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ABSTRACT

We study the Internal Linear Combination (ILC) method presented by the Wilkinson Microwave Anisotropy
Probe (WMAP) science team, with the goal of determining whether it may be used for cosmological purposes, as
a template-free alternative to existing foreground-correction methods. We conclude that the method does have the
potential to do just that, but great care must be taken both in implementation and in a detailed understanding of
limitations caused by residual foregrounds, which can still affect cosmological results. As a first step we
demonstrate how to compute the ILC weights both accurately and efficiently by means of Lagrange multipliers,
and we apply this method to the observed data to produce a new version of the ILC map. This map has 12%
lower variance than the ILC map of the WMAP team, primarily because of less noise. Next we describe how to
generate Monte Carlo simulations of the ILC map and find that these agree well with the observed map on
angular scales up to l � 200, using a conservative sky cut. Finally we make two comments to the ongoing
debates concerning the large-scale properties of the WMAP data. First, we note that the Galactic southeastern
quadrant is associated with notably different ILC weights than the other three quadrants, possibly indicating a
foreground-related anisotropy. Second, we study the properties of the quadrupole and octopole (amplitude,
alignment, and planarity) and reproduce the previously reported results that the quadrupole and octopole are
strongly aligned and that the octopole is moderately planar. Even more interestingly, we find that the l ¼ 5 mode
is spherically symmetric at about 3 �, and that the l ¼ 6 mode is planar at the 2 � level. However, we also assess
the impact of residual foregrounds on these statistics, and find that the ILC map is not clean enough to allow for
cosmological conclusions. Alternative methods must be developed to study these issues further.

Subject headinggs: cosmic microwave background — cosmology: observations — methods: numerical

1. INTRODUCTION

The first-year release of the Wilkinson Microwave Anisotropy
Probe (WMAP; Bennett et al. 2003a) data set has presented the
cosmological community with an extraordinarily rich source
of high-quality information, allowing the constraint of specific
cosmological models and the parameters that define them to
percentage accuracy.

Nevertheless, there remains an important goal beyond such a
statistical assessment of the cosmic microwave background
(CMB) sky, namely, to build an accurate image of the last-
scattering surface that captures the detailed nature and mor-
phology of our universe, and not simply some best-fit ensemble
averaged view of it. Impediments to this program include
instrumental noise, systematic artifacts, and foreground emis-

sion from local astrophysical objects. On a fundamental level
noncosmological foregrounds can easily compromise any con-
clusion regarding primordial physics unless properly accounted
for, while on a practical level they complicate both algorithms
and analyses. Methods for either removing, suppressing, or at
the very least constraining foregrounds are therefore of great
importance, and, indeed, direct attacks on the raw data are very
rarely justified. Practically any analysis must consider sky maps
that have been processed in some way, either by explicit fore-
ground corrections or by introducing a sky cut.

The importance of foreground removal has been recog-
nized in the community for a long time (e.g., Banday &
Wolfendale 1991; Readhead & Lawrence 1992; Brandt et al.
1994; Tegmark & Efstathiou 1996; Tegmark 1998; Tegmark
et al. 2000), as has the preferred method for discriminating
against such contamination, namely, multifrequency observa-
tions. While the CMB itself contributes equally to all fre-
quencies (as measured in thermodynamic temperature units)
because of the blackbody nature of its spectrum, foregrounds
are typically strongly frequency-dependent. One may therefore
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distinguish between foregrounds and genuine CMB anisotropy
by studying how the signal varies with frequency. However,
detailed subtraction of foregrounds has generally required one
of two assumptions to be made: either that all of the physical
components of the foreground emission and their spectral be-
havior are known, or that accurate templates of all of the
components are available and that the appropriate spectral
behavior is determined by fitting the templates to the available
multifrequency data. Neither method is easily adapted to ac-
commodate real spatial variations in the spectral behavior of
the foregrounds.

The WMAP project appears to have systematic issues under
control, while considerable effort has been expended on
foreground issues, and uncertainties may still remain. Recent
detections of non-Gaussianity (Chiang et al. 2003; Coles et al.
2004; Eriksen et al. 2004a; Naselsky et al. 2003; Park 2004;
Vielva et al. 2004), the continuing debate over the low am-
plitude of large angular scale anisotropy (see, e.g., Efstathiou
2004), and a possible preferred direction or alignment con-
tained therein (de Oliveira-Costa et al. 2004; Eriksen et al.
2004b) may yet be affected by improvements of our ability
to remove noncosmological foregrounds. The WMAP satel-
lite observes the sky at five frequencies (23, 33, 41, 61 and
94 GHz), and using at least in part this information the
WMAP team have applied three different methods for remov-
ing, constraining, or describing the foregrounds (Bennett et al.
2003b).

The first method is to produce a so-called internal linear
combination map (from now on denoted ILC), which assumes
nothing about the particular frequency dependencies or mor-
phologies of the foregrounds. Instead, a CMB map is recon-
structed by co-adding the data at the five frequencies (now
convolved to a common angular resolution of 1�) with a set
of weights that minimizes the final variance of the map.
The details of the nonlinear method adopted to derive these
weights have not been described by the WMAP team. In order
to accommodate spectral variability of the foregrounds, the
sky has been partitioned into 12 separate regions and the
minimum variance criterion applied to each in turn to deter-
mine the weights. Discontinuities between regions have been
minimized by smoothing of the weights at the boundaries. The
resultant CMB map is visually satisfactory but has complex
noise properties, and indeed the WMAP team explicitly warns
against its use for cosmological analysis. Nevertheless, the
map has been subjected to such studies in the literature, and
indeed the WMAP team do use the resultant map as an input to
their second foreground removal technique.

This involves the application of a Maximum Entropy
Method (MEM) in order to construct a model of the fore-
grounds, component by component. The strength of this
method in principle is its ability to reconstruct the synchro-
tron, free-free, and dust emission and their detailed frequency
dependence on a pixel-by-pixel basis. However, the initial
stage of the analysis must still utilize templates for these
dominant foreground components, and also establishes priors
on their spectral behavior by using the WMAP data at the five
frequencies after correction for a CMB component as deter-
mined by the WILC method above. As we will see later, ILC-
like methods in general still allow some leakage of fore-
ground signal into the CMB reconstruction, and whether this
results in any feedback is difficult to determine. Again as a con-
sequence of complex noise properties, the resultant map has
not been considered useful for cosmological purposes. Instead,
the WMAP team has used the results to interpret the nature

of the foreground emission. In particular, they identify a dust-
correlated component in the lower frequency (23, 33, and
41 GHz) channels with a spectral index of � � �2:5 for a
spectrum of the form � �. This is physically interpreted as a
flat spectrum synchrotron component in regions of star for-
mation near the Galactic plane, rather than to emission from
spinning dust, which had become the preferred solution to this
anomalous, low-frequency dust-correlated emission. The issue
remains open, but recent reanalyses by Lagache (2003) and
Finkbeiner (2004) find evidence for the latter interpretation.
The origin of this controversy lies simply with the fact that the
component separation as implemented by WMAP is allowed
only to produce a combined synchrotron/spinning dust solution
at each frequency, with no attempt made to separately disen-
tangle these two components.
The final method for foreground correction is perhaps the

