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ABSTRACT

We study the possibility of magnetic mass detection using the gravitational microlensing technique. Recently,
the theoretical effect of magnetic mass in NUT space on the microlensing light curve has been studied. It has been
shown that in the low photometric signal-to-noise ratio and sampling rate of MACHO experiment light curves, no
signature of the NUT factor has been found. In order to increase the sensitivity of magnetic mass detection, we
propose a systematic search for microlensing events, using the currently running alert systems and complementary
telescopes for monitoring Large Magellanic Clouds stars. This observation strategy provides the lowest observ-
able limit of the NUT factor, and we calculate the magnetic mass detection efficiency. This survey method for
gravitational microlensing detection can also be used as a tool for searching other exotic spacetimes.

Subject headinggs: cosmology: observations — cosmology: theory — dark matter — gravitational lensing —
relativity

1. INTRODUCTION

A gravitational microlensing method for detecting massive
compact halo objects (MACHOs) in the Milky Way halo has
been proposed by Paczyński (1986). Many groups have con-
tributed to this experiment and have detected hundreds of
microlensing candidates in the direction of the Galactic bulge,
spiral arms, and Large and Small Magellanic Clouds (LMC
and SMC). Because of the low probability of microlensing
detection, less than 20 events have been observed by the EROS
and MACHO groups in the direction of the Magellanic clouds
(Lasserre et al. 2000; Alcock et al. 2000). Not only do the low
statistics cause ambiguities in identifying the galactic model of
the Milky Way, but also in some cases the microlensing results
are at variance with the results of other observations (Gates &
Gyuk 2001).

Comparing LMC microlensing events with theoretical ga-
lactic models can give us the mean mass of MACHOs and the
fraction of halo mass in the form of MACHOs. If we use a
Dirac delta mass function for the MACHOs, the mass of
MACHOs in a standard halo model is about �0.5 M�. This
means that the initial mass function of MACHO progenitors
in the Galactic halo should be different from that of the disk,
because we see neither the low-mass stars that should still
exist nor heavier stars that would have exploded in the form
of supernova (Adams & Laughlin 1996; Chabrier et al. 1996).
Another contradiction is that if there were as many white
dwarfs in the halo as suggested by the microlensing experi-
ments, they would increase the abundance of heavy metals via
Type I supernova explosions (Canal et al. 1997). Recently,
Green & Jedamzik (2002) and Rahvar (2004) also showed that
the observed distribution of the duration of microlensing
events is significantly narrower than what is expected from
standard and nonstandard galactic halo models.

The problems mentioned here could be a good motive for the
next generation of microlensing experiments. The new surveys
will have the potential to increase the number of microlensing
candidates and reduce the ambiguities due to Poisson statistics.
Other improvements to the new surveys could include higher
sampling rates and higher precision photometry of the light
curves. More precise light curves will enable us to distinguish
deviations between the standard and nonstandard light curves
due to parallax or source finite-size effects (Rahvar et al. 2003).
In so-called nonstandard microlensing candidates, the degen-
eracy can be partially broken between lens parameters, such as
the distance and the mass of a lens. A better determination of
the distance and the mass distributions of the lenses can help
us to better identify the Milky Way halo model (Evans 1994).

Although the effects mentioned here exist in Schwarzschild
space, it is also possible that a lensing MACHO resides in an
exotic spacetime such as Kerr or NUT space (Newman et al.
1963). Deviation of the spacetime from the Schwarzschild
metric would cause deviation of the microlensing light curve
from the standard one. Thus, studying the microlensing light
curves can be used not only to determine the dark matter in
the form of MACHOs, but also as a unique tool to explore
other exotic spacetimes as well.

