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ABSTRACT

Stochastic acceleration of electrons and protons by waves propagating parallel to the large-scale magnetic
fields of magnetized plasmas is studied with emphasis on the feasibility of accelerating particles from a thermal
background to relativistic energies and with the aim of determining the relative acceleration of the two species
in one source. In general, the stochastic acceleration by these waves results in two distinct components in the
particle distributions, a quasi-thermal and a hard nonthermal, with the nonthermal one being more prominent in
hotter plasmas and/or with higher level turbulence. This can explain many of the observed features of solar flares.
Regarding the proton-to-electron ratio, we find that in a pure hydrogen plasma the dominance of the wave-proton
interaction by the resonant Alfvén mode reduces the acceleration rate of protons in the intermediate energy range
significantly, while the electron-cyclotron and Whistler waves are very efficient in accelerating electrons from a
few keV to MeV energies. The presence of such an acceleration barrier prohibits the proton acceleration under
solar flare conditions. This difficulty is alleviated when we include the effects of *He in the dispersion relation
and the damping of the turbulent waves by the thermal background plasma. The additional *He cyclotron branch
of the turbulent plasma waves suppresses the proton acceleration barrier significantly, and the steep turbulence
spectrum in the dissipation range makes the nonthermal component have a near power-law shape. The relative
acceleration of protons and electrons is very sensitive to a plasma parameter o = wp,/$2,, where w,,, and Q, are
the electron plasma frequency and gyrofrequency, respectively. Protons are preferentially accelerated in weakly
magnetized plasmas (large «). The formalism developed here is applicable to the acceleration of other ion species

and to other astrophysical systems.

Subject headings: acceleration of particles — MHD — plasmas — Sun: flares — turbulence

On-line material: color figures

1. INTRODUCTION

One of the important questions in acceleration of cosmic
particles is the fractions of energy that go into acceleration of
electrons and protons (and other ions). In this paper we in-
vestigate this question for acceleration by plasma wave tur-
bulence, a second-order Fermi acceleration process, which we
call stochastic acceleration (SA). The theory of SA has re-
ceived little attention in high-energy astrophysics except in
solar flares where it has achieved significant successes during
the past few years. The turbulence or plasma waves required
for this model are presumably generated during the magnetic
reconnection that energizes the flares. The first application of
SA was to the acceleration of protons and other ions to explain
the observed nuclear gamma-ray lines from solar flares (see,
e.g., Ramaty 1979; Miller & Roberts 1995). Combining with
the nuclear reaction rates (Ramaty et al. 1975, 1979; see also
Kozlovsky et al. 2002) and a magnetic loop model, Hua &
Lingenfelter (1987a, 1987b) and Hua et al. (1989) showed that
the SA model can provide natural explanations for the many
observed features in the 1-7 MeV range. Later this model was
also investigated in the acceleration of electrons in several
studies (Miller & Ramaty 1987; Bech et al. 1990; Miller et al.
1996; Park & Petrosian 1995, 1996), and the first quantitative
comparison of predictions of this model with the observed
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hard X-ray (10-200 keV) spectra in some solar flares was
carried out by Hamilton & Petrosian (1992). With a more
detailed modeling, Park et al. (1997) showed that the SA of
electrons by some generic turbulent plasma waves can re-
produce the many spectral breaks observed over a broad en-
ergy range, from tens of keV to ~100 MeV, in the so-called
electron-dominated flares via the bremsstrahlung process
(Rieger et al. 1998; Petrosian et al. 1994).

The strongest evidence supporting the SA model comes
from the Yohkoh discovery of impulsive hard X-ray emission
from the top of a flaring loop, in addition to previously known
emission from loop footpoints (FPs; Masuda et al. 1994;
Masuda 1994). The presence of the loop-top (LT) emission
requires temporary trapping of the accelerated electrons at the
top of the loop where the reconnection is taking place. The
turbulence required for SA will naturally accomplish this by
repeated scatterings of the particles (Petrosian & Donaghy
1999). More importantly, an analysis of a larger sample of
Yohkoh flares (Petrosian et al. 2002) has shown that the LT
emission is a common property of all flares, and a preliminary
investigation of RHESSI data appears to confirm this picture
(Liu et al. 2003). Finally, a third and equally important piece
of evidence in support of the SA model comes from the
spectra and relative abundances of the flare-accelerated pro-
tons and other ions observed at 1 AU from the Sun (Mazur
et al. 1992; Reames et al. 1994; Miller 2003). These several
independent lines of argument have established the SA as the
leading model for solar flares. This may be also true in many
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other astrophysical nonthermal sources. Thus, a more detailed
investigation of the SA model and its comparison with ob-
servations are now fully warranted.

In particular, the SAs of electrons on the one hand and
protons and other ions on the other are investigated separately;
a unified treatment and comparison with the total nonthermal
radiative signatures of all species have not been carried out
yet. The purpose of this investigation is to obtain the relative
acceleration of electrons and protons from the thermal back-
grounds of solar flare plasmas with the same spectrum of
turbulence. We present some general results of the model and
qualitative comparisons with observations. More detailed com-
parisons with observations and the acceleration of other ions,
such as the anomalous overabundance of the flare-accelerated
3He, will be addressed in subsequent papers. Specifically, we
will address the energy partition between the flare-accelerated
electrons and protons. Observationally, in some flares, or
during the earlier impulsive phase of most flares, there is little
evidence for gamma-ray lines and therefore proton accelera-
tion. These are called electron-dominated cases. In the ma-
jority of solar flares the energy partition favors electrons, but
there are a significant fraction of flares where more energy
resides in protons than in electrons in their respective observed
energy bands. The ratio of energy of the observed electrons
(with greater than 20 keV range) to that of protons (with
greater than 1 MeV range) in solar flares varies approximately
from 0.03 to 100 (see, e.g., a compilation by Miller et al.
1997). In what follows, we use solar flare plasma conditions,
but the formalism described here is applicable to other astro-
physical sources.

In § 2 we describe the general theory of SA and argue that
in most cases the Fokker-Planck (F-P) equation can be reduced
to the diffusion-convection equation with the corresponding
coefficients given by pitch-angle—averaged combinations of
the F-P coefficients. In § 3 we study the resonant interactions
of electrons and protons with parallel-propagating waves in
a pure hydrogen plasma and calculate the resultant F-P co-
efficients and acceleration parameters for interactions with a
power-law turbulence spectrum of the wavenumber. The new
and surprising result here is that the proton acceleration is
suppressed by a barrier in its acceleration rate in the inter-
mediate energy range. This is what is required by observations
of electron-dominated cases, but as shown in this paper, this
barrier is too strong and makes the acceleration of protons
unacceptably inefficient relative to the electron acceleration,
except for in very weakly magnetized plasmas. In § 4 we point
out that this difficulty can be alleviated by a more complete
description of the dispersion relation that includes the effects
of helium ions and by an inclusion of the effects of the thermal
damping of the turbulence at high wavenumbers. The presence
of an appropriate amount of fully ionized helium introduces an
extra wave branch that lowers the barrier, and the thermal
damping steepens the turbulence spectrum toward high wave-
numbers, making the acceleration of electrons and protons
more in agreement with observations. The results presented
here are summarized in § 5, and their applications to solar flare
observations are discussed qualitatively. Some useful approx-
imate analytical expressions for the interaction rates are pre-
sented in Appendices A, B, C, and D.

2. GENERAL THEORY OF
STOCHASTIC ACCELERATION

In this section we present the general theory of SA and
show that in most astrophysical situations the diffusion-

convection equation is adequate to address the particle ac-
celeration processes.

2.1. Fokker-Planck Equation

The study of SA in a magnetized plasma starts from
the collisionless Boltzmann-Vlasov equation and the Lorentz
force (Schlickeiser 1989). In the quasi-linear approximation, it
can be treated by the F-P equation (e.g., Kennel & Engelmann
1966):
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where the wave-particle interaction is parameterized by
the F-P coefficients D[, j€ (i, p)]. Here f(t,s,p, 1) is the
gyrophase-averaged particle distribution and s, v, i1, and p are
the spatial coordinate along the field lines, the velocity, the
pitch-angle cosine, and the momentum of the particle, respec-
tively. The energy-loss (minus systematic energy gains, if any)
processes are accounted for by p;, and S is the source function.