simplest of the three, and it is also the preferred method for
generating cleaned maps suitable for cosmological analysis.
Rather than inherently exploiting the frequency information
contained in the data, one subtracts external templates of the
various physical components (i.e., maps produced by non-
CMB observations made preferably at frequencies where a
specific component dominates the emission) with coupling
coefficients determined by cross-correlation with the observed
maps. This avoids the noise amplification that occurs when
one co-adds the WMAP data alone, and it has the added bene-
fit that the resultant maps have well-known noise proper-
ties, provided that the templates themselves do not contribute
significantly to this. Difficulties associated with the method
include uncertainties in the detailed morphologies of the tem-
plates as scaled to the wavelengths of interest, and the propa-
gation of errors in the coupling coefficients into the error
budgets of specific analyses.
It should be noted that Tegmark et al. (2003) have applied

a generalization of the ILC method to the WMAP data. The
basic idea is to allow the weighting of each map to be scale-
dependent by performing the analysis in harmonic space, the
assumption being that this allows any spatial variations in
the spectral dependence of the foregrounds to be adequately
tracked. It is not clear to what extent real variations project
onto the harmonic eigenmodes of the analysis. As with the
ILC method, complex noise properties result, and so it is
unlikely that this method is suitable for high-precision cos-
mological analyses. In what follows we will denote the map as
TCM—the Tegmark et al. cleaned map.
In this paper a new look is taken at the ILC method pre-

sented by Bennett et al. (2003b), with the main goal of de-
termining whether a map derived in this manner can be
suitable for cosmological purposes. Specifically, we derive a
new ILC map based on Lagrange multipliers (in what follows
to be referred to as the LILC [Lagrange Internal Linear
Combination] map), which has 12% lower variance than the
WMAP science team’s ILC (hereafter referred to as WILC)
map. We then generate Monte Carlo simulations of this map
by adding white noise and foreground templates to CMB re-
alizations and process these through our ILC pipeline. This
allows us to quantify the efficiency of the ILC method, and
realistic foreground residual estimates may be established.
In the final section we repeat the large-scale analysis of de

Oliveira-Costa et al. (2004) both for our new LILC map and for
the simulations, to assess the impact of residual foregrounds on
these statistics. However, we not only study the quadrupole
and the octopole but also consider the properties of the l ¼ 4, 5,
and 6 modes. In fact , we find that the properties of the latter
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two are at least as intriguing as those of the quadrupole and
octopole: the l ¼ 5 mode is highly spherically symmetric, and
the l ¼ 6 mode is planar.

2. METHOD

The ILC method as defined by Bennett et al. (2003b) is
based on a simple premise: suppose there are k observed CMB
maps at different frequencies (but with identical beams) and
that the aim is to suppress foregrounds and noise as far as
possible. Each of the k maps may be written (in thermody-
namic temperature) on the form T (�k ) ¼ TCMB þ Tresidual(�k ),
where TCMB and Tresidual(�k) are statistically independent.
Therefore, if one now forms the linear combination

T ¼
Xk
i¼1

wiT (�i); ð1Þ

and requires that

Xk
i¼1

wi ¼ 1; ð2Þ

the resulting map may be written as

T ¼ TCMB þ
Xk
i¼1

wiTresidual(�i): ð3Þ

Thus, the response to the CMB signal is always unity since it
is independent of the frequency, and the k � 1 free weights
may be chosen to minimize the impact of the residuals. As-
suming that the CMB component is statistically independent
of the foregrounds and the noise, one convenient measure for
this is simply the variance of T,

Var(T ) ¼ Var(TCMB)þ Var
Xk
i¼1

wiTresidual(�i)

" #
: ð4Þ

The internal linear combination method may now be defined
succinctly in terms of equations (1) and (2), where the weights
are determined by minimizing the variance in equation (4).

We compute the ILC weights by means of Lagrange mul-
tipliers. Our Lagrange multiplier procedure is similar to the
approach taken by Tegmark et al. (2003) for computing the
harmonic space weights from which their map is constructed.
A useful review of this method is also given by Tegmark
(1998). The variance of T is seen to be a quadratic form in the
weights wi, and its minimization under the constraint given in
equation (2) is therefore most conveniently carried out by
means of Lagrange multipliers. As shown in the Appendix the
linear system of equations to be solved can be written on the
following form

2C �1

1T 0

� �
w

k

� �
¼

0

1

� �
; ð5Þ

where k is an arbitrary constant, w ¼ (w1; : : : ;wk)
T are the

ILC weights, and

Cij � h�Ti�Tji ¼
1

Npix

XNpix

p¼1

(Ti( p)� T̄ i)(Tj( p)� T̄ j) ð6Þ

is the map-to-map covariance matrix. The solutions to this
system are the usual inverse covariance weights,

wi ¼
Pk

j¼1 C
�1
ijP

jk C
�1
jk

: ð7Þ

If the foreground properties vary strongly over the sky as a
result of spatially dependent spectral indexes, then the ILC
method may perform rather poorly. To remedy this, one may
subdivide the sky into disjoint patches and compute inde-
pendent set of weights for each patch. Bennett et al. (2003b)
divided the full sky into 12 regions, 11 covering the nonuni-
form regions of Galactic plane and the last one covering the
Kp2 region plus the well-behaved parts of the Galactic plane.
We will study this particular partitioning more closely in x 3.

Using such a partitioning, the minimization of the variance
in equation (4) is carried out for each region separately, and
the final step is therefore to construct one single full-sky map
from those individual patches. In order to suppress boundary
effects Bennett et al. (2003b) generated a mask (i.e., a full-sky
map consisting of 0s and 1s) for each patch and convolved
these masks by a Gaussian beam of 900 FWHM. The final ILC
map was then constructed by first generating one full-sky
map from each ILC weight set, as described above, and then
co-adding these maps pixel-by-pixel with weights given by
the apodized masks. We adopt this method for suppressing
boundary effects without modifications.

3. SIMULATIONS, CALIBRATION, AND PERFORMANCE

Most cosmological CMB analyses are based on Monte
Carlo simulations, which in most cases is the only straight-
forward method of taking into account such real-world nui-
sances as nonuniformly distributed noise, non-Gaussian beam
profiles, and complex Galactic cuts. If the ILC cleaned map is
to be used for such purposes, one must be able to construct a
Monte Carlo ensemble that reproduces the detailed properties
of the observed map. In this section we first discuss how to
produce such an ensemble, and then we take advantage of the
simulations to study the properties of the ILC method itself.

