-
onances, both orbits in question are usually nearly circular and
a significant interaction occurs every time the bodies are at
conjunction, that is, whenever their azimuths coincide. This
happens once every resonant cycle if q ¼ 1, so q ¼ 1 reso-
nances are usually termed ‘‘first order’’ resonances. During a
conjunction between a test particle and planet in orbits with
low eccentricity, eT1, the torque exerted on the particle while
the particle precedes the planet almost cancels the torque
exerted while the particle lags the planet; the residual is of
order e. When q> 1, q conjunctions occur during each reso-
nant cycle. Because they occur in different positions in inertial
space, their effects tend to cancel each other, leaving a residual
torque of order eq. Since the interaction strength decreases
exponentially with increasing q as eq, resonances in the stan-
dard treatment are usually classified by q-value. Accordingly, a
p : ( pþ q) resonance is called a ‘‘qth order’’ resonance re-
gardless of the value of p.

However, the high eccentricities of orbits in the large-a re-
gime discussed here make the standard definition of resonance

order meaningless. Since e ! 1, resonances of different order
under the standard definition have comparable significance
because eq ’ 1. Also, encounters at periapse are physically far
more important than conjunctions at other points in the parti-
cle’s orbit. We therefore redefine the ‘‘orders of resonance’’ to
focus on interactions at periapse. If the planet completes an
integer number of orbits in the time it takes the particle to orbit
exactly once, then we say the particle is in a ‘‘first order’’
resonance. In general, we say the particle is in a ‘‘pth order’’
resonance if the planet completes an integer number of orbits in
the time it takes the particle to orbit p times: then there are p
interactions within one resonant cycle. In terms of the standard
resonance treatment, we say a p : ( pþ q) resonance in the
large-a regime is ‘‘pth order’’ regardless of the value of q. In
both the large- and small-eccentricity cases, the order of the
resonance is given by the number of significant interactions
within a single resonant cycle.
In the following, we show that this revised definition does

indeed make sense. We calculate the widths of resonances of
various orders in the large-a limit and show that with this new
definition their widths decay exponentially with the order of
the resonance. We discuss in detail the first-order or 1 :N
resonances and begin by making a ‘‘continuous approxima-
tion’’ to the action of the discrete energy kicks discussed in
x 2.
According to the new definition of resonance orders, �

should be constant in time if we consider a particle exactly at a
first-order resonance of semimajor axis ares and if we ignore the
effects of energy kicks. A particle close to resonance with, say,
semimajor axis a ¼ ares þ�a should drift in � over time at a
constant rate, again ignoring energy kicks. The amount of drift

Fig. 2.—Potential U1 in the large-a regime (heavy solid line) with CJ ¼ 3
computed using eq. (6). For comparison we also show U1 for CJ ¼ 3 elliptical
orbits with finite a. For later reference we chose as examples orbits cor-
responding to mean motion resonances. The dotted line is U1 for a ’ 2:5 (1 : 4
resonance); the dashed line corresponds to a ’ 4:6 (1 :10 resonance), and the
lighter solid line corresponds to a a ’ 10:1 (1 : 32 resonance). Though these
curves show some quantitative differences due to changes in the orbit shape,
they and in particular the shapes of their potential wells are qualitatively similar.

Fig. 1.—First-order energy kick �E1 in the large-a regime (solid line) with
CJ ¼ 3 computed using eqs. (5) and (6). The dotted line is the energy kick
�E=� calculated using eqs. (2) and (3) for a � ¼ 10�3, CJ ¼ 3 parabolic orbit
with all higher order terms included. For this �, the first-order term clearly
dominates for all values of �; higher order effects in � are visible only near
� ¼ �0:12. The dashed line is the planet’s direct contribution to �E1 using
eq. (5) and eq. (6) with the third term dropped; the dash-dotted line is the
indirect contribution to �E1 from the star’s reflex motion calculated using
eq. (5) and eq. (6) with the third term only.
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per orbit of the test particle is just the difference between its
orbital period 2�a3=2 and the resonant one, 2�a

3=2
res . We can

express this drift as

d�

dt
¼ 3

2

�a

a
: ð11Þ

The differential is a good approximation assuming �aTa�1=2

so that many particle orbits must elapse before � changes by
an angle of order �. We refer to this differential form as the
continuous approximation.

Energy kicks cause the semimajor axis to evolve in time. To
first order in �, we have

d�a

dt
¼ 1

�
a1=2�E ¼ � 1

�
a1=2�

dU1

d�
: ð12Þ

To justify the differentials here, we require that � be small
enough for the change in �a due to a single kick to be much
less than the typical �a. We differentiate equation (11) and
substitute equation (12) to obtain

d2�

dt2
¼ � 3

2�
a�1=2�

dU 1

d�
: ð13Þ

This shows that � simply evolves as a particle moving in the
potential U1(�).