Nouri-Zonoz & Lynden-Bell (1997) considered the gravi-
tational lensing effect on light rays passing by a NUT hole,
using the fact that all the geodesics in the NUT space, including
the null ones, lie on cones. Rahvar & Nouri-Zonoz (2003) have
extended this work to the microlensing light curve in NUT
space and tested the possible existence of magnetic mass on the
light curves of the MACHO group microlensing candidates.
According to the analysis of the light curves, no magnetic mass
effect has been found. Although the results showed that the
effect of the NUT factor is almost negligible, one cannot rule
out the existence of NUT charge on that basis. The next gen-
eration of microlensing experiments may prove the existence
(or nonexistence) of magnetic mass through a more careful
study of microlensing light curves.

In this work we simulate the microlensing light curves in
the NUT metric according to a strategy for the next generation
of microlensing surveys. The aim of this work is to obtain the
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observational efficiency for the magnetic mass detection and
to find the lowest observable limit for the NUT charge. Large
Magellanic Cloud (LMC) stars are chosen as the target stars
for monitoring. The advantage of using LMC stars as com-
pared to spiral arm and the Galactic bulge stars is the lower
contamination by blending and source finite-size effects, which
can affect the NUT light curves. The other advantage of LMC
monitoring is that it enables us to increase the microlensing
statistics to put a better limit on the mass of the lenses and the
mass fraction of the galactic halo in form of MACHOs.

The organization of the paper is as follows. In x 2, we give a
brief account on the microlensing light curve in the NUT
metric and compare it with the Schwarzschild case. In x 3, we
introduce the observational strategy and perform a Monte
Carlo simulation to generate the microlensing light curves.
Section 4 contains the fitting process used for the simulated
light curves to obtain the observational efficiency of the
magnetic mass detection. The results are discussed in x 5.

2. GRAVITATIONAL MICROLENSING IN
SCHWARZSCHILD AND NUT METRICS

The gravitational lensing effect occurs when the impact
parameter of a lens with respect to the undeflected observer-
source line of sight is small enough that the deviation of
the source shape becomes detectable. In the case of a pointlike
source, the deflection angle is too small to be resolved by
current telescopes. This type of gravitational lensing, which
amplifies the brightness of the background star, is called
gravitational microlensing. In the Schwarzschild metric the
magnification is given by (Paczyński 1986)

A(t) ¼ u(t)2 þ 2

u(t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u(t) 2 þ 4

p ; ð1Þ

where u(t) ¼
�
u2
0 þ t � t0ð Þ=tE½ �2

�1=2
is the impact parameter

(position of the source in the deflector plane normalized by
the Einstein radius, RE), and tE is the Einstein crossing time
(duration of event), defined by tE ¼ RE=vt , where vt is the
transverse velocity of the deflector with respect to the line of
sight. The Einstein radius is given by R2

E ¼ 4GMD=c2, where
M is the mass of the deflector and D ¼ DlDls=Ds, where Dl ,
Dls, and Ds are the observer-lens, lens-source, and observer-
source distances, respectively. The only physical parameter
that can be obtained from a light curve is the duration of the
event, which is a function of the lens parameters such as mass,
distance of lens from the observer, and relative transverse
velocity of the lens with respect to our line of sight.

In the case of gravitational microlensing, the configuration
of the lens changes within a timescale of dozen of days, while
on cosmological scales the lensing configuration is almost
static. Since the magnification factor depends on the spacetime
metric, the gravitational microlensing technique may also
be a useful tool for exploring other exotic metrics such as
NUT space. In NUT space the magnification due to micro-
lensing depends on extra factor (magnetic mass) compared to
Schwarzschild space. It should be mentioned that NUT space
reduces to Schwarzschild space when the magnetic mass (l ) is
zero.4 Thus, we expect that the microlensing amplification
reduces to equation (1) for zero magnetic mass. Rahvar &