3.1. The Simulation Pipeline

Monte Carlo simulation of the ILC map amounts simply to
producing a set of k base frequency maps with similar properties
to the observed data, which are then processed through the ILC
pipeline. Thus, the ILC pipeline may then in many respects be
regarded simply as one among many statistics we apply to our
maps—the crucial part is not the ILC pipeline in itself, but the
construction of the base maps. The only difference from main-
stream simulation is that we in this case add foregrounds to the
simulations, rather than subtract them from the observations.

The simulation process may be written in the following
algorithmic form:4

1. Simulate one CMB component for each realization based
on some power spectrum, and convolve this with the appro-
priate channel-specific beams.

2. Add channel-specific foreground templates.
3. Add a channel-specific noise realization. At this stage the

simulation comprises 10 sky maps that mimic the observed
properties of the 10 WMAP channels at five frequency bands.

4 Although summarized specifically for the WMAP processing, the method
can clearly be generalized to other multifrequency experiments.
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4. For each channel-specific realization, deconvolve the
beam, and convolve to a common resolution corresponding to a
Gaussian beam of 1� FWHM.

5. Compute an average map for each frequency.
6. Apply the ILC pipeline.

The only subtle point in this prescription is how to handle
foregrounds. Ideally we would like to have a perfect full-sky,
noiseless foreground template at each WMAP frequency and
for each significant foreground (e.g., free-free, synchrotron
and dust), but unfortunately, no such templates are available.
We are therefore left with a choice between two options.

First, we may use the Finkbeiner and Haslam templates
(Haslam et al. 1982; Finkbeiner 2004; Finkbeiner et al. 1999)
for synchrotron, free-free, and dust emission,5 together with
the channel specific weights listed in Table 3 of Bennett et al.
(2003b). The channel-specific weights are estimated through
direct fits to the observed data and are therefore free of any
assumptions about the spectral parameters. Moreover, this
method includes the contribution from the anomalous dust-
correlated foreground, without the necessity to resolve the
spinning dust controversy. In practice, the weighted sum over
the three templates approximates the correct amplitudes very
well.

On the other hand, at low Galactic latitudes the templates
approximate the real sky very poorly because of the com-
plexity of the foreground emission and real spectral variations
close to the Galactic plane, thus if a full-sky simulation is
required, they should not be trusted. Nevertheless, for the

purposes of calibration of our method, such inaccuracies are
unlikely to affect our primary conclusions concerning the
efficiency of the ILC method. Moreover, as we will demon-
strate, in this implementation of the ILC method the inner
Galactic region will always be strongly polluted by fore-
grounds and should not be used for cosmological analysis.
A second option is to use the MEM maps provided by the

WMAP team. The advantage of this method is a much better
approximation to the true sky emission at low Galactic lat-
itudes. Unfortunately, these maps are intrinsically noisy, and
one would therefore have to compensate for this when adding
noise to the simulations. As a result, we adopt the simple
template method in this paper, which results in simulations
having acceptable power spectra in the high-latitude region. In
fact, the simulations are visually acceptable even in the inner
Galactic region, having features very much resembling those
seen in the observed ILC map.

3.2. Sensitivvity and Response to Noise and Reggion Definitions

While the ILC method itself is simple to define, it is less
clear how accurately it allows the removal of Galactic fore-
ground emission. To quantify this, we utilize our simulation
set containing constant and known levels of foregrounds, re-
construct the CMB sky estimate for each simulation via the
ILC method, and compare this to the input CMB component.
For the initial comparison, we consider the idealized case of

a full-sky noiseless analysis, including only foregrounds and
CMB. The results from this exercise are shown in the upper
left panel of Figure 1 in terms of the average residual map
computed from 1000 simulations. In this case the ILC method
does an excellent job of removing the foregrounds, as the

Fig. 1.—Plots showing the pixel-by-pixel average and standard deviation (lower right panel ) of the difference maps taken between the reconstructed and the input
CMB maps. Each plot is computed from 1000 simulations. Upper left: The full sky is treated as one single region, and no noise is added to the simulations. Upper
right: Same as upper left, but WMAP-specific noise is included. Lower left: The sky is partitioned into the 12 WMAP ILC regions, and noise is included. Lower right:
The standard deviation of the difference maps for which the sky is split into 12 regions, and noise is included.

5 Versions of these maps as used in the WMAP analysis are available at
http://lambda.gsfc.nasa.gov.
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residuals are less than 10 �K even in the central Galactic plane,
about 0.01% of the K-band amplitude. The remaining resid-
ual is caused by the fact that it is possible to find a solution
with slightly lower variance than even the true solution.

The upper right panel shows the results from a similar full-
sky simulation, but for which Gaussian, channel-dependent
noise has been added to each realization. The effect is striking,
indeed, as both the Galactic plane and the north Galactic spur
are now clearly visible. The explanation lies of course in the
definition of the ILC method—the ILC weights are defined to
minimize the variance of the output map. In the noiseless case,
this is an optimization only with respect to the foreground
templates; for three templates, no variations in the spectral
indices, and four free weights to adjust, this can be performed
to high precision. However, the problem becomes more com-
plicated with the introduction of noise, since the minimum
variance criterion then implies a trade-off between instrument
or foreground noise. As is seen in Figure 1, a higher level of
foregrounds in a relatively small region of the sky is preferred
over increased noise over the full sky.

Obviously even the clean, high-latitude regions of the sky
become polluted by this higher level of foregrounds near the
Galactic plane when treating the full sky as one region. In
order to avoid such spreading one may therefore choose to
divide the sky into separate patches, each with rather homo-
geneous foreground properties, as described above. While this
procedure works well in practice, there are certain problems
that one should be aware of.

In the lower two panels of Figure 1 we have plotted the
average (lower left panel ) and standard deviation (lower right
panel ) of the residual maps, when the sky is divided into the
12 regions defined by the WMAP team. Overall the average
map looks quite similar to the full-sky case, but there are a few
important differences, namely, that the inner galactic plane has
a significantly smaller amplitude, and that the blue ‘‘halos’’
around it are less saturated. On the other hand, a few free-free
regions are now visible, which were efficiently removed when
treating the entire galactic plane as one region.

However, the two most interesting points in this respect are
to be found in the lower right plot, which shows the standard
deviation of the difference maps. First, the scanning pattern of
WMAP is clearly visible in the high-latitude region. This in-
dicates that noise is more important than foregrounds in this
region, and therefore the ILC method prefers to minimize this,
rather than for instance suppressing the north Galactic spur,
which is clearly visible in the average plot. Second, region
number 12 (to the very right in the plot) is associated with a
very large variance and so the estimated CMB signal is not only
biased in this region, but is for all practical purposes unknown.

In fact, in a number of noiseless simulations we have carried out
the ILC weight matrix is singular in this region, indicating that
there is simply too little information present here to recover the
CMB signal. When adding noise the matrix becomes non-
singular, and the procedure does yield a result, but the recon-
structed field is likely to be a very poor approximation to the
underlying CMB field. The important lesson to be drawn from
this is that the size of the patches must be large enough to
provide adequate support for CMB reconstruction. Region 12 is
too small to do this and should therefore either be merged into
the large high-latitude region, or extended.