3.1. Generalized Laggranggian Points

Since U1 has four extrema4 at the four zeros of �E1, there
are four fixed points in �. According to equations (12) and
(11), these fixed points in � are also fixed points in a with
�a ¼ 0. Thus each particle trajectory corresponding to one
of these fixed points must be a resonance trajectory whose
periapse direction is constant with respect to the planet’s posi-
tion. These fixed points therefore represent periodic orbits of

the particle in the planet’s rotating frame and in the inertial
frame.5

Of the four fixed points, two are unstable since they cor-
respond to maxima of the potential at � ¼ 0 and � ¼ �. The
other two are stable, since they correspond to potential minima
at � ¼�1:21. The existence of two extrema at � ¼ 0 and
� ¼ � is guaranteed by symmetry arguments. The two addi-
tional extrema at � ¼�1:21 occur where the energy kicks from
the planet and star cancel each other exactly. These extrema
therefore appear only when the indirect term—or, equivalently,
the star’s motion—is taken into account.

This discussion suggests an analogy between the five well-
known Lagrangian points and the new fixed points. The two
stable points correspond to the stable Lagrangian points L4
and L5, which also appear only when the motion of the star,
that is, the indirect term, is taken into account. The unstable
fixed point at � ¼ � is the analog of L3; the one at � ¼ 0
corresponds to L1 and L2, which merge in this generalization.
For a given resonance 1 :N, N ¼ a3=2, we therefore denote the
fixed points by LN

12, L
N
3 , L

N
4 , and LN5 . The positions of these

new fixed points in comparison with their standard Lagrangian
counterparts are summarized in Table 1.

3.2. Generalized Tadpoles

The analogy is more obvious when motion around the fixed
points is investigated. Small-amplitude motion around the stable
fixed points LN4 and LN5 can be approximated by expanding U1

around itsminimum. This results in a harmonic oscillator equation:

d 2�

dt 2
¼ � 3

2�
a�1=2�

d 2U 1

d�2

����
�¼�N

4;5

(�� �res): ð14Þ

The small-amplitude libration period around either LN4 or LN5 is
therefore given by

K ¼ Tlibration

2�a3=2
¼
�

3

2�

d 2U1

d�2

����
�¼�N

4;5

��1=2

a�5=4��1=2

¼ 0:79a�5=4��1=2; ð15Þ

5
When higher order terms in � are included, the shape of �E

1
changes

slightly (see Fig. 1 for an example); this shifts the positions of the fixed points
in �. The positions of the fixed points in a also shift slightly away from
resonance because of the effects of precession. With the higher order terms,
then, the particle trajectories corresponding to the fixed points remain periodic
in the rotating frame but become aperiodic in the inertial frame.

TABLE 1

Comparison of Generalized and Standard Lagrangian Points

Generalized Lagrangian Points

Quantity

Lagrangian Points

(N = 1) N = 2 N = 3 N = 4 Large a

Semimajor axis .................................. 1 22/3 32/3 42/3 a = N 2/3

Physical meaning of fixed points ...... Particle is stationary in rotating frame Particle moves on periodic orbit in rotating frame

Definition of angular variable............ Azimuth of particle in the rotating frame Azimuth of particle in rotating frame when it is at periapse

L1 and L2 .......................................... �1 = 0, �2 = 0 Single point LN12 with �12 = 0

L3 ....................................................... �3 = � �3 = �

L4 and L5 (�5 = ��4)....................... �4 = �/3 ’ 1.04 �2
4 = 1.196 �3

4 = 1.196 �4
4 = 1.198 �4 = 1.21

Minimum tadpole period ................... (4�/3
ffiffiffi
3

p
)��1/2 ’ 2.42��1/2 4.4��1/2 5.1��1/2 5.5��1/2 5.0a1/4��1/2

�amax tadpole .................................... (8/3)1/2�1/2 ’ 1.63�1/2 1.4�1/2 1.6�1/2 1.8�1/2 0.78a3/4�1/2

�amax horseshoe ................................ 2(3)1/6�1/3 ’ 2.40�1/3 4.6�1/2 4.7�1/2 5.0�1/2 1.8a3/4�1/2

Note.—All quantities are given to lowest order in �. In particular, expressions for the N ¼ 2, 3, and 4 resonances were calculated using a potential computed
to first order in � at a ¼ N2=3 rather than in the large-a limit. The numerical values for the generalized Lagrangian points and orbits are given for CJ ¼ 3.

4
These extrema are shown in Fig. 2 for CJ ¼ 3. Since, given a value for CJ ,

we can use eq. (6) to set bounds on U1 and its derivatives with respect to �, we
can check that, at least forCJ ¼ 3,U1 has no other extrema.We have done this for
several values of CJ in the regime we are considering: CJ close to but greater
than 3. Physically, this is equivalent to saying that changes in the system over
time and space are slow and smooth enough that sharp variations inU1 do not occur.
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where in the last step we use rp ¼ 9=8 in the large-a limit to
get d2U1=d�2 ’ 3:3 at � ¼ �4;5. Note that K gives the
number of periapse crossings per libration period. In our units,
where 2� is the period of the massive bodies, the libration
period is then 2�a3/2K.