For weak turbulence (6B < B), as is the case for solar
flares, the F-P coefficients can be evaluated by assuming that
the particles and waves are coupled via a resonant process.
The acceleration of particles at a given energy is then domi-
nated by interactions with certain specific wave modes, e.g.,
the Alfvén or Whistler waves. For a study of acceleration in a
narrow energy band it is usually sufficient to consider waves
in a narrow frequency range (Miller & Ramaty 1987). In order
to address the energy partition between electrons and ions,
however, one has to calculate the particle acceleration over
the whole energy range. For example, the Alfvén waves can
efficiently accelerate ions but not nonrelativistic electrons.
Models with pure Alfvénic turbulence are not adequate to
address the energy partition of accelerated particles in solar
flares and many other astrophysical plasmas, especially for the
acceleration of particles from a thermal background. For the
acceleration of such low-energy particles interactions with
turbulent plasma waves extending over a broad range of wave-
numbers (and frequencies) must be considered. We consider
here interactions with a broad spectrum of plasma waves
propagating along a static background magnetic field. The
interactions of parallel-propagating waves with electrons are
described fully by Dung & Petrosian (1994, hereafter DP94)
and Pryadko & Petrosian (1997, hereafter PP97) (see also
Steinacker & Miller 1992). We use their formalism and eval-
uate the relative rates of interaction and acceleration of elec-
trons and protons in cold but fully ionized plasmas.

+

2.2. Dispersion Relation and Resonance Condition

Waves propagating parallel or antiparallel to the large-scale
magnetic field in a uniform plasma have two normal modes
that are polarized circularly (Sturrock 1994). Because their
electric fields are perpendicular to their corresponding wave-
vectors, the waves are also referred to as transverse waves.
The dispersion relation for these waves in a cold plasma is
(see DP94)
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where w,; = (dmnig?/m)"? and Q; = (¢:Bo)/(mic) are, re-
spectively, the plasma frequencies and the nonrelativistic
gyrofrequencies of the background particles (with charges
q;, masses m;, and number densities n;). The term B, stands
for the large-scale magnetic field, ¢ is the speed of light,
and w and k are the wave frequency and wavenumber,
respectively.

One of the important parameters characterizing a magne-
tized plasma is the ratio of the electron plasma frequency to
the electron nonrelativistic gyrofrequency:

a = wpe/Q = 3.2(n/10" em=3)"*(B,/100 G) !, (3)

where €2, = (eBy)/(m.c) and e and m, are the elemental charge
unit and the electron mass, respectively. The value of « is
small for a strongly magnetized plasma.

A particle with a velocity Gc (Lorentz factor «y) and a pitch-
angle cosine p interacts most strongly with waves satisfying
the resonance condition:

nw;
w—kyBp=—,
Y

(4)

where n is for the harmonics of the gyrofrequency (not to be
confused with the background particle number densities n;),
w and k|| are the wave frequency and the parallel component
of the wavevector in units of €2, and €,./c, respectively (we
use these units in the following discussion unless specified
otherwise and in our case kj =k and n= —1), and w; =
gim./em; are the particle gyrofrequencies in units of
we = —1 for electrons and w, =6 =m,./m, for protons,
where m,, is the proton mass (for more details see also DP94).
One notes that low-energy particles mostly resonate with
waves with high wavenumbers and only relativistic particles
interact with large-scale waves with low frequencies. The
resonant wave-particle interaction can transfer energy between
the turbulence and particles with the details depending on the
particle distribution and the spectrum and polarization of the
turbulence.

2.3. Fokker-Planck Coefficients

The evaluation of the F-P coefficients requires a knowl-
edge of the spectrum of the turbulence. Following previous
studies (DP94; PP97), we first assume a power-law distri-
bution of unpolarized turbulent plasma waves. For unpo-
larized turbulence, the amplitudes of the waves only depend
on k. Then we have E(k) = (¢ — D& kL =4 for k > kmin
(i.e., a large-scale cutoff), where the turbulence spectral
index ¢ > 1. For a given turbulence energy density &y,
kmin, presumably larger than the inverse of the size of the
acceleration region, determines the maximum energy that
the accelerated particles can reach and the characteristic
timescale of the interaction. The general features of this sit-
uation have been explored in the papers cited above. For the
sake of completeness, we briefly summarize the key results
here.

The F-P coefficients can be written as

,uu(l ij)z for ab = pu,
upxj l xj) for ab = up,

P? x for ab = pp, (5)
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The sum over j is for the resonant interactions discussed in
the previous section. The characteristic interaction timescale

for each of the charged particle species is 7,; = 7, /wl2 with
that for electrons given by (see DP94)

x = /O (6)

™
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In general, the F-P coefficients have complicated depen-
dence on the turbulence spectral index ¢, the plasma parameter
a, and the energy and pitch angle of the particles. The exact
solution of the full F-P equation is a difficult task. Fortunately,
under certain conditions considerable simplifications are pos-
sible. These conditions are defined by the relative values of
the three F-P coefficients. The pitch-angle change rate of the
particles is proportional to D,,, while the momentum or en-
ergy change rate is proportional to Dpp/pz. As evident from
equation (5), the behavior of D,,/p is intermediate between
the two.

up

2.4. Diffusion-Convection Equation

The relative values of the F-P coefficients determine the
type of approximations that can be used for solving the F-P
equation. We now show that for most conditions reasonable
approximations lead to the well-known transport equation
(eq. [10]). In order to justify these approximations, it is con-
venient to define two ratios of the coefficients:

Ri(p,p) = 8
: 4 DW ®)
D
Ro(p,p) = —2F. 9)
pDy,

We show in the following sections for most energies and pitch
angles both Ry and |R,| < 1, which means that D, >

D,,/p*. Under these conditions the particles are scattered
frequently before being significantly accelerated and the ac-
celerated particle distribution is nearly isotropic. Then the
pitch- angle averaged particle distribution function F(s,t,p) =
0.5 f duf(p,s,t,p) satisfies the well-known diffusion-
convectlon equation (see, e.g., Kirk et al. 1988; DP94; PP97).

In this study we are interested in the relative acceleration
of electrons and protons that is not sensitive to the detailed
geometry or the inhomogeneities of the source. Therefore,
we can assume a homogeneous and finite (size L) source or
alternatively confine our discussion to spatially integrated
spectra. In this case we can treat the spatial diffusion or ad-
vection of the particles by an energy-dependent escape term.
Then the above-mentioned equation is reduced to

ON & 0 r,: N
DggN) + — | (EL — A)N| — 10
o = agz PeeN) + 5 (B — A)N] . & (10
where E = (y— Dm; c is the particle kinetic energy,

N(t,E)dE = 4np* dp fo F(s,t,p)ds, EL describes the net sys-
tematic energy loss, and O(¢, E) = 0.5 f du fo S(s, . t, E) ds
is the total injection flux of particles 1nt0 the acceleration
region. The term Dgp describing the diffusion in energy is
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related to D, and defines the acceleration time, and Ty is
related to the scattering time 7:

12 /2 1 /! 1— 2 2
Tese = /U ) Tse = _/ dp w < L/Ua (11)
-1 Dy

E2

b
Dgg

Tac =

EZ 1 5
Dgg :7/_]d,uDW(R1 -R3). (12)

Note that equation (10) describes the energy diffusion with
two terms, Dgg and the direct acceleration rate:

1 dBy’Dpr _ dDgr | Dpp2—v*

AE) = .
e dE | E 1+~4!

(13)

There are several important features in the diffusion coef-
ficients that we emphasize here:

1. The first is that in the extremely relativistic limit the
diffusion coefficients (and their ratios) for protons and electrons
are identical and assume asymptotic values such that both of
the ratios are much less than 1. Therefore, equations (10), (11),
and (12) are valid. (Strictly speaking, this is not true for very
strongly magnetized plasmas o < 6'/2 where one gets R; ~
|R2| ~ 1; see eq. [5].)

2. The second is that at low energies, as pointed out by
PP97, R, and R3 are not necessarily less than 1, especially for
plasmas with low values of «. In the extreme case of R; >
|Rz| > 1, three of the four diffusion terms in equation (1) can
be ignored. Again, if we assume a finite homogeneous region
or integrate over a finite inhomogeneous source, the resultant
equation becomes similar to equation (10). Now because of
the lower rate of pitch-angle scatterings, the escape time may
be equal to the transit time Tes. ~ L/(vp), the other transport
coefficients Dy and £ (and consequently the accelerated par-
ticle spectra) may depend on the pitch angle, and the as-
sumption of isotropy may not be valid. However, as can be
seen in the next section (Figs. 5 and 6), these coefficients
change slowly with u, except for some negligibly small ranges
of p, so that the expected anisotropy is small. In addition, at
lower energies Coulomb scatterings become increasingly im-
portant and can make the particle distribution isotropic. In many
cases, especially for plasmas not completely dominated by the
magnetic field (i.e., for o > 1), one can neglect the small
expected anisotropy and integrate the equation over the pitch
angle, in which case the transport equation becomes identical
to equation (10) except now

Tese = L/V20 < 7ic ~ (1/Dyy,), (14)

2
S S
f_l dﬂDpp(/f")

where angle brackets denote averaging over the pitch angle.