3.3. Efficiency Considerations

By assuming a fixed spectral index for each of the impor-
tant foregrounds it is possible to obtain reasonable estimates
of the residual foreground level in the ILC map. Suppose each
significant foreground may be written in the form Tf (�) ¼
(�=�0)

�S0 (Bennett et al. 2003b), where �0 is an arbitrary
reference frequency for the particular foreground, S0 is the
true foreground distribution on the sky at that frequency, � is
the spectral index, and T is measured in antenna temperature.
Then the residual foreground contribution to the ILC map
may be written on the form

Tresidual ¼
�Xk

i¼1

wi

�
�i
�0

�
�

a(�i)

�
S0 ¼ f S0; ð8Þ

where a(�) is the conversion factor from antenna to thermo-
dynamic temperature. Thus, the parameter f is simply the
fraction of residual foregrounds of that particular type in the
ILC map, relative to the chosen reference frequency.

For the simulations, we know both the exact CMB com-
ponent and the noise contributions, and so we can also com-
pute the CMB signal to noise ratio by taking the ratio of the
rms of the input CMB component to the noise rms. The latter
quantity is computed as follows

�2noise ¼
Xk
i¼1

w2
i �

2
noise;i; ð9Þ

where �2noise;i is the variance of the ith input noise realization,
which we know.

The efficiency of the ILC method may now be quantified by
computing these parameters from the Monte Carlo simulations.
Such results are summarized in Table 1 for five different high-
latitude regions (including different amount of foregrounds).
For each quantity we list the mean and standard deviation, as

TABLE 1

Efficiency as a Function of Region

Region fs fAff fd �CMB=�noise

Full Kp0 region .................... 0.02 � 0.06 0.20 � 0.13 0.54 � 0.06 6.2 � 0.5

Full Kp2 region .................... �0.01 � 0.04 0.15 � 0.09 0.54 � 0.06 6.0 � 0.4

Full Kp4 region .................... �0.01 � 0.03 0.14 � 0.07 0.55 � 0.07 5.9 � 0.3

WMAP ILC Kp2 ................... �0.04 � 0.01 0.08 � 0.03 0.55 � 0.06 5.6 � 0.2

Full sky ................................. �0.03 � 0.01 0.10 � 0.02 0.46 � 0.03 5.2 � 0.2

Notes.—The residual foreground levels and signal-to-noise ratios as a function of region size. fs is
synchrotron fraction relative to the canonical contribution at 22.8 GHz; fAffis the free-free fraction relative to
33.0 GHz; fd is the dust fraction relative to 93.5 GHz. The numbers are computed from sets of 1000 Monte
Carlo simulations.
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computed from a set of 1000 simulations. Three foregrounds
are included here, namely, synchrotron (�s ¼ �2:70, �0; s ¼
22:8 GHz), free-free (�A ¼ �2:15, �0;A ¼ 33:0 GHz), and
thermal dust (�d ¼ þ2:20, �0;d ¼ 93:5 GHz).

The most interesting conclusions to be drawn from this
table are the following: First, the ILC method performs quite
well with respect to synchrotron emission, independently of
the particular sky cut. Second, the more area is included in the
analysis, the better it does for free-free emission, implying that
the main support for information on free-free lies close to the
Galactic plane, which is a reasonable result.

Third, the ILC method performs quite badly with respect to
dust—the residual amount of dust in the simulations is ap-
proximately half that of the W band, a point that must be well
understood when using the ILC map for foreground studies.
We will return to this issue in the next section.

Finally, we see that the signal-to-noise ratio increases when
excluding more of the Galactic plane. This is again a mani-
festation of the competition between noise and foreground re-
duction. When less foregrounds are included in the region of
interest, relatively more emphasis is put on the noise. Thus, one
can easily find, somewhat paradoxically, that by manually ex-
cluding foreground-contaminated regions from the analysis, the
final amount of residual foregrounds increases, simply because
the area of choice does not carry enough information to cali-
brate the ILC weights properly, and therefore the ILC method
preferentially eliminates noise rather than foregrounds.

4. APPLICATION TO THE WMAP DATA

Table 2 lists the ILC weights for each region and for each
frequency band, both as computed by Bennett et al. (2003b)
and by the Lagrange multiplier method. Figure 2 shows our
version of the ILC map.

A comparison of the two weight sets in Table 2 shows
clearly that the differences between the two methods are sig-
nificant. The corresponding effect on the sky of these different
weights is shown in Figure 3a, where the difference between
our map and the WILC map is plotted. The most notable
features include the large blue area around the Galactic bulge,
presumably indicating the different abilities of the two meth-
ods to reject some large-scale foreground structures, and
second, the residual small-scale structure most likely indicat-
ing the different noise properties of the two maps.
In Figure 3b the difference between our map and the TCM

is plotted (the TCM map was convolved to a common reso-
lution of 1� FWHM before computing the difference). There
are no noticeable small-scale structures uniformly distributed
on the sky, indicating similar noise properties between the two
maps. However, there are larger scale residual foreground
features present. Some point-source–like residuals are also
present, which are associated with known WMAP sources.

TABLE 2

The WILC and LILC Weights

Band

Region Map K Ka Q V W

1........................................ WILC 0.10876 �0.68367 �0.09579 1.92141 �0.25072

LILC �0.19401 0.14004 0.07702 0.61214 0.36480

2........................................ WILC 0.10818 �0.67987 �0.09017 1.96859 �0.30674

LILC �0.06280 �0.14738 �0.13982 1.31073 0.03927

3........................................ WILC �0.04074 �0.28682 0.08476 1.16221 0.08061

LILC �0.11470 0.15098 �0.38520 1.16396 0.18496

4........................................ WILC �0.01847 �0.25533 �0.02607 0.83919 0.46068

LILC �0.05654 �0.01464 �0.31223 0.93407 0.44934

5........................................ WILC 0.18610 �0.77416 �0.32352 2.33978 �0.42820

LILC 0.20099 �0.86252 �0.27825 2.39309 �0.45330

6........................................ WILC �0.02158 �0.21880 �0.08224 0.84851 0.47412

LILC �0.10223 0.21569 �0.51767 0.90277 0.50144

7........................................ WILC 0.11790 �0.67740 �0.09117 1.94830 �0.29763

LILC �0.05637 �0.00015 �0.45602 1.46095 0.05159

8........................................ WILC 0.12403 �0.67639 �0.09653 1.74992 �0.10103

LILC 0.16494 �0.89662 0.07743 2.01377 �0.35952

9........................................ WILC 0.10500 �0.68438 �0.09847 1.90588 �0.22803

LILC �0.04577 �0.27660 �0.02097 1.28849 0.05484

10...................................... WILC 0.16911 �0.91455 �0.01204 2.64536 �0.88788

LILC 0.19380 �1.16103 0.37899 2.26627 �0.67803

11...................................... WILC 0.21951 �0.96567 �0.18077 2.38740 �0.46046

LILC 0.22200 �1.03357 �0.09824 2.34490 �0.43509

12...................................... WILC 0.11101 �0.67501 0.05268 1.59101 �0.07970

LILC �0.06397 �0.00907 �0.46855 1.92500 �0.38342

Notes.—Comparison of the official WMAP ILC weights and the Lagrange multiplier weights as derived in this paper.