Since equation (13) describes motion under the influence
of a fixed potential, we can write down the conservation-of-
energy equation by multiplying equation (13) by d�=dt and
integrating with respect to t:

1

2

d�

dt

� �2

þ 3

2�
a�1=2�U 1 ¼ const: ð16Þ

The constant of integration is the ‘‘energy’’ associated with the
movement of the orbit in � and a. Since the potential is finite, it
can only support a finite particle ‘‘speed’’ in libration around
LN
4 or LN

5 . The ‘‘speed’’ is directly related to the deviation of
the semimajor axis from the resonance via equation (11), so
the maximal width of these librations in a is given by

�amax ¼
4

3�

� �1=2

�1=2a3=4½U 1(�)� U 1(�4)�1=2

’ 0:78a3=4�1=2: ð17Þ

These librations around the fixed points LN
4 and LN5 are

analogs of the well-known tadpole orbits. Note that the max-
imal widths of both the standard and generalized tadpole orbits
scale as �1/2 (see Table 1). The similarity is more apparent if we
treat the (a, �)-parameters, which describe the orbit of the
particle, as polar coordinates as shown in Figure 3. Seen in this
way, (a, �) are analogous but not identical to the polar coor-
dinates of the particle in the rotating frame: a is the semimajor
axis, not the radius, and � is the azimuth of the test particle in
the rotating frame only at periapse passage. Then the funda-
mental difference between the (a, �)-plane and the rotating
frame is that while generalized Lagrangian points and the
motion around them exist in a surface of section made up of
discrete points representing periapse passages, the standard
rotating frame with the standard Lagrangian points is made
up of continuous trajectories. Therefore, while the standard
Lagrangian points are fixed points in the rotating frame, the
generalized points represent periodic orbits in that frame.

Since � is equivalent to the usual resonant argument mea-
sured at periapse only, and since the drift in � is assumed to be
slow, librations in � about �N

4 or �N
5 are equivalent to librations

of the resonant angle about �N
4 or �N

5 . Then the generalized
tadpoles are equivalent to ‘‘asymmetric librations’’—trajecto-
ries whose resonant arguments librate about a value other than
0 or �. In this context, LN4 and LN5 correspond to ‘‘asymmetric
periodic orbits’’ whose resonant argument is constant but not
equal to 0 or �. Our discussion above gives a simple physical
argument for the existence of asymmetric librations in all
stable 1 :N exterior resonances. Again, note that the existence
of these asymmetric librations and asymmetric periodic orbits
follows from analysis of U1 only when both the direct and
indirect terms are accounted for.

3.3. Generalized Horseshoes

As the energy of the particle moving under the U1 potential
increases beyond that of the maximal tadpole orbit, it over-
comes the lower potential barrier at � ¼ �. As long as its en-
ergy is still below the higher barrier at � ¼ 0, the particle will
librate around both the LN

4 and LN5 points, avoiding only a

narrow range in � around � ¼ 0. These trajectories are the
generalized horseshoe orbits. Using the same method as we
used for the tadpoles, we calculate their widths in the contin-
uous approximation to be

�amax ¼
4

3�

� �1=2

�1=2a3=4½U 1(0)� U1(�4)�1=2

¼ 1:8a3=4�1=2: ð18Þ

The width of the maximal standard horseshoe does not follow
this �1/2 pattern, since the standard horseshoe case differs
qualitatively from its generalized version. For the standard
horseshoe, the angular momentum change is concentrated near
the horseshoe’s two ends. The close approach of the particle to
the planet there increases the strength of the interaction beyond
�. As a result, the width of the horseshoe scales as �1/3 rather
than �1/2. For a generalized horseshoe, the librating particle
never gets closer to the planet than rp � 1.
In Figures 4 and 5, we show libration around L44;5 and L104;5.

In order to focus on the motion close to these points, we plot a
and � as Cartesian rather than polar coordinates. In these plots,
the librations in the surfaces of section appear to be ‘‘warped’’
when compared with the continuous approximations calculated
using the pendulum-like equation (13). This ‘‘warping’’ is due
to the discrete nature of the motion in the surfaces of section.
As a trajectory moves from �a ¼ 0 toward larger positive �a
values, for example, the energy kicks stay positive and �a
should keep increasing until the trajectory reaches a �-value
corresponding to a zero in the �E1 versus � curve. Within the
continuous approximation, we expect the trajectory to begin
moving back toward �a ¼ 0 at exactly this � because �E1

changes sign. A discrete trajectory will ‘‘overshoot’’ the
nominal � where �E1 ¼ 0, since a positive energy kick will
carry the trajectory past this � before the first negative kick is

Fig. 3.—The Lagrangian point analogs LNi for N ¼ 1; 2; 3; 4 with gener-
alized horseshoes and tadpoles. The diagonal lines trace the azimuths of L14;5—
that is, the �-values of the minima in U1. The horseshoes and tadpoles shown
were calculated with � ¼ 2:5 ; 10�4 via full numerical integration of the cir-
cular planar restricted three-body problem. The LNi , the diagonal lines, and the
‘‘horseshoes’’ and ‘‘tadpoles’’ all have CJ ¼ 3.
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applied. As a result, the libration trajectories in the surfaces of
section tend to become warped in the direction in which orbits
move when librating. A quantitative discussion of this feature
is given in the next section.