3. It is easy to see that one can combine the above two sets
of expressions (eqs. [11]-[15]) for the acceleration rates (or
timescales) and the escape times at the nonrelativistic and ex-
tremely relativistic cases as

L V2L E?
Tose = 1 = 16
e (14 225), m—p (19)

Tac

and

b Ez/ld b R, if Ry > |Ry| > 1,
EE — P . wL Rl—R%

if Ry, |R2| <1

(17)
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The first expression in equation (17) is valid at low values of
E and o and the second at higher energies and in weakly
magnetized plasmas. However, it turns out that at extremely
relativistic energies and in weakly magnetized plasmas (o > 1),
independent of other conditions, R3 < R; and the first expres-
sion can be used. These expressions and equation (10) then
describe the problem adequately for most purposes in high-
energy astrophysics, in particular for solar flares, the focus of
this paper.

4. Finally, in certain cases, especially in the intermediate
energy range, the quantity R; — R3 appearing in equations (12)
and (17) can be small. The acceleration rate can be reduced
dramatically when both R; and |R;| are much less than 1 and
R; ~ R3. From the definitions of these ratios and expressions
for the F-P coefficients (eqs. [8], [9], and [5]) it is clear that
if there were only one resonant interaction, one would have
R = R% and there would be no acceleration. Thus, strictly
speaking, the use of equation (10) with interactions involving
only one wave mode (say the Alfvén) is incorrect. However,
as we show in § 3.1, there are always at least two resonant
interactions in unpolarized turbulence, in which case Ry # R}
so that the acceleration rate is finite. But if one of the inter-
actions is much stronger than the others, R; — R3 can be small.
In the next section we show some examples where this is true
(Fig. 5) and that this happens at the intermediate values of
energy (Fig. 6). The acceleration rate is then reduced greatly.
The much lower acceleration rate at the intermediate energies
compared to the higher rates in the nonrelativistic and ex-
tremely relativistic limits introduces an acceleration barrier. As
we shall see, in the intermediate energy range the behaviors of
protons and electrons are quite different and a much stronger
acceleration barrier appears for protons.

2.5. Loss Rate

To determine the distributions of the accelerated protons
and electrons by solving equation (10) with the above for-
malism, in addition to the transport coefficients Dgg, 4, and
T.sc» we need to specify the loss term E;. For electrons the loss
processes are dominated by Coulomb collisions at low ener-
gies and by synchrotron losses at high energies:

Ep, = 4rm.c (7rne InA/B+ Bﬁﬁzyz/9mgcz), (18)

where ry = 2.8 x107!13 c¢m is the classical electron radius and
In A = 20 is a reasonable value in our case (See Leach 1984).
The ion losses in a fully ionized plasma are mainly due to
Coulomb collisions with the background electrons and protons
(Post 1956; Ginzburg & Syrovatskii 1964). For electron-ion
collisions, we have
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where 7. = (3kgT, /mecz)l/ 2 is the mean thermal velocity of
the background electrons in units of ¢ and kg is the Boltzmann
constant. For proton-ion collisions, which are important for
ions with even lower energies, we have (Spitzer 1956)

£y, = dmrimcny (g /e’ (mo/m) 5 A, (20)

These loss processes dominate at different energies, and we
can define a loss time 7joss = E/E].

2.6. Steady State Solution and Normalization

We use the impulsive phase conditions of solar flares for
our demonstration. In this case, we can assume that the system
is in a steady state because the relevant timescales are shorter
than the dynamical time (the flare duration). We also assume
the presence of a constant spectrum of turbulence. We are
interested in the acceleration from a thermal background
plasma; therefore, a thermal distribution is assumed for the
source term Q. As described above, equation (10) may not be
valid at low (keV) energies where R; > 1. However, for solar
flare conditions and in the keV energy range, Coulomb scat-
terings become important (DS > DYV see Hamilton &
Petrosian 1992). In this case R} < 1 and the particle distri-
bution will be nearly isotropic at all energies. We therefore
calculate the acceleration rate with the second expression of
equation (17) and solve equation (10) to get the distributions
of the accelerated particles over all energies.

To appreciate the relevant physical processes, one can
compare the acceleration time with the escape and the loss
time. We are mostly interested in the energy range above the
energy of the injected particles. Thus, the source term is not as
important in shaping the spectrum as the other terms. In the
energy band where the escape and loss terms are negligible,
from the flux conservation in the energy space, one can show
that AN — d(DggN)/dE = const. On the other hand, when the
acceleration terms are negligible, no acceleration occurs.
When the escape time becomes much shorter than the accel-
eration time and both of them are much shorter than the loss
time, particles escape before being accelerated. This results
in a sharp cutoff in the particle distribution at the energy
where Too ~ E/A(E) ~ E?/Dgg. When the escape time is
long and the loss time is much shorter than the acceleration
time, one would then expect a quasi-thermal distribution for
the Coulomb collisional losses (Hamilton & Petrosian 1992)
and a sharp high-energy cutoff for the synchrotron losses
(Park et al. 1997). Power-law distributions can be produced
only in energy ranges where the loss term is small and the
acceleration and escape times have similar energy dependence.

The normalization of the steady state particle distributions
is determined by their rates of acceleration, escape, and in-
jection. The injection rates depend on the geometries of the
reconnection and the turbulent acceleration site and on pos-
sible contributions of the charged particles to reverse currents
that must exist when a net charge current leaves the acceler-
ation site. A more detailed time-dependent treatment is re-
quired to determine the relative normalization. This is beyond
the scope of the paper and will be dealt with in the future.
Here we concentrate on the relative shapes of the electron and
proton spectra in the LT and FP sources. We assume that the
injection flux [QdE =1 s~! em~2 for both electrons and
protons (see also § 5). In the steady state this is equal to the
flux of the escaping particles Nt = [[° Nu1(E)/Tese(E) dE.

esc
Since the escaping particles lose most of their energy at the
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FPs, instead of Neso(E) = NLT(E)/ Tesc(E) we show the effec-

tive particle distribution for a thick target (complete cooling)

FP source, which is related to the corresponding LT distribu-

tion Nyt via (Petrosian & Donaghy 1999)

I [*®Np(E)

Npp(E) = — ————=dE". 21
Fp(E) B ) Tel®) (21)

3. APPLICATION IN COLD HYDROGEN PLASMAS

In this section we describe the relative acceleration of
electrons and protons in cold, fully ionized, pure hydrogen
plasmas. This is an approximation because all astrophysical
plasmas contain some helium and traces of heavy elements.
Ignoring the effects of helium (trace elements will, in general,
have no influence on the following discussion) and adopting a
turbulence spectrum of a single power law of the wavenumber
simplify the mathematics and allow us to demonstrate the
differences between the acceleration rates of electrons and
protons more clearly. Moreover, in some low-temperature
plasmas, most of the helium may be neutral and not be in-
volved in the SA processes. The results presented here are
a good approximation. Pure hydrogen plasmas can also be
realized in terrestrial experiments to test the theory. The for-
malism can also be easily generalized to the case of electron-
positron plasmas and to more complicated situations. In the
next section we present our results for plasmas including
about 8% by number of helium and for turbulence with a more
realistic spectrum.

3.1. Dispersion Relation and Resonant Interactions

In a pure hydrogen plasma, equation (2) reduces to (PP97)

2 2
]%: __af(1+9) 7 (22)
w (w—Dw++9)
and the Alfvén velocity in units of ¢ is given by s = 6'/%/a.
(For e* pair-dominated plasmas § = 1).

The left panels of Figure 1 depict the normal modes of
these waves, which compose four distinct branches. From top
to bottom in the top left panel, we have the electromagnetic
wave branch (EM; long-dashed line), electron-cyclotron branch
(EC; dot-dashed line), proton-cyclotron branch (PC; dotted
line), and a second electromagnetic wave branch (EM’; short-
dashed line). The bottom left panel is an enlargement of the
region near the origin. The positive and negative frequencies
mean that the waves are right- and left-handed polarized, re-
spectively, where the polarization is defined relative to the
large-scale magnetic field (Schlickeiser 2002). The right
panels of Figure 1 depict the group velocities 5, = dw/dk of
these waves. One may note that the signs of the phase velocity
Bph = w/k and the group velocity of a specific wave mode are
always the same.