Nouri-Zonoz (2003) obtained the magnification in this
spacetime as

A(u) ¼ 2þ u2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ u2

p þ 8R4(2þ u2)

u3(4þ u2)3=2
þO(R8)þ : : : ; ð2Þ

where RNUT ¼ 2lDð Þ1=2 is defined as the NUT radius (analo-
gous to the Einstein radius), and l is the magnetic mass of the
lens. The parameter R in equation (2) is defined by dividing
the NUT radius by the Einstein radius, R ¼ RNUT=RE. It can
be seen that in NUT space the magnification factor, as in
the Schwarzschild case, is symmetric with respect to time. The
extra second term implies a larger relative maximum of the
magnification factor for a given minimum impact parameter.
We also find a shape deviation of the light curve with respect
to the case of Schwarzschild metric.
The detectability of the NUT factor through studying mi-

crolensing depends on the light-curve quality (i.e., sampling
rate and photometric error bars). In the next section we intro-
duce a new strategy for microlensing observations in order to
improve the microlensing light curves, from the point view of
both the sampling rate and the photometric precision.

3. LIGHT CURVE SIMULATION IN NUT SPACE

The observation strategy is based on using a survey as
an alert system for microlensing detection, with a follow-up
setup. EROS is one of the groups that used an alert system to
trigger observation of ongoing microlensing events. We sim-
ulate EROS-like telescope with the same sampling rate, con-
sidering 70% clear sky at La Silla during the observable
seasons of the LMC. A follow-up telescope is considered to
observe, with 1% photometry precision and sampling rate of at
least once per night, those events that have been triggered by
the first telescope. Here our aim is to simulate microlensing
light curves in NUT space by using the observational strategy
mentioned above.
It should be noted that there are at least two other important

effects, blending and source finite-size effects, that can change
the light curves in a symmetric manner that mimics the NUT
factor. Those effects are important because they may dominant
over the effect of the NUT factor in the light curves. Thus,
before starting the simulation procedure we give a brief ac-
count of those effects, and we include them in generating
microlensing light curves in NUT space.
The blending effect is due to the mixing of the light of a

lensed star and its neighbors, which is given as

F(t) ¼ Fb þ A(t)Fs; ð3Þ

where F(t) is the measured flux, Fs is the flux of the lensed
source, Fb is from the vicinity of lensed source, and A(t) is
the amplification (Wozniak & Paczynski 1997). This effect is
described by the blending parameter, which is defined as
b ¼ Fs= Fs þ Fbð Þ; the observed magnification factor can be
written as

Aobs(t) ¼ 1þ b A(t)� 1½ �: ð4Þ

The second altering effect on a light curve in NUT space is the
source finite-size effect, which is caused by the nonzero size of
projected source star on the lens plane. In this case, different
parts of the source star are amplified by different factors. The
relevant parameter of this effect is the projected size of the

4 NUT space is give by the metric ds2 ¼ f (r)(dt � 2l cos �d�)2�
1=f (r)½ �dr 2� (r 2þ l 2)(d�2þ sin2�d�2), where f (r) ¼ 1� 2(Mrþ l2)=(r 2þ l2).

RAHVAR & HABIBI674 Vol. 610



source radius on the lens plane, normalized to the cor-
responding Einstein radius (U ¼ xR=RE), where x ¼ Dl=Ds is
the ratio of lens and source distances from the observer, and R
is the size of the source radius. In the case of close source-lens
distance compared to the observer-source distance, this effect
becomes important.

To find the best field of source stars, we compare possible
fields of observation, such as the Galactic bulge, the spiral
arms, and the Magellanic clouds to find the least blending and
source finite-size effects. In the direction of the Galactic bulge,
the blending effect is high, since the field of target stars is
crowded, except for the clump giants (Popowski et al. 2000).
For the spiral arm stars, the blending effect is less than toward
the Galactic bulge, while the source finite-size effect due to
self-lensing by the spiral arm stars is considerable. For the
SMC, according to the blending and parallax studies of long-
duration events (Palanque-Delabrouille et al. 1998), it seems
that SMC is quite elongated along our line of sight, with a
depth varying from a few kpc (the tidal radius of the SMC is
of the order of 4 kpc) to as much as 20 kpc. Thus, because of
high blending and source finite-size effects, the SMC is not
suitable for searching gravito-magnetic parameters. It seems
that the LMC is the best choice for this study. The other
advantage of using this field is increasing the microlensing
statistics, which can be used in dark matter studies of the
Galactic halo.