4. THE ECCENTRIC MAPPING

The ‘‘warping’’ noted above suggests that the discrete nature
of the surface of section is essential to understanding some
feature of the motion in the (a, �)-plane. To study this, we
define a mapping from the (a, �)-plane to itself. Beginning at
an arbitrary point, this mapping produces an infinite series
(a(i), �(i)) of points visited by the test particle in the (a, �)-
plane. Except perhaps in the few lowest-N resonances, we can
build an excellent approximation to the correct mapping by
applying the first-order kicks in the large-a limit:

� 1

2a(iþ1)
¼ � 1

2a(i)
þ ��E1(�(i)); ð19Þ

�(iþ1) ¼ �(i) þ 2�(a(iþ1))3=2; ð20Þ

where the new value of � is calculated modulo 2�, that is,
brought back into the interval (��, �) by adding an integer
multiple of 2�. Note that the a-value used to find �(i+1) itself
has index iþ 1; physically, this corresponds to the large-a limit
assumption that each energy kick is a discrete event associated
with a given periapse passage. Applying this mapping for

several initial values in the (a, �)-plane results in the right
panels of Figures 4 and 5. The close resemblance between
trajectories generated with the mapping and with numerical
orbit integrations demonstrate this mapping’s accuracy.

It turns out that the warping of the small-amplitude tadpoles
can be understood completely in terms of the mapping.Close to
the fixed points LN

4 and LN
5 , we define �a(i) ¼ a(i) � ares and

��(i) ¼ �(i) � �res, so that the mapping becomes

�a(iþ1) ¼ �a(i) � 2a2res���(i) d
2U 1

d�2

����
�¼�N

4;5

; ð21Þ

��(iþ1) ¼ ��(i) þ 3�a1=2res �a(iþ1): ð22Þ

Since these are linear recursive equations, they can be solved
analytically by standard techniques. We seek a solution of
the form (�a(i);��(i)) ¼ (A;�)� (i). Substituting in the re-
cursive equations, and seeking a nontrivial solution, we obtain

(� � 1)2 þ 6��a5=2res

d2U 1

d�2

����
�¼�N

4; 5

� ¼ 0: ð23Þ

Note that the dimensionless parameter in this equation is
simply (2�/K )2, where K is the number of periapse passages per
libration in the continuous approximation as given by equation
(15). If we denote the solutions as �1 and �2, it is clear from

Fig. 4.—Plot of a vs. � for N ¼ 4, � ¼ 10�4, and CJ ¼ 3. We use [0, 2�] as the range in � to show the trajectories more clearly. The left-hand plot contains
trajectories computed under the continuous approximation. The middle plot contains a surface of section computed via full numerical integration of the circular
planar restricted three-body problem. The right-hand plot contains trajectories computed via the eccentric mapping discussed in x 4. The same initial conditions were
used for the trajectories in all three plots. The continuous approximation plot lacks the chaotic behavior evident in the numerical integration and eccentric mapping
plots. Trajectories in the mapping plot differ from the numerical integration plot mostly because they were calculated with U 1, the potential in the large-a limit. Note
that the separatrix trajectory in the middle plot is chaotic but on a scale too small to see in this figure (see Fig. 9).
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the above equation that their product �1�2 equals 1. Since we
are interested in potential minima, K2 > 0.

For K � �, the two roots are complex conjugates and each
has unity norm. The fixed point is therefore an elliptical point
in the discrete mapping as well as in the continuous approx-
imation. The two values of � are given by

�1;2 ¼ 1� 2(�=K )2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (�=K )2

q
(�=K )i: ð24Þ

The number of periapse passages per libration is given by

Kmap ¼ 2�

arg (� )
¼ 2�

�
arctan

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (�=K )2

q
(�=K )

1� 2(�=K )2

���1

:

ð25Þ

As K ! 1, Kmap=K ! 1. This is expected since the contin-
uous approximation is justified in this limit. Using the two
values of � , we can find the eigenvectors:

(A;�)¼ �a2res
d2U 1

d�2
;

�
�

K

�2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (�=K)2

q �
�

K

�
i

 !
: ð26Þ

Since the eigenvectors determine the axes of the ellipses
representing small librations about the fixed points, the similar
shapes and orientations of the smallest librations in the middle
and right-hand panels in each of Figures 4 and 5 confirm the
eccentric mapping’s accuracy.