Fig. 2.—Lagrange Internal Linear Combination (LILC) map.
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In order to assess the potential impact of point sources on
our method, we computed weights for the Kp2 region, both
including and excluding the 700 point sources resolved by
WMAP. The effect is negligible, at most a 1% or 2% percent
modification of the weights. Nevertheless, this comparison
does serve to remind us that there will likely be point source
residuals in any ILC-derived CMB map.

Another picture of the same comparisons is given in Figure 4.
Here we have plotted the full-sky power spectrum of the WILC
map, the LILC map and the TCM, together with the best-fit
running index spectrum. Clearly, our map agrees very well with
the TCM up to about l ¼ 200, but diverges at smaller scales,
where the effect of the TCM’s narrowerW-band beam becomes
clearer. The WILC map, however, departs from the other two
already at l � 30, a difference which is most naturally inter-
preted as resulting from different noise properties.

We now compare the observed LILC power spectrum to
simulated spectra. Figure 5 shows the power spectrum of the
observed ILC map together with 1 and 2 � confidence band
computed from 1000 simulations; the spectrum in the left
panel is computed from the full sky, whereas the conserva-
tive Kp0 mask has been imposed in the right panel so that
what is shown is actually a pseudospectrum. In the full-sky
case, we see that the observed spectrum matches the simu-
lations very well up to about l � 100 but rises more rapidly
from about l > 150. When constrained to the Kp0 region, the
observed spectrum follows the simulations all the way up to
l ¼ 200, after which a very small bias toward high values
may be seen. Thus, the simulations seem to approximate the
real sky satisfactory on the Kp0 region, while they under-
estimate the level of residual foregrounds in the inner Ga-
lactic regions.

Fig. 3.—Difference between the LILC map and (a) the WILC map and (b) the TCM. The monopole and dipole were removed from the former map, and the latter
was smoothed to 1� FWHM before differencing.

Fig. 4.—Comparison of the full-sky power spectra of the WILC map (red), the LILC map (blue), and the TCM (green). Notice the excellent agreement between
the two latter spectra up to l � 200, whereas the WILC spectrum departs from the other two already at l � 50.
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The defining criterion of the ILC method is of course
minimum variance, and the rms of the high-latitude region
of the LILC is 68 �K, while the corresponding number for
the WILC is 72 �K. In other words, our set of weights results
in 12% lower variance and is therefore better as far as
the minimum variance definition is concerned. However, this
does not necessarily mean that the level of residual fore-
grounds is smaller. In this, the contrary is true: by computing
the residual fractions of each foreground in the high-latitude
region as described in the previous section, we find that our
map actually has slightly more foreground residuals than the
WILC; the fractional residual foreground levels in the high-
latitude WMAP ILC Kp2 region of the LILC map are (�0.069,
�0.011, 0.736), while for the WILC map they are (�0.027,
�0.017, 0.424).

As noted in the previous section, the amount of residual
dust is high in the ILC maps—the method is able to remove
only half of the dust present in the W band, where dust is the
dominant foreground. This result is thus in excellent agree-
ment with the findings presented by Naselsky et al. (2003),
who concludes that the cleaned maps contain residual fore-
grounds that mainly originate from the W band.

4.1. Quadrant and Hemisphere Weigghts

As pointed out earlier, one of the major weaknesses of the
ILC method is its inability to handle spatial variations in the
spectral indices of the foregrounds. To remedy this weakness

Bennett et al. (2003b) divided the sky into 12 disjoint re-
gions and computed one set of weights for each region. Out of
those 12 regions, 11 lie within the Kp2 Galactic plane, while
the rest of sky was treated as one single region. In light of the
asymmetries recently reported by Eriksen et al. (2004a), we
have partitioned the high-latitude sky yet further and subse-
quently computed weights for the Galactic hemispheres and
quadrants individually. The results from these computations
are shown in Table 3.
We first consider the quadrant numbers (quadrants are de-

fined by the standard Galactic reference system.) While the
northwest, northeast, and southwest quadrant numbers are ap-
proximately internally consistent, the southeast quadrant stands
out in the Q and V bands. Thus, these numbers both support
and ask question of the findings of Eriksen et al. (2004a).
Certainly, the earlier results are supported in the sense that
there is an asymmetry in the WMAP data, possibly marginally
aligned from northwest to southeast. However, large differ-
ences in the weight coefficients would be interpreted most
naturally in terms of variations of the noise and foreground
properties, in apparent contradiction to the frequency inde-
pendence demonstrated both by Eriksen et al. (2004a) and
Eriksen et al. (2004b). Further investigation is certainly war-
ranted, but it may yet be that foregrounds could play a role in
explaining the observed asymmetries.
Unfortunately, it is difficult to assess the significance of the

variations in Table 3 properly, but we can make a few rough

Fig. 5.—Comparison of the observed LILC power spectrum to the simulated spectrum. The gray bands correspond to 1 and 2 � confidence bands, estimated from
1000 Monte Carlo simulations. The left panel shows the spectrum computed over the full sky, and the right panel shows the pseudospectrum of the maps when the
Kp0 mask is applied.

TABLE 3

Hemisphere and Quadrant Weights

Band

Region K Ka Q V W

Full Kp2 region ..................... �0.19401 0.14004 0.07702 0.61214 0.36480

Northern hemisphere.............. �0.20611 0.14837 0.13262 0.55371 0.37140

Southern hemisphere.............. �0.18015 0.12169 0.03213 0.66930 0.35703

Northwest quadrant................ �0.19451 0.13659 0.09579 0.56725 0.39489

Northeast quadrant ................. �0.24447 0.21397 0.20529 0.53331 0.29190

Southwest quadrant................ �0.19393 0.07268 0.26102 0.39229 0.46793

Southeast quadrant................. �0.16324 0.17738 �0.23334 1.01469 0.20451

Note.—Weights computed from Galactic hemispheres and quadrants outside the Kp2 mask.
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estimates. We have generated 1000 simulated realizations
and computed quadrant weights as described above for each
of these. Then, for each realization we find the maximum
absolute difference between any two quadrants, for each
frequency. The results from this exercise are summarized in
Table 4, in terms of the mean, the standard deviation, and the
maximum value found in the simulations. Note that these
numbers are only meant to give a rough idea of the shape of
the distributions, and not for setting confidence levels—the
distributions are non-Gaussian, and counting standard devi-
ations is therefore meaningless. Nevertheless, it is obvious
that the quadrant differences observed in the true WMAP data
are inconsistent with the adopted foreground model described
by the combination of three templates and fixed spectral
indexes, and as proposed by the WMAP team. The weights of
the southeast quadrant are radically different from those of
the other three in the Q and V bands; the maximum differ-
ence found in the 1000 simulations in the V band is about
80% that of the observed data. Whether this indicates a real
foreground- or noise-related problem in the southeastern
quadrant is not clear from this analysis, but it does question
the validity of treating the entire high-latitude sky as one
single region.