In our simulation, we use the distribution of the blending
factor according to the reconstructed blending parameter that
has been obtained by the best fit to the LMC microlensing
events. For the source finite-size effects of LMC stars, which
become important in the case of self-lensing, we first compare
relative self-lensing abundance to Galactic halo lensing and
then evaluate the finite-size effect of those events on the light
curves.

Comparing the optical depth for the standard Galactic halo
model, �halo ¼ 1:2þ0:4

�0:3 ; 10
�7 (Alcock et al. 2000), with the

optical depth obtained from the LMC itself, �self -lens ¼ ½0:47
7:84� ; 10�8 (Gyuk et al. 2000), mean value 2:4 ; 10�8, shows
that the expected number of microlensing events caused by
halo MACHOs is about 1 order of magnitude more than that of
the LMC. The optical depth value of LMC self-lensing can be
confirmed by studying the parallax effect on the light curves.
Rahvar et al. (2003) showed that using the same observational
strategy proposed here, if the self-lensing is dominant, very
few lenses (only those that belong to the disk) produce a de-
tectable parallax effect.

In order to evaluate the source finite-size effect on the
microlensing light curves of the LMC, we perform a Monte
Carlo simulation to produce the distribution of the relevant
parameter U. We use the LMC model introduced by Gyuk
et al. (2000) to see the matter distribution in our line of sight.
The probability of a microlensing event by a LMC lens at a
given distance from us is

d�(x)

dx
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(1� x)

p
�(x);

where �(x) is the matter density distribution of LMC.
The source stars in the LMC are chosen according to their

color-magnitude distribution. We use the mass-radius relation
(Demircan & Kahraman 1990) to evaluate the radii of stars
in our simulation. The radii of source stars are projected on the
lens plane and normalized to the corresponding Einstein ra-
dius to obtain the distribution of U for the LMC self-lensing

events. The mean value of U according to our simulation
is about 10�3, which we applied to obtain the gravitational
microlensing light curves. For an impact parameter as small
as u0 ¼ 0:01, where the NUT factor becomes important, the
maximum magnification difference of a standard light curve
and that obtained by considering source finite-size effect is
about 1%. On the one hand, this difference is less than our
photometric accuracy; on the other hand, the optical depth
from self-lensing is 1 order of magnitude smaller than that of
the galactic halo. The conclusion is that the source finite-size
effect is not important in our analysis.

3.1. Simulation of Ligght Curvves

The aim of this section is to simulate the microlensing light
curves according to the observational strategy described above.
We use the theoretical light curves to fit the simulated ones and
evaluate the magnetic mass parameter of the NUT metric. The
final result of this procedure is the observational magnetic mass
detection efficiency, which can be applied to different galactic
models. To start simulating the light curves, we use a uniform
random function to generate the lens parameters.

The standard microlensing light curve in the Schwarzschild
metric depends on four parameters: the base flux Fb, minimum
impact parameter u0, duration of the event te, and moment of
minimum impact parameter or maximum magnification t0.
Taking into account the magnetic mass needs an extra pa-
rameter, R. The relevant parameters in simulating the light
curves are chosen in the intervals u02½0; 1�, t02½0; 2� yr,
tE2½5; 365� days, and R2½0; 0:5�.