In the left panels of Figure 1, the two solid straight lines
depict equation (4) for an electron (upper line) and a proton
(lower line) with 8 = 0.5 and p = 0.25. The intersections of
these lines with the wave branches satisfy the resonance
condition. The electron interacts resonantly at the indicated
point with the EC branch and at another point with the PC
branch at a high negative wavenumber that lies outside the
figure. The proton, on the other hand, resonates with not only
one PC wave but also three EC waves (only two of which are
seen in the bottom left panel of the figure). As we show below,
the fact that certain protons can resonate with more than one
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Fic. 1.—Left: Dispersion relation of parallel-propagating waves in a cold pure hydrogen plasma with a = 0.5. The bottom left panel is an enlargement of the
region around the origin. The lines, from top to bottom, describe the EM (long-dashed line), EC (dot-dashed line), PC (dotted line), and EM' (short-dashed line)
waves. The upper and lower solid lines give, respectively, the resonance conditions for electrons and protons with v = 0.5¢ (8 = v/c) and p = 0.25. Resonant
interactions occur at the points where these lines cross the lines that depict the waves. Right: Same as the left panels, but for the group velocity 5, = dw/dk vs. the
wavenumber k. The line type remains the same for each wave branch. Negative group velocities mean that the energy fluxes of the waves are in the direction
antiparallel to the large-scale magnetic field. [See the electronic edition of the Journal for a color version of this figure.]

EC wave has significant implications for the overall proton
acceleration process.

3.2. Critical Angles and Critical Velocities

In general one expects four resonant points. However, for a
given particle velocity or energy, at critical angles, where the
group velocities of the waves are equal to the parallel com-
ponent of the particle velocity, the number of resonant points
can change from four to two or vice versa. Figure 2 shows the
velocity dependence of the critical angles for electrons (fop)
and protons (bottom) in plasmas with o = 0.5 (left) and 0.1
(right). (The results for electrons are the same as those given
by PP97.) Both particles have at least two resonant inter-
actions (one with the PC and one with the EC branch except
for © = 0 where electrons interact with two EC waves and
protons interact with two PC waves).

Electrons with a large 1 can have two additional resonances
with the EM branch, and those with a small y have two ad-
ditional resonances with the EC branch. The two regions with
four resonances grow with decreasing o and shrink as «
increases. For larger values of a the interaction is weaker
because for large ranges of velocities and pitch angles elec-
trons interact with only two waves (e.g., the interactions with
the EM branch disappear for a > 1; see Figs. 2 and 3). But
as « approaches zero, the region with two wave interactions
diminishes and the two lines for the critical angles merge into
one, satisfying the relation

fee = (y = 1)/By for a — 0. (23)

In this case there are always four resonances and the total
interaction is strong at all energies.

Protons have a similar, but slightly more complicated, be-
havior. As i increases, one obtains interactions with I[EC+3PC,

1EC+1PC, 3EC+1PC, and back to 1EC+1PC waves. With
the decrease of «, the upper two regions diminish, while the
lower portions increase in size. Protons can also be accelerated
by the EM’ waves, but this only occurs in more highly mag-
netized plasmas (o < §'/2/2 ~ 0.012) as compared with the
interactions of electrons with the EM branch. At such low
values of «v a region with four interactions (1IEC+1PC+2EM’)
appears in the upper portion of the u-3 plane and its lower
boundary eventually merges with the lower line for p. as
« approaches zero. Just like electrons, the critical angle is
given by equation (23). In this limit, particles are basically
exchanging energy with the Poynting fluxes of the electro-
magnetic waves.

These behaviors can also be seen in Figure 3, where instead
of pe we plot what one may call the critical velocities as a
function of « for two values of u. Note that in the proton panel
with = 1.0 there is a small region with o < 0.012 where
there are four resonances, including two with the forward-
moving left-handed polarized electromagnetic waves from the
EM’ branch. Protons will not resonate with the electromag-
netic waves for larger values of «v. In general, we have similar
patterns of transition between different regions caused by the
electromagnetic branches in the u-0 space, except that the
transitions for protons occur at a value of « that is lower
than that for electrons by a factor of §/2. The main difference
in the behaviors of electrons and protons resides in their four
resonant interactions with the PC and EC branches. Protons
have two such regions where they resonate with “1EC+3PC”
or “3EC+1PC,” while electrons only have one with “3EC+
1PC”’; electrons never interact with more than one PC wave.
This is where the above scaling symmetry of « between protons
and electrons is broken.

Low-energy approximations.—Because the acceleration of
particles at low energies is of particular interest, we present
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Fig. 2.—Left: Velocity dependence of the critical angles in a plasma with o = 0.5 for electrons (fop) and protons (bottom). At small pitch angles, i.e., p — 1,
electrons can resonate with high-frequency electromagnetic waves of the EM branch (region labeled “2EM+1EC+1PC”), while energetic protons mainly interact
with the Whistler and Alfvén waves (region labeled “3EC+1PC”). Right: Same as the left panels, but for « = 0.1 where interactions of protons with the Whistler

waves start at a higher energy. See text for details.

here some approximate analytic relations, which are derived
in Appendices A, B, C, and D.

The first is for the proton critical velocity line dividing the
region with two and four resonances (i.e., the middle line in
the bottom left panel of Fig. 3). As can be seen in the fol-
lowing sections, at a given « the acceleration rate (eq. [17])
increases dramatically once protons attain the critical velocity
or energy and enter the region with four resonant interactions.
The pitch-angle—averaged acceleration rate also increases
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sharply above this energy. It will be useful to have a formula
to estimate this critical velocity. We find the following ap-
proximate expression for this transition:

~0.06a
~0.0012 + a2’

1 2
or Ecr = Empcz 31, = 1.7 MeV <00013’é—’_042> s (24)
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Fic. 3.—Same as Fig. 2, but depicting the dependence of the critical velocities on the plasma parameter «. Combining this with Fig. 2, one can tell the wave
branches responsible for the critical velocities. [See the electronic edition of the Journal for a color version of the lefi panels of Fig. 3.]
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resonant interactions with the EC (left, for electrons) or PC (right, for protons; note that the region to the left of Epaz = 40 keV has an expanded scale) branch. The
thin dashed (barely visible near the left axis and for & = 1.0) and dotted (for &« = 0.1) lines in the right panel give the critical angles for waves obeying the Alfvénic
dispersion relation w = —|k|(a, which clearly give incorrect descriptions for the acceleration of low-energy protons. Low-energy electrons do not interact with the

Alfvén waves.

which is shown by the dotted line in the bottom left panel
of Figure 3 and agrees within 0.2% with the exact result for
a>0.05.

The second approximation is for the critical angles of pro-
tons below the critical energy (velocity) and low-energy
electrons, most of which interact only with two waves with
one dominating over the other. When this happens, the ac-
celeration rate for the particles can be very small (see § 2.3).
Only particles with very large pitch angles (1 ~ 0) have four
resonances and significant contributions to the pitch-angle—
averaged acceleration rate. The regions for this lie in the
small areas below the lowest lines in Figure 2, which are
barely visible for the proton and o = 0.5 case. As shown in
Appendices A and B using the approximations of equa-
tions (Al) and (A2) for the dispersion relations, we can de-
rive analytic expressions for the critical angles, which in the
nonrelativistic limit give p, o< 8% oc E/mc?. Empirically, we
find that the following simple approximate expressions, as
shown in Figure 4, agree with the exact results to better than
~10% in the indicated energy ranges:

(25)

1 { 61/2E/mpc2 for protons; E < E,
Ncr

~ 350 E/m,c? for electrons; E < 60 keV.

Here it should be emphasized that the commonly used ap-
proximation of accelerating protons by the Alfvén waves with
the dispersion relation w = —|k|84 for |w| < é, which is valid
at relativistic energies (Barbosa 1979; Schlickeiser 1989;
Miller & Roberts 1995), is invalid at low energies. This can be
seen from the bottom left panel of Figure 1, which shows
clearly that the dispersion relation of the waves in resonance
with low-energy protons deviates far from the simple Alfvénic
form. For the simple Alfvénic dispersion relation, nonrela-
tivistic protons resonate with both a forward- and a backward-

moving wave only if |u| < p, = Ba(y — 1)/37. (Particles
only interacting with one wave cannot be accelerated; see
§ 2.4.) This critical angle is indicated by the thin dashed
(barely visible near the vertical axis) and dotted lines in the
right panel of Figure 4 for « = 1.0 and 0.1, respectively,
which clearly overestimate by several orders of magnitude the
fractions of low-energy protons that can be accelerated. The
inefficiency of proton acceleration at intermediate energies,
combined with the increase of the interaction rate above
E., gives rise to the acceleration barrier to be described in
§3.4.