For a ¼ 102=3 and � ¼ 10�4, the continuous approximation
gives 11.6 orbits per tadpole libration (eq. [15]). The eccentric
mapping gives 11.4 orbits (eq. [25]). This is close to the 10.7
orbits per libration observed for very small librations about
the fixed points.6 The negative power of a in equation (15)
implies that as a increases, the number of periapse passages
per tadpole libration period will decrease and the trajectory
shapes will become increasingly warped.
In fact, when a grows so large that K falls below �, the

tadpoles are destroyed. For K <�, the roots of equation (23)
are real and distinct; therefore, one of them is larger than unity.
Then the fixed point is not stable despite being at a potential
minimum. Our quantity K is closely related to the residue R
discussed by Greene (1979): R ¼ 1� (�=K)2.
The warping of the tadpoles, which, at its extreme, leads to

destruction of the resonances, is absent in the continuous ap-
proximation. However, it can be understood as perturbations
from nearby resonances. Interactions between neighboring
first-order resonances should become large enough to destroy
these resonances when the resonances begin to overlap.
Equation (18) implies that as a increases, the resonances widen
in a while the distance between them decreases. Then we can
find a condition on � and a for resonance overlap by dividing
half the distance between consecutive first-order resonances by

Fig. 5.—Same as Fig. 4, but for N ¼ 10. For this larger N, the resonances are wider, so the resonance overlap is more severe for the outer edges of the N ¼ 10
resonance than for the N ¼ 4 one. This causes the destruction of all horseshoe orbits and the distortion of the tadpoles relative to those computed in the continuous
approximation.

6
The largest tadpole libration shown in Fig. 5 breaks into 14 islands. This is

an example of the Poincaré-Birkhoff fixed-point theorem. It indicates that this
tadpole’s libration period is 14 orbits. This lengthening of the period is
expected as the trajectory grows toward the separatrix passing through � ¼ �:
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the width �amax of each resonance as given by equation (18).
In the large-a limit, the distance between resonances is given
by 2

3
a�1/2, so we obtain

resonance separation

2�amax

¼
�
�

12

�1=2
a�5=4��1=2½U1(0)� U 1(�4)��1=2

¼ 0:18a�5=4��1=2: ð27Þ

This is proportional to K: in the large-a limit with rp ¼ 9=8, the
right-hand side is 0.23K and first-order resonances overlap
when K < 4:5. In this case, therefore, first-order resonances
formally overlap before they are destroyed. Indeed, when
� ¼ 10�3, stable first-order resonances are observed numeri-
cally to disappear for ak 4. This agrees well with the a> 4:0
overlap criterion given by equation (27) with the left-hand
side set to 1, but it is well below the a> 5:25 condition for
resonance destruction given by equation (30) below or equa-
tion (15) with K ¼ �.

5. HIGHER ORDER RESONANCES

As defined in x 2, higher order resonances are the p : ( pþ q)
resonances with p> 1. These resonances are located at ares ¼
(N=p)2=3, where N ¼ pþ q is an integer relatively prime to p.
In analogy to our treatment of first-order resonances, we note
that if we neglect energy kicks, a particle exactly at resonance
should move in � by 2� during each resonant cycle and by
2�q=p between consecutive periapse passages. The stationary
points of this resonance should therefore occur at regular
intervals of 2�=p in �.

To study motion near but not at resonance, we include energy
kicks. For a particle close to resonance, we can follow its tra-
jectory by treating each resonant cycle as p applications of the
eccentric mapping, one for each periapse passage in the cycle:

�a( jþ1)

��( jþ1)

 !
¼

Yp�1

i¼0

1 �2a2res�
d2U 1

d�2

����
�¼�N

p þ
2�i
p

3�a
1=2
res 1� 6�a

5=2
res �

d2U 1

d�2

����
�¼�N

p þ
2�i
p

0
BBBBB@

1
CCCCCA

�a( j)

��( j)

 !
:

ð28Þ

As before, �a( j) ¼ a( j) � ares and ��( j) ¼ �( j) � �N
p , where

�N
p corresponds to the nearest fixed point in the resonance. The

condition under which the linearization in dU1/d� is valid is
now �a( j)Ta1=2=p2 instead of �a( j)Ta1=2, because the
number of energy kicks per resonant cycle is p instead of 1 and
because the scale in � over which the potential changes is
now �=p instead of �. The condition under which linearization
in � is valid also changes, because the largest term linear in �
that appears in the mapping matrix is a

5=2
res � d2U 1=d�2. Though

� itself is small, cross-terms of order �2 and higher are now
important unless a

5=2
res � d2U 1=d�2T1. This stronger condition

is equivalent to K 31, so the higher order resonance treatment
does not offer any simplifying advantages over the eccentric
mapping discussed in x 4 unless K is large.