The base fluxes Fb of the background stars in the direction
of the LMC are chosen according to the magnitude distribu-
tion in the EROS catalogs (Lasserre 2000). Since it has been
shown that the contribution of the blending effect is important

Fig. 1.—Example of the simulated light curves according to our proposed
observational strategy for the next generation microlensing survey. The pa-
rameters of the light curve are chosen to be te ¼ 100 days, t0 ¼ 365 days,
u0 ¼ 0:3, b ¼ 0:88, and R ¼ 0:5. The background star is chosen to have an
apparent magnitude of 22. The dashed and solid lines show the result of least-
squares fit of the Schwarzschild and NUT theoretical light curves to the
simulated data, respectively. The reconstructed NUT parameter derived from
the fitting is Rrec ¼ 0:501668, with 1 � uncertainty of 0.001946; �2/Ndof for
this light curve from the NUT and the Schwarzschild fittings are 0.26 and
30.88.

FUTURE OF MICROLENSING MAGNETIC MASS DETECTION 675No. 2, 2004



in this study, we use the blending distribution that has been
obtained from the observed LMC microlensing events in order
to use them in generating the light curves (Alcock et al. 2000).
The light curves are simulated using the sampling rate of
EROS, which is about one observation per six nights on av-
erage and is variable during the seasons. The average relative
photometric precision �F=F for a given flux F (in ADU) is
taken from the EROS phenomenological parametrization,
which has been found for a standard quality image (Derue
1999).

In simulating the light curves, every photometric measure-
ment is randomly shifted according to a Gaussian distribution
that reflects the photometric uncertainties. Since the photo-
metric uncertainty depends on the apparent magnitude of the
background stars, the error bars of the light curves decrease by
increasing the brightness of background source during the
lensing (see Fig. 1).

3.2. Simulation of a Simple Alert System

The next step is to simulate an alert system to trigger ob-
servation of the ongoing events and the follow-up observation
by the secondary telescope. According to one of the EROS
alert algorithms, the events are announced as soon as their
light curves exhibit four consecutive flux measurements above
4 � from the base line (Mansoux 1997). It is clear that only the

Fig. 2.—Trigger efficiency in terms of the blending parameter (top), duration of events (middle), and R (bottom). The efficiency of the alert system depends on the
blending parameter. This means that the larger blending factors produce a lower maximum magnification. In addition, for the long-duration events there is a greater
chance of being alerted by the primary telescope. For events with larger R, the peak of maximum magnification is elevated, resulting in a greater probability that
those events will be alerted.

Fig. 3.—Contours showing the two-dimensional magnetic mass detection
efficiency in terms of duration of events and R. The numbers between the
contours show the level of detection efficiency.
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most significant microlensing events are selected by this al-
gorithm. We have in fact considered several trigger thresholds,
from a loose criterion (three consecutive measurements above
3 � from the base line) to the strict criterion that was finally
used. Even using this strict criterion, on average one false
alarm due to variable stars or instrumental artifacts is expected
per true microlensing alert (J.-F. Glicenstein 2002, private
communication). This false-alarm rate will induce some lost
follow-up time, but of very limited duration, as it is usually
possible to quickly identify and discard a non-microlensing
event. Figure 1 shows an example of a microlensing light
curve that has been simulated using the specifications of the
primary and secondary follow-up telescopes.

The efficiency of the alert system depends on the parameters
of the lenses. In order to obtain the trigger efficiency in terms
of physical parameters such as the duration of events and R,
we integrate over irrelevant parameters such as the minimum
impact parameter and the time of maximum magnification.
Equation (2) shows that the NUT parameter increases the
maximum magnification, or in other words decreases the ef-
fective minimum impact factor. The result is a higher trigger
rate for microlensing events that have larger R. This effect is
shown in Figure 2. It shows that the trigger efficiency is in-
creased by the longer duration of microlensing events, which

reflects a greater probability of observing long-duration events
than short ones.