In most of the particle acceleration models, an injection
process of high-energy particles is postulated as an input. If
the injected particles have an energy above E, it may be
appropriate to use the Alfvénic dispersion relation to describe
the waves. If the energy of the injected particles is low, as is
the case under study here, one must use the exact dispersion
relation to calculate the acceleration of low-energy particles.
Although most of the turbulence energy is carried by waves
with low wavenumbers, the acceleration of low-energy par-
ticles is determined by waves with high wavenumbers (see
eq. [4]), which can constrain the overall acceleration effi-
ciency. As discussed above, the Alfvénic dispersion relation
for the waves will overestimate the acceleration efficiency of
low-energy protons significantly.

3.3. Fokker-Planck Coefficients

For a given power-law spectrum of the turbulence, it is
straightforward to calculate the F-P coefficients with equa-
tion (5). Figure 5 shows variation of these coefficients with y at
some representative energies, and Figure 6 shows the variation
of their inverses (i.e., times) with energy at different values of
1, here @ = 0.5 and ¢ = 1.6. The discontinuous jumps occur
at the critical values of pu. and f,, described in § 3.2. The
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L

respectively. The plasma parameter a = 0.5 and the turbulence spectral index

g = 1.6. Note that different coefficients are scaled differently and that, for illustration, in the middle panel the region to the left of 1 = 0.2 is expanded.

variations of the two ratios defined in equations (8) and (9)
with energy at different pitch angles are shown in Figure 7.

These results justify the discussion in § 2.4.

3.4. Barrier in the Proton Acceleration

In the previous section we showed that the pitch-angle—
averaged acceleration rate is one of the dominating factors in
the particle acceleration processes. The relative acceleration of
protons and electrons therefore depends on the contrast of
their acceleration times. Figure 2 shows that at low energies
particles with p > ., only resonate with one PC and one EC
wave: the EC wave dominates the PC wave for electrons,

while the reverse is true for protons. These particles have
significant contributions to the pitch-angle—averaged acceler-

ation rate for p, << 1 (eq. [25]). Because the difference be-
tween the wavenumbers of the two waves interacting with
protons is much larger than that for electrons, the resonant

interaction is more strongly dominated by one of the resonant
waves for protons than it is for electrons. The factor 1—
R3/R, for protons can therefore be several orders of magni-
tude smaller than that for electrons at a given energy and pitch
angle (Fig. 6). Consequently, in the intermediate energies
where R ~ R3 ~ 1, the pitch-angle—averaged acceleration
time for protons has a more prominent increase than that
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Journal for a color version of this figure.]

for electrons. At still higher energies, particles with four
resonances dominate the acceleration rate because R3 < R;
for the interactions. For both electrons and protons, the new
resonant wave modes come from the EC branch. In the rela-
tivistic limit, the acceleration is dominated by resonances with
the Alfvén waves, and the interaction rates for electrons and
protons become comparable.
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Figure 8 shows the pitch-angle—averaged acceleration
(thick lines) and scattering (thin dashed lines) times in units of
7, for electrons (lower lines) and protons (upper lines) in
plasmas with a = 0.5 (leff) and 0.1 (right). The turbulence
spectral index g = 1.6 here. The acceleration times for both
cases in equation (17) are plotted with the invalid segments
shown by dotted lines. We see that the pitch-angle—averaged

log,,(E/keV)

Fic. 7—Ratios R, (leff) and R3 (right) as functions of energy for several different pitch angles for electrons (top) and protons (bottom). In general, R; and |R;|
exceed unity at low energies and u (and small values of «; see PP97). For protons, at certain ranges of £ and p, R3 &~ R; < 1, and the acceleration rate,

D,u(R) — R3), can be very small (see eq. [12]).
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the turbulence spectral index g = 1.6. The acceleration times defined for both cases of eq. (17) are plotted with the corresponding invalid segments indicated by the
dotted lines. The upper two lines are for protons and the lower two are for electrons. The circles indicate the points of transitions between low and high energies
where Ry ~ |Ry| ~ 1. The transitions of the electron acceleration times are quite smooth. The thin solid lines show schematically the transitions of the acceleration
time for protons. The acceleration barrier (as indicated by the hatched areas) in the proton acceleration times is prominent. The sharp drop of the electron
acceleration time with the decrease of energy for & = 0.1 is due to interactions with the EM branch (PP97). [See the electronic edition of the Journal for a color

version of this figure.)

acceleration times are much shorter than the corresponding
scattering times for keV particles. The particle distributions
can be anisotropic at these energies unless there are other
scattering processes (e.g., Coulomb collisions). In the high-
energy range, the scattering time is always shorter than the
corresponding acceleration time when 3o < 1. The transitions
where R| ~ |R;| ~ 1 (as indicated by the circles in the figure)
occur between 102 and 103 keV, increase with the decrease of
«, and depend on the turbulence spectral index g as well.

There is clearly an acceleration barrier (as indicated by the
shaded area) in the proton acceleration time. The thin solid line
shows schematically the acceleration time of protons in the
transition region. The sharp increase of the proton acceleration
time at lower energies is caused by their low acceleration ef-
ficiency when the scattering rate already overtakes the accel-
eration rate as discussed above. The sharp drop of the proton
acceleration time at a higher energy is due to interactions with
the Whistler waves. Because protons with small pitch angles
(i =~ 1) interact with the Whistler waves at the lowest energy
and the interaction is very efficient, this energy corresponds to
the critical energy E., identified in equation (24).

These characteristics are not true for electrons. In § 3.2 we
have shown that a small fraction of particles with y1 < ., can
resonate with four waves and |R,| < R; for the interactions
(Fig. 5). Compared with protons, more electrons can be ac-
celerated this way (eq. [25]). Because the acceleration of
electrons with two resonances is very inefficient, the acceler-
ation of this small fraction of electrons already dominates the
electron acceleration processes where the scattering rate be-
comes comparable with the acceleration rate. At even higher
energies, there are no extra wave modes that can enhance the
electron acceleration processes. Consequently, electrons have a
smooth acceleration time profile.

Expressions for estimating the difference between electron
and proton acceleration time are derived in Appendices A, B,
C, and D. Briefly, because particles with p < p . have sig-
nificant contributions to the acceleration in the low-energy
region (8 < 1), one can estimate the pitch-angle—averaged
acceleration times with the approximate expressions for the
critical pitch angles (eq. [25]):

1 —1
Te o 2[/1 dpu Dy (Ry _Rg)Tp]

Tp
E \0-92 for electrons,
~ 7ot —— (26)
e 632 for protons,

which is consistent with the numerical result within a factor
of 2. In the relativistic limit (v >> 1), particles interact with
the Alfvén waves and we find

T qlg+2)a® (e E \*1 27)
T, 46 qi mec? '

The difference between these two timescales at the critical
energy (eq. [24]) gives an estimate of the height of the ac-
celeration barrier.

3.5. Application to Solar Flare Conditions

Figure 9 shows a model of electron (thick lines) and proton
(thin lines) acceleration in a strongly magnetized plasma. The
LT size L = 10° cm, and the temperatures of the injected
electrons and protons are the same, kg7 = 1 keV. The mag-
netic field and gas density are 400 G and 4.0 x10° cm—3,
respectively, i.e., a = 0.5 (see eq. [3]). The relevant time-
scales are shown in the left panel, where we have defined the
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Fic. 9.—Left: Timescales for protons (thin lines) and electrons (thick lines) in a strongly magnetized plasma (« = 0.5) with a steep turbulence spectrum (¢ = 3).
The direct acceleration times 7, = E/A, which are related to the diffusion acceleration times 7, are shown by the dotted lines. The solid lines are for 7055, and the
dashed lines are for 7. Right: Corresponding distributions NE? of the accelerated electrons (thick lines) and protons (thin lines). Here the dotted lines give the thin
target LT particle distributions, while the dashed lines indicate the effective thick target particle distributions at the FPs. The solid line gives the injected thermal
particle distribution with arbitrary normalization. One can see that, because of the presence of the strong acceleration barrier (exceeding the range of the graph),
protons are basically not accelerated. [See the electronic edition of the Journal for a color version of this figure.]

direct acceleration time 7, = E/A4, which is related to 7,
(egs. [12] and [13]). The corresponding accelerated particle
distributions are shown in the right panel. The dotted and
dashed lines show the LT and FP spectra, respectively.

We note that for the above conditions the electrons can be
accelerated to a few hundred keV while the proton accelera-
tion is suppressed as a result of the acceleration barrier. The
electron distribution steepens with the increase of energy be-
cause the escape time becomes shorter than the acceleration
time (Tese < 7,). At low energies where Coulomb collisions
dominate, the LT electrons have a quasi-thermal distribution.
The solid line gives the thermal distribution of the injected
particles with arbitrary normalization. Because of the ab-
sence of acceleration at low energies, the steady state proton
distributions are almost identical with the injected proton
distribution.