Since �� changes very little between consecutive periapse
passages in this K 3 1 regime, we can use a variant of the

continuous approximation in which we neglect the effects of
drift in � within a single resonant cycle. Then we can treat the
particle’s motion in terms of the net energy kick over an entire
resonant cycle rather than a single particle orbit. The net energy
kick is just the sum of p energy kicks spaced 2�=p apart in �, so
the particle appears to move in the potential

U1
p ¼

Xp�1

k¼0

U1(�� 2�k=p): ð29Þ

Note that effects of the star’s reflex motion do not contribute
to U1

p if p> 1: the indirect term in U1 is exactly sinusoidal and
the sum of p identical sine curves spaced 2�=p apart in phase is
0, so U1

p;ind ¼ 0. Since the part of U1 due to the planet’s direct
contribution has just one maximum and one minimum, at � ¼
0 and � ¼ �, respectively, U1

p has p identical maxima and
minima (see Fig. 6). Then a trajectory librating in one of the
minima of U1

p should appear as a series of ‘‘islands’’ spaced
evenly in � in the (a, �)-plane. As a result, no asymmetric
librations are possible in higher order resonances. Our re-
sult that, among exterior resonances, only 1 :N resonances
show asymmetric librations is consistent with work done
by Frangakis (1973). He analyzed expressions for the time-
averaged direct and indirect terms of the disturbing function to
find that asymmetric librations can exist only in p : ( pþ q)
resonances where p ¼�1.

Because the p energy kicks received by the particle during
each resonant cycle are spaced evenly by 2�=p in �, we expect
that the kicks will partially cancel over each resonant cycle and
that this cancellation will improve exponentially as p increases.
We therefore expect the amplitude of U1

p to decrease expo-
nentially with p. As Figure 7 shows, this exponential decay is
observed numerically: a best-fit line in log-log space gives
amplitude /1.20�p.

6. CHAOS IN THE LARGE-a LIMIT

We discuss just a few of the types and regions of chaos that
arise when a is large. We first discuss ‘‘global’’ chaos, which
consists of chaotic regions that span a few resonance widths or

Fig. 6.—U1
10, or U

1
p for a 10th-order resonance: U1 summed over 10 con-

secutive periapse passages spaced evenly in �. As before, CJ ¼ 3.
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more. We then give a few examples of ‘‘local’’ chaos—chaos
confined to regions within a single resonance—and compare
the structure seen in trajectories in the (a, �)-plane on local and
global scales.

On large scales in a, chaotic regions arise where there is
overlap between neighboring resonances or instability due to a
small winding number, as discussed in x 4. In regions of the
(a, �)-plane where first-order and/or higher order resonances
overlap even partially, we expect to see contiguous ‘‘globally’’
chaotic regions that span large ranges in a. Any remaining
stable regions within resonances will appear as ‘‘islands’’ of
stable librations. Particles can undergo large changes in a only
if they move in these chaotic regions, so such regions provide
the only channels through which initially bound particles can
escape from the star-planet system.

If a is large enough, K falls below � and these ‘‘islands’’
disappear as discussed in x 4. For a given value of �, we see
from equation (15) that this occurs when

a>��2=5 3�

2

d2U 1

d�2

� ��2=5

¼ 0:33��2=5; ð30Þ

where, again, the numerical example corresponds to rp ¼ 9=8.
The condition K <� for resonance destruction in higher order
resonances does not follow simply from equation (27): effects
of order �2 or higher may make the winding-number expres-
sions for higher order resonances differ from the first-order
resonance case in equation (15). However, numerical experi-
ments suggest that the a at which higher order resonances
become unstable is comparable to but less than that given by
equation (30).

If � is small enough, there should be regions in a where the
resonances do not overlap. In these regions we expect to see
stable trajectories that circulate around the resonances instead
of librating in them. We find numerically that stable circulating
trajectories exist for �-values up to at least � ¼ 5 ; 10�6; an
example is shown in Figure 8. Greene (1979) suggests that as �
increases, the last stable circulating trajectory should have
semimajor axis a such that a3=2 is the golden ratio (1þ

ffiffiffi
5

p
)=2.

Our situation differs qualitatively from Greene’s in that our
potential depends on its linear coordinate, the semimajor axis,

while Greene’s potential, which is given by the standard map,
is independent of its linear coordinate r. Specifically, when a
is not much larger than 1, rp � 1T1; this leads to a larger
maximum energy kick and potential-well depth than is ex-
pected for rp ¼ 9=8, so the resonances are wider and more
prone to overlap for a given a close to 1 than we would expect
in the large-a limit. However, as a increases the resonance
spacing decreases as discussed in x 4. These competing effects
suggest that the last stable circulating trajectories—those
which, in a sense, are ‘‘farthest’’ from any resonances—should
lie neither near a ¼ 1 nor at a31. Also, effects of order �2

and higher that are present in our situation have no analog in
Greene’s analysis of the standard map. So it is unsurprising that
the last stable circulating trajectories that we found numerically
have a3=2 unrelated to (1þ

ffiffiffi
5

p
)=2.