The hemisphere results of Table 3 are by no means as deci-
sive as the quadrant results, as the weights are more or less
consistent with each other. However, this may very well be a
coincidence; the internal variations between the northwest and
northeast quadrants are much smaller than between the south-
west and southeast quadrants, and yet, the two corresponding
averages are rather similar.

5. IMPLICATIONS FOR AND STABILITY OF THE
LARGE-SCALE MODES

In this section we consider what implications our new
LILC map have for the current debate concerning the pe-
culiarities seen at the very largest scales, in particular the
questions of the seemingly low quadrupole, the planar octo-
pole, and the alignment between the two, and we establish
the uncertainties connected to each of these measurements.
For these studies we adopt the statistics of de Oliveira-Costa
et al. (2004) and compute (1) the probability of finding a
lower quadrupole moment than the observed one, given the
best-fit WMAP spectrum; (2) the probability of finding such
a strong alignment between the quadrupole and octopole;
and (3) the probability of finding such planar multipoles as
seen in the WMAP maps. Here we briefly define the various
statistics and refer the interested reader to de Oliveira-Costa
et al. (2004) for details on how each quantity actually is
computed.

5.1. Definitions of Statistics

The first statistic is simply the multipole amplitude �T2
l ,

which is defined in terms of a spherical harmonics expansion
of the map,

T (n̂) �  (n̂) ¼
X
l;m

almYlm(n̂): ð10Þ

The multipole amplitude is then defined as

�T 2
l ¼ l(l þ 1)

2�

1

2l þ 1

Xl

m¼�l

jalmj2: ð11Þ

The next statistic is based on the possibility to define a
preferred axis, n̂l, for each multipole, namely, that axis which
maximizes the angular momentum dispersion,

 j(n̂ =L)2j 
� �

¼
Xl

m¼�l

m2jalmj2: ð12Þ

The alignment between two modes is then measured by taking
the dot product of the two preferred directions.

The computation of this quantity is carried out by com-
puting the spherical harmonic coefficients in some coordinate
system and then rotating these in harmonic space. Since the
harmonic space rotation matrices are simple to compute, the
complete maximization procedure becomes relatively inex-
pensive even for a high-resolution map with several million

TABLE 4

Maximum Absolute Quadrant Weight Differences

Frequency Mean Stard Deviation Maximum WMAP

K band............................................ 0.064 0.028 0.181 0.081

Ka band.......................................... 0.165 0.073 0.459 0.141

Q band............................................ 0.169 0.074 0.505 0.494

V band ............................................ 0.157 0.071 0.502 0.622

W band ........................................... 0.179 0.082 0.496 0.263

Notes.—The distribution of maximum absolute weight diAfferences between any two Galactic
quadrants, as computed from 1000 simulations. The observed WMAP values are shown in the rightmost
column.

TABLE 5

Quadrupole Amplitudes

Measurement

�T2
2

(�K2) p-value

Best-fit running index spectrum ............................. 869.7 . . .

Hinshaw et al. cut sky ............................................ 123.4 0.018

WMAP ILC map all sky ......................................... 195.1 0.048

Tegmark et al. ......................................................... 201.6 0.051

Efstathiou WILC map............................................. 223.0 0.063

Efstathiou TCM map .............................................. 250.0 0.080

Legendre ILC map.................................................. 350.6 0.153

Legendre ILC map (quadrants) .............................. 345.1 0.149

Notes.—Results from the measurements of the quadrupole amplitude. The
third column lists the probability of finding a lower quadrupole than that of
the corresponding map, given the theoretical model value shown in the first
row.
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pixels. The details on computing these rotation matrices are
described by de Oliveira-Costa et al. (2004).6

The third quantity we consider is the degree of planarity of a
given mode. Two different statistics for this purpose are defined
by de Oliveira-Costa et al. (2004), one that maximizes the an-
gular momentum of the mode and one that maximizes the frac-
tional power that may be put into an azimuthal mode. We choose
the latter, which may be written explicitly in the following form:

t ¼ max
n̂

jal�lj2 þ jallj2Pl
m¼�l jalmj

2
: ð13Þ

The maximization is performed over all pixels in the map.

5.2. Results

In Table 5 the amplitudes of the quadrupole moments are
tabulated for four different maps: the WILC map, the TCM,

our LILC map, and finally the LILC map for which the Kp2
region is divided into quadrants. As we can see from the
numbers in Table 5 the LILC quadrupole is significantly larger
than those observed in the WILC map and the TCM map. In
fact, according to our map, the CMB quadrupole is low only at
the 1 : 7 level, or, in other words, it is in perfect agreement
with the model. However, these measurements are associated
with large uncertainties. It is true that there is no estimator-
induced variance in these measurements, as discussed by
Efstathiou (2004), since we have access to the full sky, but we
do know that the ILC method does not remove foregrounds
perfectly in the presence of noise, and this obviously affects
the large-scale modes.
To assess the uncertainties in these measurements we once

again take advantage of our simulations, for which we know
both the CMB component and the reconstructed map, and
compare the first few low-l amplitudes for each realization.
These results are shown in Figure 6. Each gray dot in these
plots indicates the true versus the reconstructed amplitude for
one Monte Carlo realization, and in the limit of perfect re-
construction, they should therefore all lie along the diagonal
line. However, noise and residual foregrounds do have a
significant effect on these measurements, as seen by the con-
siderable scatter in each panel.
The solid horizontal lines indicate the LILC amplitudes, for

which we obviously only know the reconstructed values. In the
case of the much debated quadrupole amplitude, we see that
the observed value of 351 �K2 may in fact originate from a
cosmological quadrupole over the range �130 to �600 �K2,
and it is therefore difficult to assign a great deal of signifi-
cance to this result. It is interesting to note that the WILC
map, which contains less residual dust than our map, also
features a lower quadrupole. The most appropriate conclu-
sion to draw is that residual foregrounds can modify the
quadrupole significantly, and it is important to propagate the
uncertainties in foreground modeling into errors on such low
order modes.
Given this fact, the approach taken by Efstathiou (2004)

might prove more reliable if the foreground uncertainties are
dominated by residuals in the Galactic plane. In this work, the
low-l power spectra of the WILC and the TCM maps are
estimated on a cut sky (based on the WMAP Kp2 mask). The
most likely quadrupole amplitudes are found to be 223 and
250 �K2, respectively. An analysis by Bielewicz et al (2004)
utilizing a power equalization filter to reconstruct the low-l
multipoles from the high-latitude signal yields similar results.
Thus, a cut sky approach yields slightly higher values than the
corresponding full-sky analysis does.
We now turn to the question of alignment between the

quadrupole and the octopole. The results from these mea-
surements are summarized in Table 6. In this case we find that

Fig. 6.—Observed multipole amplitude plotted against the true, foreground-
free amplitude. The observed WMAP LILC value is marked by a horizontal
solid line, while the diagonal line is meant to guide the eye only; in the case of
perfect reconstruction, all dots would lie along this line. Note that there are
generally more dots above the dashed line than below it, indicating that the
ILC reconstructed spectra are slightly biased toward high values.