4. FOLLOW-UP TELESCOPE AND FITTING PROCESS
TO THE LIGHT CURVES

We use a Monte Carlo simulation to generate a large number
of microlensing events. At the first step the lens parameters are
chosen and the light curve is generated according to the pri-
mary telescope specification. Using the trigger system, in the
case that an event is alerted, the secondary telescope starts its
measurements of the ongoing microlensing event with high
sampling rate and photometry precision.

The second telescope is supposed to be a partially dedicated
telescope, which follows the measurements of alerted events.
The telescope is assumed to have about 1% precision in
photometry and to sample events through all clear nights.
According to the meteorological statistics of La Silla obser-
vatory, about 70% of nights per year are clear. A 1 m telescope
could achieve this precision with a long exposure of about
30 minutes.

After simulating a large number of events by this strategy,
we use the NUT and Schwarzschild theoretical microlensing
light curves to fit the simulated ones. The least-squares method
is used to fit the theoretical light curves on the data. An

Fig. 4.—Magnetic mass detection efficiency in terms of blending parameter (top), duration of events (middle), and R (bottom). According to the top panel, the
magnetic mass effect can be dominated by the blending. The detection efficiency also has a direct dependence on the duration of events and R. A rough estimate of
the minimum R that can be detected is about R ¼ 0:1.

FUTURE OF MICROLENSING MAGNETIC MASS DETECTION 677No. 2, 2004



example of the fitting routine is shown in Figure 1. When
fitting data with the NUT curve with R < 0:1, we encounter
the degeneracy problem, which means that for R close to zero
we may obtain from the fitting a nonzero reconstructed value
for R. To distinguish between the microlensing light curves
affected by NUT charge and the standard ones, we use the
criterion that ��2 > 2, where

��2 ¼ �2
Sch � �2

NUT

�2
NUT=Ndof

1ffiffiffiffiffiffiffiffiffiffiffi
2Ndof

p ; ð5Þ

where indices of the �2 correspond to the type of the metric,
and Ndof is the number of degree of freedom in the NUT fitting.
As a complementary criterion, we require the signal-to-noise
ratio of R to be more than 2. We obtain the magnetic mass
detection efficiency of MACHOs by dividing the reconstructed
parameters of those events that meet these two criteria by the
generated events. Figure 3 shows the two-dimensional effi-
ciency of magnetic mass detection in terms of R and the du-
ration of events.

The detection efficiency of magnetic mass has a direct
correlation with R as well as with the duration of the events. It
is more practical to obtain efficiencies in terms of duration of
events and R, which are shown in Figure 4. It should be
mentioned that the blending effect decreases the detection
efficiency of magnetic mass, as also shown in Figure 4.

5. CONCLUSION

In this work we propose a new strategy for microlensing
observation that not only can be used for searching for

MACHOs in the Galactic halo by observing LMC stars, but
also can be a useful tool to explore exotic spacetimes around
compact objects, such as the NUT metric. As a result of our
Monte Carlo simulation, we obtained the detection efficiency
for magnetic mass. The minimum value for R that can be
observed by this method is about 0.1. In order to evaluate the
amount of detectable magnetic mass l, we use the relation
between the magnetic mass and R (Rahvar & Nouri-Zonoz
2003),

R ¼ c

ffiffiffiffiffiffiffiffiffiffiffi
l

2GM

r
: ð6Þ

EROS and MACHO experiments results propose that the
mean value of the mass of MACHOs is about 0.5 M� (Alcock
et al. 2000; Lasserre et al. 2000). It is worth mentioning that
this result is obtained in the standard halo model, where the
mean mass of MACHOs depends on the model that is used for
the Milky Way. Assuming standard model for the Milky Way
halo, according to equation (6) the minimum observable
magnetic mass l is evaluated to be about 14 m. The absence of
a magnetic mass signal in the microlensing light curves can
also set an upper limit of l < 14 m in the MACHOs of the
Milky Way.

The authors thank M. Nouri-Zonoz, H. Hakimi Pajouh, and
S. Arbabi Bidgoli for their useful comments.
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