Continuity and uniqueness imply that in a system with 2
degrees of freedom, stable trajectories in a two-dimensional
surface of section cannot be crossed. In the planar restricted
three-body problem, therefore, stable circulating trajectories
divide the (a, �)-plane into separated regions in a. This implies
that for any �< 5 ;10�6, chaotic and regular trajectories that
start close enough to the planet are confined to a set range in a.
Then the particles associated with these trajectories can never
escape from the star-planet system.
This bounding of chaotic regions by stable trajectories also

leads to confinement of chaos on very small scales in a.
Regions of small-scale ‘‘local’’ chaos arise from unstable fixed
points that must be saddle points as a consequence of the area-
preserving nature of the eccentric mapping; the separatrices
associated with the saddle points are chaotic. If stable contin-
uous trajectories exist near a saddle point, they act as bound-
aries to the chaotic separatrix. Prominent examples of these
separatrices include those dividing tadpole and horseshoe an-
alog trajectories within individual first-order resonances. These
regions are bounded by the largest stable tadpole and smallest
stable horseshoe, so their maximum range in a is at most the
resonance width. One of these is shown in Figure 9.
The existence of similar separatrices on all scales smaller

than a single resonance width follows from the Poincaré-
Birkhoff theorem, which states that for small enough �, a tra-
jectory with rational winding numberK is associated with equal
numbers of alternating stable and unstable fixed points. Ac-
cording to the KAM theorem, some continuous trajectories—
that is, trajectories with irrational K—should also be stable as
long as � is small enough. If a trajectory with rational K is
bounded on either side by stable continuous trajectories with
irrational K, then the chaos associated with the unstable fixed
points is confined to the region bounded by the continuous
trajectories. As for the stable fixed points, they are associated
with their own librating trajectories; the tadpole analog made up
of islands shown in Figure 5 gives an example of such libra-
tions. We expect some librations like these to have rational
winding numbers and, therefore, their own sets of unstable
fixed points and confined chaos on an even smaller scale. In
principle, this argument can be applied repeatedly within a
single resonance to unearth similar chaotic regions on scales as
small as desired.
We can treat the entire (a, �)-plane as an extension of this

self-similarity to the largest possible scales. If we plot (a, �) as
polar coordinates, a p : ( pþ q) resonance trajectory appears to
‘‘wind’’ around the point a ¼ 0 with rational winding number
p=( pþ q). Also, the corresponding resonance is associated
with p stable and p unstable fixed points when p> 1 and two
stable and two unstable fixed points when p ¼ 1. This provides

Fig. 7.—Amplitudes of U1
p plotted on a logarithmic scale as a function of p,

using CJ ¼ 3. The best-fit line is log (amplitude) = �0:078pþ 0:21, or am-
plitude /1.2�p.
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a striking visual analogy to the librations seen within a single
resonance.

7. DISCUSSION AND CONCLUSIONS

Using simple physical reasoning instead of explicit analysis
of terms in the disturbing function, we have developed a
framework for studying particles with CJ close to but larger
than 3 perturbed into exterior high-eccentricity orbits in the
circular planar restricted three-body problem. We have found
that, to first order in �, these orbits move in (a, �) phase space
according to a potential with maxima at � ¼ 0 and � ¼ �
separated by symmetric minima. In the special case of reso-
nance orbits, movement in this potential translates into be-
havior governed by a modified pendulum equation. Previous
pendulum-analog analyses of this problem have usually been
formulated by means of the disturbing function and the con-
tinuous resonant argument (Winter & Murray 1997a; Dermott
& Murray 1983).

Our analysis, specifically that of mapping, is most similar
to that of Malyshkin & Tremaine (1999). They consider the
evolution of high-eccentricity comet-like orbits in the low-
inclination circular restricted three-body problem by integrat-
ing numerically to find the energy kick as a function of the
resonant angle at periapse and then using this energy kick to

create a mapping that takes one periapse passage to the next.
However, Malyshkin & Tremaine are interested in particle
orbits that cross the orbit of the secondary, so the form of their
energy kick is qualitatively different from ours. In particular,
while a small nonzero orbital inclination would barely affect
our energy-kick function, it could drastically change the shape
of the overall energy-kick function in the case of planet-
crossing orbits. Partly because of this, they do not discuss their
energy kick in terms of a potential. Also, they focus on the
chaotic diffusion of the particle toward escape or capture rather
than on motion in resonances.

For 1 :N resonance orbits—that is, those we call first-order
resonance orbits—the shape of the potential with CJ close to
but larger than 3 generates analogs of the Lagrangian points for
N > 1 resonances. The potential similarly leads to two kinds of
libration analogous to the horseshoe and tadpole orbits seen in
a 1 :1 resonance. The p :N resonances—that is, those we call
higher order resonances—show only one kind of libration:
when the winding number is large, the sum relating the higher
order resonance potentials to the first-order resonance potential
eliminates the indirect term responsible for the tadpole analogs.

Several authors discuss the tadpole analogs’ presence or
absence in mean motion resonances in general under the name
‘‘asymmetric librations’’; Nesvorný & Roig (2001) are the only

Fig. 8.—Plot of a vs. � showing (1) a stable circulating trajectory, (2) a stable libration in a 10th-order resonance, and (3) a chaotic trajectory, all calculated via
numerical integration with � ¼ 5 ; 10�6 and CJ ¼ 3. The stable circulating trajectory prevents the chaotic trajectory from attaining large a-values.
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others we know of to refer to the 1 :N resonance librations as
‘‘tadpoles’’ and ‘‘horseshoes,’’ though they do not elaborate on
this analogy. Some authors have used analytical studies of
the Hamiltonian and the disturbing function to set conditions
for the existence of asymmetric resonances (Briuno 1994;
Frangakis 1973; Message 1970). In particular, Frangakis (1973)
analyzed the time-averaged direct and indirect parts of the
disturbing function to deduce that only what we call first-order
resonances should show asymmetric librations. Briuno (1994)
also found analytically that asymmetric librations only exist in
what we call first-order exterior resonances. We confirm this
and provide a simple physical explanation.