TABLE 6

Alignment of the Quadrupole and the Octopole

Measurement

l2
(deg)

b2
(deg)

l3
(deg)

b3
(deg)

Angle

(deg) jn2 =n3j

WMAP ILC map all sky .......................... 278 69 236 63 12 0.955

Tegmark et al. .......................................... 258 59 238 62 10 0.984

Legendre ILC map................................... 247 62 233 63 7 0.993

Legendre ILC map (quadrants) ............... 245 61 231 63 7 0.992

Notes.—Results from measurements of the position of the preferred directions of the quadrupole and octopole
moments (denoted by Galactic longitude and latitude), and the alignment between these. The rightmost column lists the
probability of Bfinding a weaker alignment between the quadrupole and octopole directions.

6 A complex conjugate of the harmonic coefficients may be necessary to
obtain the same results as reported by de Oliveira-Costa et al. (2004),
depending on which definition of the spherical harmonics one chooses.
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the alignment is actually stronger in the LILC map than in the
WILC and TCM maps, having a probability as low as 0.7%.
Again the associated variance is of great importance, and a
scatter plot for these measurements are shown in Figure 7.
Each dot and square in this plot indicates the results from one
simulation, for which we know both the input and output
maps. In the limit of perfect reconstruction all dots should lie
along the diagonal line. However, as seen from the very large
scatter in this plot, it is clear that the ILC method does not
reproduce the phases of the quadrupole and octopole modes
accurately enough to justify a cosmological identification.

The colors in this plot indicate the quadrupole value of the
reconstructed map for each realization, such that a realization
marked by a blue square has an amplitude smaller than 80% of
the simulations, and a realization marked by a red dot has an
amplitude larger than 80% of the simulations. One would ex-
pect that an intrinsically small quadrupole is more susceptible
to foreground residuals than a strong one, and this is indeed the
situation. Further, as we have already seen, the observed LILC

quadrupole value is very low indeed, and so the conclusion of
the last paragraph is strengthened: An improved quadrupole
estimate is required before we can attach cosmological sig-
nificance to its properties. Similar conclusions were reached in
Bielewicz et al (2004) and Hansen et al. (2004).

Given that the LILC map contains more residual dust
than the WILC and TCM maps and also features a stronger
alignment between the quadrupole and the octopole, one may
suspect that the alignment is driven by the dust component.
However, no correlation was found between the alignment
parameter t and the residual dust level fdust , or the two other
foreground components. It is therefore difficult to conclude
that the alignment is a direct result of residual foregrounds.

Despite the arguments presented in the two previous sec-
tions, it is also worth noticing that there are very few dots
below the LILC value even for the reconstructed maps, a fact
that indicates that the ILC method does not seem to system-
atically introduce couplings between the quadrupole and octo-
pole modes. Our results therefore only demonstrate that there
is a very large variance in this measurement, but not that there
is a significant bias. The development of reliable cut-sky esti-
mators of this feature seem to be of high importance.

Finally, we turn to the issue of planarity and symmetry in
the low-l modes. In Table 7 we show results from measure-
ments of the t-statistic for the l ¼ 3, 5, and 6 modes. Inter-
estingly, as noted by de Oliveira-Costa et al. (2004), the
octopole is planar roughly at the 1–10 level. The l ¼ 5 and 6
modes , however, are even more intriguing. The l ¼ 5 mode is
highly spherically symmetric , and 99.8% of the simulations
have a larger t-value. On the other hand, the l ¼ 6 mode is
strongly planar, with only 1.4% of the simulations having a
larger t-value. For completeness, we note that the l ¼ 4 mode
appears random in all respects in our analyses.

In order to assess the foreground induced uncertainties in
these measurements, we have plotted the observed t-value
against the true value in Figure 8. It appears that the scatter
dominates the results, and it is therefore difficult to unam-
biguously conclude that the detections are truly cosmological
in origin. However, we also see that the distributions are fairly
symmetric about the diagonal line, indicating that the mea-
surements are nearly unbiased. Residual foregrounds therefore
seem to increase the variance in the measurements, but they do
not appear to introduce the sort of effects seen in the WMAP
data. In this context, it is also important to notice that the
observed WMAP values for l ¼ 5 and 6 are extreme compared
to that observed in the processed ILC maps. Also , the power
amplitude �T2

5 is very large, and consequently this mode
should be quite robust against foreground perturbations.

Fig. 7.—Observed angular separation between the preferred quadrupole
direction, n2, and the preferred octopole direction, n3, plotted against the true,
foreground-free separation. The color of each dot indicates the quadrupole
amplitude of the given realization. For clarity we only plot those points which
either lie in the 0%–20% interval (blue squares) or in the 80%–100% interval
(red dots). The horizontal line indicates the quadrupole value for the LILCmap.

TABLE 7

Planarity of a Few Multipoles

l ¼ 3 l ¼ 5 l ¼ 6

Data Set t P t P t P

WMAP ILC map ................................ 0.930 0.124 0.366 0.999 0.769 0.031

Tegmark et al. .................................... 0.942 0.096 0.372 0.998 0.783 0.024

Legendre ILC map............................. 0.934 0.114 0.374 0.998 0.806 0.015

Legendre ILC map (quadrants) ......... 0.948 0.081 0.375 0.998 0.794 0.019

Notes.—Results from measurements of the degree of planarity of the three multipoles, l ¼ 3, 5, 6. The left
column in each section shows how much of the total power in the mode is attributable to the all component , as
measured in a coordinate system in which the preferred direction is deBfined to be the z-axis. The right column
shows the probability of Bfinding a more planar multipole, as compared to an ensemble of 10,000 Gaussian
simulations.
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In Figure 9 we have plotted the l ¼ 2, 3, 5, and 6 modes
from the LILC map. Here we clearly see the origin of the
effects discussed above: the planes determined by the peaks
and troughs of the quadrupole and octopole appear to be very
strongly aligned , while the degree of symmetry seen in l ¼ 5

is similarly striking. Finally, the l ¼ 6 mode is obviously
highly planar, as seen by the very regular distribution of peaks
and troughs. If such features can be unambiguously shown to
be of cosmological origin, they may be indicative of new
exotic physics.