To produce a near power-law electron distribution, as sug-
gested by solar flare observations, the escape time must be
comparable with the acceleration time in the relevant energy
band. Because the escape time of the nonrelativistic electrons
always decreases with the increase of energy, we adopt a
turbulence spectral index of ¢ = 3 in the model. The plasma
time 7, =1 s. Then we have the ratio of the turbulent
wave energy density to the magnetic field energy density
87E /B3 = 4.4 x1071%_2 . To ensure that this ratio is much
less than 1 so that the quasi-linear approximation for the F-P
treatment stays valid, one needs kpi, > 1073 or an injection
length of the turbulent waves of less than 10¢ cm (note that
kmin is in units of Q,/c ~ 0.24 cm~! here). Otherwise, the
turbulence spectrum must flatten at low & so that there is less
energy content in long-wavelength waves.

In §§ 3.2 and 3.4 we showed that the proton acceleration
barrier moves toward lower energies with the increase of .

Hence, in very weakly magnetized plasmas, this barrier can be
close to the thermal energy of the injected particles and thus
has little effect on the acceleration of protons. Protons can be
accelerated efficiently in the case because their loss time is
long. Figure 10 shows such a model, where B = 100 G and
n = 10"" cm=3. The size of the LT and the injected particle
temperatures remain the same as those in the previous model.
Because the turbulence spectrum is flat (¢ = 2), we have a
pretty hard accelerated proton distribution below 1 MeV.
Above this energy, there is a cutoff due to the dominance of
the escape term over the acceleration terms. The accelerated
electron distribution has a cutoff at less than 100 keV, which
is also due to the quick escape of electrons with higher en-
ergies from the acceleration site. At a few keV, both electron
and proton distributions are quasi-thermal because of the
dominance of Coulomb collisions.

The above results show that electrons can be accelerated to
very high energies by parallel-propagating turbulent waves in
pure hydrogen plasmas, but the presence of the acceleration
barrier in the intermediate energy range makes the acceleration
of protons very inefficient. Only in very weakly magnetized
plasmas where the barrier is close to the background particle
energy does the acceleration of protons become efficient. The
required value of the plasma parameter « is above 10, which
is much larger than that believed to be the case for solar flares.
However, most astrophysical plasmas including solar flares
are not made of pure hydrogen. They contain significant
numbers of *He. These particles modify the dispersion relation
used above. Abundances of elements heavier than He are too
small to have a significant effect, but “He with an abundance
(by number) of about 8% can have important effects.

To produce a near power-law distribution of the accelerated
particles, the index of the turbulence spectrum must be larger
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Fic. 10.—Same as Fig. 9, but for a model in a weakly magnetized plasma (o = 10). The model parameters are shown in the figure. Here the proton acceleration
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[See the electronic edition of the Journal for a color version of this figure.]

than 2 at high wavenumbers. If the turbulence is generated on
a scale comparable to the size of the flaring loops, such a steep
turbulence spectrum must flatten at low wavenumbers to en-
sure that the turbulence energy density is less than the energy
density of the magnetic field, which is presumably the dom-
inant source of energy for solar flares. Such a steepening
of the turbulence spectrum at high k is expected if one
includes the thermal damping effects of the waves with high
wavenumbers. We incorporate these effects in the following
discussion.

4. ACCELERATION IN HYDROGEN AND
HELIUM PLASMAS

We now repeat the derivation of the previous section for
more realistic plasmas containing electrons, protons, and
a-particles. We assume a fully ionized H and “He plasma
with the following relative abundances: electron/proton/
a-particle = 1/0.84/0.08.

4.1. Dispersion Relation and Resonant Interactions
The dispersion relation for such a plasma can be written as
k? a? 1

r 2
w? w

(1 — 2Ype)d
w+6

Yueo
w+6/2)

" (28)

where the “He abundance Yy, = 0.08. The other symbols are
the same as those defined in § 2.2.

The inclusion of “He splits the PC branch into two: one
covers the frequency range of 0 to —4/2 and the other covers
the frequency range of —wpc to —6, where wpc =~ (0.5 + Yye)o
is the lowest frequency of the branch (remember that the
minus sign only indicates that the waves are left-handed po-
larized). We refer to the former as a “He cyclotron branch
(HeC) and the latter as a modified proton-cyclotron branch

(PC") because at high wavenumbers they approach the
a-particle and proton-cyclotron frequencies, respectively. The
left panels of Figure 11 show the dispersion relation in such
a plasma and the resonance conditions for electrons and pro-
tons with 6= 0.5 and p = 0.12.

With this additional branch, particles with p # 0 can in-
teract at least with three waves with one from each of the three
cyclotron branches (particles with ;1 = 0 always interact with
two waves from one of the wave branches). Some particles
can resonate with five waves, three of which would be from
one of the three cyclotron branches (e.g., the protons in the left
panels of Fig. 11 have three resonances with the EC branch,
with two of them shown in the bottom left panel; the third one
is at high k£ and w — 2,). In a strongly magnetized plasma the
two additional resonances can also come from the electro-
magnetic branches. The general results are quite similar to
those in pure hydrogen plasmas; there are critical angles and
critical energies, which now separate the ;-G and S-a spaces
into regions with three and five resonant interactions. Given
spectra for each of the wave branches, one can proceed to
calculate the F-P coefficients, which have sharp jumps across
the critical angles or energies and the times 7,, and 7. In the
next section we discuss the turbulence spectrum we use for
this purpose.

4.2. Spectrum of Turbulence

In the discussion of the previous section we assumed a
power-law wave spectrum &€ o< k79, for k > kuin, With kpi, <
ka = a6'/? so that there will be waves with the Alfvénic
dispersion relation for interactions with high-energy electrons
and protons. We now introduce an additional cutoff at high
wavenumbers presumably caused by thermal damping. Thus,
we will have a broken power-law turbulence spectrum with
three indexes ¢, q;, and ¢, and two critical wavenumbers k.,
and kpay:
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Fic. 11.—Left : Same as Fig. 1, but in an electron-proton-*He plasma with & = 1.0 and Yy, = 0.08. The resonant interactions (circles) are for electrons (upper
line) and protons (lower line) with 5 = 0.5 and p = 0.12. Here we note that there are two ion cyclotron branches (both indicated by the dotted lines); the upper one
approaches the “He cyclotron waves at high k (HeC), while the lower one approaches the modified proton-cyclotron waves (PC’). The crosses indicate the expected
breaks in the turbulence spectrum as discussed in the text. Right : Pitch-angle—averaged acceleration (solid lines) and scattering (dashed lines) times in units of 7, for
electrons (thick lines) and protons (thin lines). The model parameters are indicated in the figure. The minimum of the electron acceleration time corresponds to the
spectral break k., of the turbulence in the EC branch. See text for details. [See the electronic edition of the Journal for a color version of this figure.]
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where ¢g; > 0 (we choose ¢; = 2 because its value is almost
irrelevant), ¢ = 1.7 is the Kolmogorov value, and g, = 4, a
typical value of the spectral index for waves subject to strong
damping (Vestuto et al. 2003). A self-consistent treatment
of wave-particle interactions is required for an exact descrip-
tion of these spectral breaks. This is beyond the scope of
the current investigation. Instead, we make some reasonable
assumptions on these breaks:

for k < kmin,

for kmin < k < k max,

(29)

1. The low k or large-scale cutoff kyin = ¢/(QeLmax), Where
L.« 1s the largest scale of the turbulence, which must be less
than the size L of the region and is most likely much less
than it. To accelerate particles to high energies, we also need
kmin << ka = «/43. For most waves we choose ky;, as before,
i.e., by the value of the highest energy we want the particles to
achieve. However, such a choice for the PC’ branch results in a
sharp feature in the spectrum of the accelerated protons. As can
be seen in the bottom left panel of Figure 11, the PC’ branch,
unlike the EC, PC, or HeC branches, crosses the frequency axis
(k = 0) at a finite frequency wpc # 0. Such waves can reso-
nantly scatter protons with a Lorentz factor of ~2/(1+
2Ype) ~ 1.7 or an energy of a few hundred MeV. If the spec-
trum of the PC’ branch wave extends to a very low wavenumber,

one would get very efficient acceleration at such energies and
a sharp spectral feature. We assume that such a feature is not
present (although there is no definite observation to rule it
out) and cut off the spectrum of the PC’ waves at a higher
kimin == ka /5 or a scale of Ly ~ 4007c/a2,.