Others have used numerical methods to confirm the exis-
tence of asymmetric librations for particular 1 :N resonances

and ranges in eccentricity (see, e.g., Winter & Murray 1997b;
Beaugé 1994; Message & Taylor 1978; Frangakis 1973;
Message 1958). Some of these also compare their numerical
results with expressions for the Hamiltonian correct to first
or second order in eccentricity. Although the agreement is
generally good for what we call first-order resonances, the
Hamiltonian expressions for what we call higher order reso-
nances tend to predict spurious asymmetric librations. We
believe these are due to extra extrema introduced into the po-
tential when too few terms are included in the eccentricity
expansion of the Hamiltonian. In some of the more recent
studies involving asymmetric librations (Nesvorný & Roig
2001; Malhotra 1996), the discussion is framed in terms of the
dynamics of the classical Kuiper belt and so is confined mostly

Fig. 9.—A single chaotic trajectory corresponding to the separatrix dividing ‘‘tadpole’’ and ‘‘horseshoe’’ librations in the N ¼ 4 resonance when � ¼ 10�4 and
CJ ¼ 3. This trajectory was computed via numerical integration with the same initial conditions as were used to produce the separatrix trajectory in the middle panel of
Fig. 4. It is confined in the (a, �)-plane by stable librations similar to the smallest horseshoe and largest tadpoles shown in Fig. 4. Note the empty spots in the outer
reaches of the chaotic trajectory; these ‘‘avoided’’ areas correspond to islands of stable librations around stable fixed points in trajectories with rational winding number.
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to what we call low-N first-order and low-p higher order res-
onances in the low- to moderate-eccentricity regime.

We find a limit on a for stable first-order resonances. Overlap
between the resonances creates chaotic regions of (a, �) phase
space; for semimajor axes larger than some a / ��2=5, the
resonance centers are overlapped and no stable librations are
possible. This is the high-eccentricity analog of the well-known
chaotic criterion ja� 1j ’ �2=7 found by Wisdom (1980) for
the circular planar restricted three-body problem in the low-
eccentricity case. We use the Chirikov criterion for resonance
overlap to estimate the location of the onset of chaos. For suf-
ficiently narrow resonances, or small enough �, there exist
regions in (a, �)-space that lie outside all of the resonances but
which are not chaotic. In the planar problem we consider,
particles interior to the circulating trajectories in these regions
are never able to escape from the star-planet system.

The basic framework for the behavior of high-eccentricity
orbits and the properties of chaotic regions in (a, �)-space can
be applied to the orbital evolution of small bodies in the solar
system. Objects in the Kuiper belt, for example, are believed
to have arrived there by means of interactions with Neptune
(see, e.g., Malhotra et al. 2000); we can apply this framework
to study their trajectories. Many of these objects are known to
be in resonances (see Chiang et al. 2003 for a recent compi-
lation). The mass ratio between Neptune and the Sun is �N ¼
4:4 ; 10�5. Since this is above the critical � � 5 ; 10�6,
Kuiper belt objects with CJ ¼ 3 are either librating around a
resonance or moving chaotically. The latter could, in principle,
be ejected, as there is no stable circulation for that value of
� ¼ �N and CJ ¼ 3. However, the known Kuiper belt objects
span a range in CJ of roughly 2:6<CJ < 3:2. In the planar

problem with � ¼ �N and, for example, CJ ¼ 3:1, stable cir-
culations exist and protect some of these objects from escape.
To study the ultimate fate of such Kuiper belt objects, the
effect of inclination must be understood.

Similarly, we might apply this framework to the scattering
of small planetesimals by giant protoplanets and could provide
insight to numerical integrations such as those of Rasio &
Ford (1996) and Ford et al. (2001). Studies such as this require
an investigation of the way in which the energy kicks move
orbits through the ‘‘global chaos’’ region surrounding the res-
onances in the (a, �)-plane. Although the antisymmetry of
�E1(�) about � ¼ 0 suggests that the orbits should random-
walk through phase space, effects of nearby resonances (e.g.,
Malyshkin & Tremaine 1999) and terms of higher order in �
become important on timescales long enough for escape to
become possible. The importance of second-order effects may
be understood as follows: since the amount of extra energy
needed to escape is 1=ainit�1 and the energy kick per orbit is
��, we expect that the average number of kicks needed to
escape is ���2. Note that unlike the first-order kicks, the
O(�2) energy kicks do not average to zero over the interval
(��, �] in �. This is also apparent from Figure 1. Therefore,
with ��2 kicks, the sum of O(�2) effects produced by the
energy kicks will be of order unity—that is, of size compa-
rable to the total first-order effect.
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