6. CONCLUSIONS

The main goal of this paper was to study whether the
ILC method is able to yield cosmologically useful maps, and
if so, whether realistic simulations can be generated in rea-
sonable time in order to calibrate the uncertainties associated
with the use of such a map. The results presented earlier sug-
gest a cautiously positive conclusion—the ILC method does
have the capability of producing relatively clean CMB maps
without the use of external templates. Nevertheless, great care
should be taken in the practical implementation of the method
(e.g., the proper definition of the individual regions is a crucial
step), and beyond this one needs to be highly aware of its
limitations.
On a more detailed level, we derived the equations for the

ILC weights based on Lagrange multipliers, which were also
discussed by Tegmark (1998). While a nonlinear search al-
gorithm is based on iterations, this method solves one single
linear system of equations and is therefore much faster. This is
important when generating Monte Carlo simulations. Subse-
quently, we discussed how to produce realistic simulations of
the ILC map and used these simulations to study the properties
of the method itself, with particular emphasis on the sensi-
tivity to noise and sky cuts.
The method was applied to the real WMAP data, and the

resultant LILC map was determined to have properties similar
to the TCMmap, but somewhat different from the Bennett et al.

Fig. 8.—Observed t-value plotted against the true, foreground-free t-value.
This parameter is defined as the fraction of the power attributable to the
azimuthal component all to the total power Cl, maximized over all reference
frames. The symbols and colors have the same meanings as in Fig. 7.

Fig. 9.—Four peculiar low-l modes, computed from the LILC map. The preferred directions of the quadrupole and the octopoles are strongly aligned, the l ¼ 5
mode is spherically symmetric , and the l ¼ 6 mode is planar.
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(2003b) WILC map. We also computed ILC weights for four
quadrants of the sky and found that the southeastern Galactic
quadrant has significantly different properties than the other
three, possibly shedding new light on the asymmetry issue
discussed by Eriksen et al. (2004a).

Finally, as a comment to the ongoing debate on the nature
of the large-angular scale anisotropy, we investigated the
implications of the LILC map for estimates of the quadru-
pole and octopole modes and found that the new quadrupole
moment increases from 195 to 351 �K, which is a perfectly
acceptable amplitude compared to the best-fit spectrum.
However, the alignment between the quadrupole and the
octopole is stronger in our map than in the WILC and the
TCM. We also pointed out that the l ¼ 5 and 6 modes are
most peculiar in their symmetry properties , as only 0.2% of
the simulations have a more spherically symmetric l ¼ 5
mode than the WMAP data , and 1.4% a more planar l ¼ 6
mode. Further, since we have access to the full sky, these
modes are all independent under the Gaussian, random-phase
hypothesis, and the probabilities therefore accumulate quite
straightforwardly. The major caveat, however, is that many of
these measurements are derived from maps with complex
foreground and noise properties, and definitive cosmological
conclusions therefore remain elusive. Better foreground cor-
rection methods are required, or, alternatively, methods for
studying the same features on a cut sky should be developed.
This work is already under way and will be published in a
future paper.

Returning to the ILC method, one may question whether
the minimum variance criterion in itself is a meaningful mea-
sure of performance. As we have seen, this criterion implies
a trade-off between suppressing noise and foregrounds, and
moderate levels of foregrounds are often accepted in order to
suppress noise. For most practical cosmological analyses this
is not likely to be acceptable; noise is more easily quantified
than residual foregrounds.

Note therefore that although we do provide a copy of the
LILC map at H. K. E.’s home page,7 we strongly advise against
using it for purposes beyond visual presentation, for which, of
course, the official WILC map is perfectly acceptable.
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port from the Research Council of Norway, including a Ph.D.
studentship for H. K. E. This work has also received support
from The Research Council of Norway (Programme for Super-
computing) through a grant of computing time.

APPENDIX

COMPUTING THE ILC WEIGHTS BY LAGRANGE MULTIPLIERS

In this appendix we describe how to compute the ILC weights both efficiently and accurately by means of Lagrange multipliers.
Bennett et al. (2003b) do not specify how they carry out the minimization of equation (4) in practice, other than stating that the
minimum is found through a nonlinear search. Thus, it is difficult to assess the accuracy of the final results they quote, as nonlinear
searches can often be plagued by convergence issues. However, again we remind the reader that the WMAP team only intended
their ILC map to be used for visualization purposes, and obtaining high accuracy was therefore of little importance. Our goal,
however, was to study whether this method may actually be used for cosmological purposes, as a credible alternative to the
template correction method. In addition, Monte Carlo simulations was needed to fully account for the statistical noise properties of
the method, therefore computational speed was a driving concern.

Recall that the problem is to minimize the variance of a linear weighted sum over k frequency maps, as given in equation (4),
under the constraint that the sum of weights equals unity. This latter constraint guarantees a correct response to the CMB
component, while minimizing the variance suppresses residuals.

Explicitly, the variance of the final map is given by
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wiT
i( p)

" #2

� 1

Npix

XNpix

p¼1

Xk
i¼1

wiT
i( p)

" #( )2

¼
Xk
i¼1

Xk
j¼1

wiwj

1

Npix

XNpix

p¼1

Ti( p)Tj( p)

" #
�

Xk
i¼1

wi

1

Npix

XNpix

p¼1

Ti( p)

" #( )2

¼
Xk
i¼1

Xk
j¼1

wiwj

1

Npix

XNpix

p¼1

Ti( p)Tj( p)� 1

Npix

XNpix

p¼1

Ti( p)

" #2
8<
:

9=
;

¼ wTCw; ðA1Þ

7 See http://www.astro.uio.no/~hke/cmbdata/WMAP_ILC_lagrange.fits.
8 See http://www.eso.org/science/healpix.
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where w ¼ (w1; : : : ;wk)
T and

Cij � h�Ti�Tji ¼
1

Npix

XNpix

p¼1

Ti( p)� T̄ i
� �

Tj( p)� T̄ j
� �

ðA2Þ

is the map-to-map covariance matrix.
Thus, the problem is simply to minimize a quadratic form, subject to the constraint given by equation (2), a task that is most

conveniently solved by Lagrange multipliers. This problem can be restated slightly: First, we seek to minimize the following
function,

f (w) ¼
Xk
i; j¼1

wiCijwj ðA3Þ

under the constraint

g(w) ¼
Xk
i¼1

wi ¼ 1: ðA4Þ

In such cases the method of Lagrange multipliers tells us to look among those points, w0, which satisfies the following relation,

9f (w0) ¼ k9g(w0); ðA5Þ

where k is an arbitrary constant. In other words, the extrema of f, subject to the constraint, g ¼ 1, are just those points at which the
gradients of f and g are parallel.

The partial derivatives of the function f are easily computed from equation (A3) and can be written on the following form:

@f

@wi

¼ 2
Xk
j¼1

Cijwj: ðA6Þ

The partial derivatives of g are obviously just unity.
Thus, the extrema of f are found by simultaneously solving the system of k derivative equations given by equation (A5), and the

constraint in equation (2):

2C �1

1T 0

� �
w

k

� �
¼

0

1

� �
: ðA7Þ

It can easily be shown that the weights solving this system are

wi ¼
Pk

j¼1C
�1
ijPk

jl¼1C
�1
jl

; ðA8Þ

and so we arrive at the usual inverse covariance weighting.
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