2. The high k or small-scale cutoff is determined via the
damping of the waves by low-energy particles. For example, the
cyclotron waves with high wavenumbers are subject to thermal
damping in plasmas with a finite temperature (Schlickeiser
& Achatz 1993; Steinacker et al. 1997; Pryadko & Petrosian
1998). One can introduce an imaginary w to include this effect.
The real part of w is not very sensitive to the plasma temperature
(Miller & Steinacker 1992). Hence, the cold plasma dispersion
relation still gives a good description of the resonant interactions
between waves and particles. However, above a wavenumber
where the thermal damping time is comparable with the time-
scale of the wave cascade, the thermal damping steepens the
spectrum of the turbulence. In the absence of a full treatment
of these processes, we assume that the cyclotron waves have
steeper spectra than the Whistler and Alfvén waves and set
kmax = kw = a for the EC branch. For the PC' and HeC
branches we set kmax = ka = a6'/2. These spectral breaks are
indicated by the crosses in the bottom left panel of Figure 11.

Recent studies of the transport of high-energy particles in the
solar wind indicate that the resonance broadening due to the
dissipation of turbulent plasma waves plays an essential role in
explaining the observed long mean free paths of the particles
(Bieber et al. 1994; Droge 2003). Such broadening is also
expected in our case. It will modify only equation (6) if the
broadening width is less than the separation between the res-
onances. In the opposite (and unlikely) case the idea of reso-
nant interaction is invalid. Because the resonance broadening
mostly affects the scatterings of particles at relatively low
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Fic. 12.—Same as Fig. 9, but for different model parameters (listed) and in a hydrogen and helium plasma. The energy content in high-energy electrons and
protons is comparable. The hatched regions in the right panel correspond to the energy bands related to observations of the hard X-ray and gamma-ray emissions
during the impulsive phase of solar flares. The signs indicate the spectral breaks of the accelerated particle distributions. [See the electronic edition of the Journal for

a color version of this figure.]

energies, where Coulomb collisions are important under solar
flare conditions, it is less important in understanding the par-
ticle acceleration processes studied here.

All the formulae developed in the previous sections are still
valid except that now

-1_T o -1

and the Alfvén velocity is given by Bx = 6"2/[a(l +
2YHe)l/2]. Because ¢; > 0 and ¢, > ¢ (and the PC’ branch
contains much less energy than the other branches), the total
turbulence energy density &£, ~ &,.

The right panel of Figure 11 gives the electron (thick lines)
and proton (thin lines) acceleration (solid lines) and scattering
(dashed lines) times for a model with o = 1. We see that in
the high-energy range where particles are mostly interacting
with the Alfvén waves, the times are almost the same as those
in a pure hydrogen plasma. At low energies, the times rise
sharply with the decrease of energy as a result of the thermal
damping of the waves with high wavenumbers. As can be seen
in the following discussion, the thermal damping makes the
particle acceleration times match their escape times, giving
near power-law accelerated particle distributions. More im-
portantly, in the intermediate energy range, an acceleration
barrier in the proton acceleration time still exists even though
it is not as prominent as it is in a pure hydrogen plasma. This
is mainly due to interactions with the HeC branch, which
makes the acceleration of low-energy protons more efficient.
The sharp decrease of the acceleration time with energy near
the critical energy is still due to interaction with the Whistler
waves. Comparing with Figure 8, we note that the electron
acceleration and scattering times are also affected as evident
by the wiggles seen at a few tens of MeV. These wiggles are
due to interactions with the HeC and PC’ branches.

We emphasize here that ¢ = 1.7 corresponds to the
Kolmogorov spectrum. Our only assumption that may be ad
hoc is the large-scale size cutoff for the PC’ branch waves.
This assumption is not driven by observations but primarily
introduced to obtain a smooth proton spectrum. We shall ex-
plore consequences of the assumption in the future. In the
following discussion we fix these parameters at the specified
values and investigate how the particle acceleration processes
are affected by the strength of the turbulence &, the size of
acceleration site L, the plasma parameter o, and the temper-
ature of the injected particles. We show that this model gives
much more reasonable explanations to solar flare observations
than the previous one.

4.3. Relative Acceleration of Electrons and Protons

We now present some results on the relative numbers of
accelerated electrons and protons at the acceleration site (LT)
and escaping to the FPs. Here we explore its dependence
on the model parameters. The normalization is as before (see
Fig. 9 and discussion in eq. [21]), namely, we assume that the
escape fluxes for the total numbers of electrons and protons
are equal.

Figure 12 gives our fiducial model for solar flares where
the energy content in the accelerated electrons and protons in
the relevant observational energy bands (indicated by the
shaded regions) is comparable. The timescales are given in the
left panel, and the corresponding particle distributions are
shown in the right panel. The line types are the same as those
in Figure 9. The temperatures of the injected electrons and
protons are 7 = 1.5 keV. The other model parameters are the
size of the LT source L = 5x10% cm, n, = 1.5%x10'° cm=3,
B=400 G (o =098), and 7, =1/70 s. These imply
87E o1/ B3 ~ 8.8 x107 %27, which is less than 1073 for
kmin > 2mc/LQ, = 5.2 x 1078, Compared with models in pure
hydrogen plasmas, the turbulence required to accelerate the
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Fig. 13.—Same as the right panel of Fig. 12, but for two different values of 7,, one larger (leff) and one smaller (right). [See the electronic edition of the Journal

for a color version of this figure.]

particles is much weaker in the current model. This is mainly
because of the adopted Kolmogorov (instead of ¢ =2 or 3)
turbulence spectrum at long wavelengths.

In Figure 13 we show the effects of the strength of turbu-
lence on the particle acceleration. Because the acceleration
time is proportional to 7, but the escape time is inversely
proportional to it, a small change in 7, can make the accel-
eration and escape times off balance very quickly. The spectra
of the accelerated particles then change dramatically with 7,,.
However, because this is true for both electrons and protons,
changes in the energy partition between electrons and protons
are much smaller.

Another parameter that affects the spectra of the accelerated
particles is the size L of the acceleration region. An increase of
L results in an increase of the escape time and harder spectra
of the accelerated particles. However, again because the es-
cape times of electrons and protons increase by the same
factor, the energy partition between them is not changed sig-
nificantly. For example, for a model with L = 10° ¢cm and
7';1 =50 s~!, we find that the accelerated particle spectra are
harder than those in the left panel of Figure 13 and more like
those in the right panel of Figure 12.

Next we examine the effects of the plasma parameter
a o n'/?/B. Figure 14 shows how the relative acceleration of
electrons and protons changes with the change in the value of
«. It turns out that for the range of parameters used in the
current study, it does not matter whether « is changed by
changing the value of the density » or the magnetic field B.
The difference between these two possibilities will appear as
relatively small changes in the spectra at the low- and high-
energy ends where Coulomb collisions and synchrotron losses
become important, respectively. To make the spectral shapes
compatible with solar flare observations, the value of 7, also
needs adjustment. However, as we showed above, 7, affects
primarily the spectral hardness but not the relative acceleration
of electrons and protons. Thus, the most relevant cause of the
changes in the relative acceleration of protons and electrons
is the variation of «; proton (and consequently other ions)

acceleration is more efficient in high-density and/or low mag-
netic field plasmas. Given that the acceleration of electrons
and protons is dominated by different wave branches, it is not
surprising that their relative acceleration depends on the
plasma parameter a.

Finally, we consider the effects of the temperature of the
background or injected particles. In the models discussed
above, we use a high value of temperature of a few keV, which
requires a preheating of the flaring plasma to a temperature
above the quiet coronal value. GOES and RHESSI observa-
tions do suggest such a characteristic energy for the particles
before the impulsive phase of X-ray flares. For example,
RHESSI’s high-resolution spectra indicate that the electrons in
the soft X-ray—emitting plasma always deviate from an iso-
thermal distribution, implying a significant preheating of the
flare plasma (Holman et al. 2003). The effects of the injection
temperature are demonstrated in Figure 15, which shows
particle spectra for models with temperatures different than
that in the fiducial model (Fig. 12). All other model parame-
ters remain the same. We see that the shapes of the spectra in
the high-energy range do not change significantly. However,
with the increase of the temperature, more particles reach the
energy range where the acceleration rate is larger than the
Coulomb collisional loss rate and are eventually accelerated to
higher energies. At lower temperature, the quasi-thermal part
of the spectra (similar to that of the injected particles) is more
prominent, while at higher T the spectra of the accelerated
particles are dominated by the nonthermal tails.

5. SUMMARY AND DISCUSSION

The primary aim of this work is the determination of the
relative acceleration of electrons and protons by waves in a
stochastic acceleration (SA) model. In this paper we present
the results of the investigation of the resonant interaction of
the particles with a broad spectrum of waves propagating
parallel to the large-scale magnetic field. We calculate the
acceleration and transport coefficients and determine the
resulting spectra for both particles for physical conditions
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appropriate for solar flares. We show that the injection of such
a turbulence in a magnetized hot plasma can accelerate both
electrons and protons of the thermal background plasma to
high energies in the acceleration site. Some of the accelerated
particles escape the site and reach the FPs. The parameters that
govern these processes are the density, temperature, magnetic
field, size of the acceleration region, and the intensity and
spectrum of the turbulence.
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We first describe two general features of our results:

1. The first has to do with the general characteristics of the
accelerated particle spectra. The outcome of the SA of a back-
ground thermal plasma is the presence of two distinct compo-
nents. The first is a quasi-thermal component at low energies
where Coulomb collisions play important roles. This can be
considered as a simple heating process of the background
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plasma. The second is a nonthermal tail with a somewhat
complex spectral shape. Technically, one can separate the two
components at the energy where the Coulomb collisional loss
rate Ecoy 1s equal to the direct acceleration rate A. We can then
calculate the fractions of the turbulence energy that go to “‘heat”
and to “acceleration.” This explains the observation of both
thermal and nonthermal emissions during the impulsive phase
of solar flares.

The spectra of particles reaching the FPs are in general
harder than the corresponding LT particle spectra because
high-energy particles in the nonthermal tails escape more
readily. The relative size of the two components in the ac-
celeration site (LT) versus the FPs and for electrons versus
protons depends sensitively on the model parameters, which
can explain the large variation of the observed nonthermal
emission among solar flares and other astrophysical sources.

2. The second feature has to do with the relative accelera-
tion of electrons and protons. 7o our knowledge, a new result of
our investigation is that there is a significant difference in the
acceleration of protons and electrons. While the transport and
acceleration coefficients for electrons are smooth functions of
energy, this is not true for protons. There appears to be a barrier
(lower rate) of acceleration for intermediate-energy protons.
This can have a dramatic effect on the relative production rate
and spectra of the accelerated protons and electrons.

To demonstrate some of this and other more subtle effects,
we first investigated the acceleration of electrons and protons
in pure hydrogen plasmas by turbulence with a simple power-
law spectrum. We find that this simple model does not agree
with some qualitative aspects of the observed accelerated
particle distributions in solar flares. The barrier for protons is
too strong for reasonable physical conditions. We then explore
more realistic models, where we include the effects of the
background “He particles and the thermal damping of the
waves. These more realistic models are in better concordance
with solar flare observations.

Specifically, we find the following:

1. In general, electrons are preferentially accelerated in
more strongly magnetized plasmas (small o o< n'/2/B), while
the proton acceleration is efficient in more weakly magnetized
plasmas. The ratio of the energy that goes into the accelerated
electrons to that into protons is very sensitive to «, which can
explain the wide range of the observed energy partition be-
tween these particles. The proton acceleration will be more
efficient in larger loops where the magnetic field is presumably
weaker and during the later phase of flares when the corona
loops have been filled by plasmas evaporated from the chro-
mosphere, giving a higher gas density. This can explain the
offset of the centroid of the gamma-ray line emission (due to
accelerated protons and ions) from that of the hard X-rays
indicated by a recent RHESSI observation (Hurford et al.
2003). It can also account for the observed delay of the nuclear
line emission relative to the hard X-ray emission (Chupp
1990).

2. The acceleration rates and spectra of both electrons and
protons are very sensitive to the intensity of the turbulence and
the size of the acceleration site. Models with more intense
turbulence and/or larger acceleration region give rise to harder
spectra. This result can explain the observed soft X-ray emis-
sion in advance of the impulsive phase hard X-ray and gamma-
ray emissions (the so-called preheating) and the slower than
expected decline of the temperature of the LT plasma in the
gradual phase. When the turbulence is weak, as will be the case
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at the beginning and end of a flare, almost all the dissipated
turbulence energy goes into the quasi-thermal component and
there is no significant hard component, producing soft X-ray
emission without obvious hard X-ray or gamma-ray emission.
When the strength of the turbulence exceeds a threshold,
nonthermal tails and high-energy radiations ensue. On the other
hand, for a turbulence energy much above this threshold, one
would expect harder spectra than observed in solar flares. This
may indicate that the sudden presence of a large amount of
high-energy particles also introduces significant dissipation of
the turbulence over a broad frequency range such that the
strength of the turbulence is limited to a level close to the
threshold. Consequently, we do not see flares with very flat
X-ray spectra. To address these processes in detail, one needs
to treat the wave generation, cascade, and damping by both
low- and high-energy particles properly. Such an investiga-
tion is clearly warranted now but is beyond the scope of this
paper.

3. In general, the spectra of both electrons and protons at the
acceleration site (LT) are softer (stronger quasi-thermal com-
ponent and steeper nonthermal spectrum) than the equivalent
thick target spectra at the FPs. This is in excellent agreement
with the results from the Yohkoh observations (Petrosian et al.
2002) and with the more convincing evidence from RHESSI
observations (Jiang et al. 2003). The most important parameter
here is the energy dependence of the escape time (see eq. [16]),
which depends on the pitch-angle diffusion coefficient and the
size of the acceleration region. Unlike the acceleration time
(see item 2 in the first list of items in this section), the scattering
and escape times for protons and electrons have similar general
behaviors. Consequently, the difference between the LT and FP
spectra is similar for both electrons and protons.

4. For injected plasmas with high temperatures, most of the
particles can be accelerated to very high energies and the
steady state particle distribution at low energies can be quite
different from a thermal distribution. The presence of a quasi-
thermal component is typical for low-temperature plasmas.

5. There are high-energy cutoffs (at around 1 MeV for
electrons and 10 MeV for protons) in the accelerated particle
spectra. Both cutoffs are due to the quick escape and the rel-
atively inefficient acceleration of higher energy particles. The
locations of these cutoffs are directly related to the higher
wavenumber spectral breaks in the turbulence spectrum. In
plasmas with stronger thermal damping, the acceleration of
high-energy particles becomes relatively more efficient than
that of low-energy particles. Consequently, the cutoffs shift
toward higher energies. We would then expect a positive cor-
relation between the cutoff energies and the heating rate of the
background plasma. Observations over a broad energy range
will be able to test this prediction.

Finally, we summarize several improvements that are re-
quired for direct comparisons with observations:

1. The results presented here show that wave-particle
interactions play crucial roles in solar flares, especially during
the impulsive phase. A self-consistent treatment of this prob-
lem requires the solution of the coupled kinetic equations for
both particles and waves. Previous studies on this aspect fo-
cused on the Alfvén waves alone and ignored the energy-
dependent escaping processes (Miller & Roberts 1995; Miller
et al. 1996). Incorporation of the current investigation will
make the models more realistic.

Waves propagating obliquely with respect to the large-scale
magnetic field will introduce new features to the wave-particle
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interaction (Pryadko & Petrosian 1999). Earlier studies have
shown that the fast-mode waves are very efficient in heating
or accelerating super-Alfvénic particles via Landau damping
or transit-time damping (Miller et al. 1996; Quataert 1998;
Schlickeiser & Miller 1998). These waves are expected to en-
hance the acceleration of high-energy electrons and protons,
and sub-Alfvénic particles may also be accelerated when one
adopts the exact dispersion relation for the waves. Results
similar to what we present here are expected. Moreover, if the
turbulence is dominated by the lower hybrid waves, electrons
will not be scattered efficiently so that the electron distribution
is not isotropic (Luo et al. 2003). The acceleration barrier may
not exist if this is also true for protons. A comprehensive study
including these waves is needed to address the heating and
acceleration processes more completely.

2. A time-dependent model is needed to address the tem-
poral characteristics of solar flares and the injection processes.
Here we assume that the system is in a steady state and the
injection fluxes of protons and electrons are equal. This may be
the case if the plasmas are brought into the acceleration site by
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the reconnecting magnetic fields. However, e.g., if electrons
have a shorter escape time than protons, there could be a net
charge flux from the acceleration site, which would induce
reverse currents consisting mainly of electrons so that the in-
jection fluxes of electrons and protons into the acceleration site
will be different.

3. The application of the formalism developed here to the
acceleration of other ions is straightforward. We are in the
process of evaluating the relative acceleration of different ion
species and isotopes, and the results are promising and will be
published in future papers. It is also straightforward to apply
the formalism to accretion systems of black holes and neutron
stars. Besides the magnetic reconnection, turbulent plasma
waves can also be produced by the magnetorotational insta-
bility in accretion disks (Balbus & Hawley 1991).

The work is supported by NASA grants NAG5-12111 and
NAGS 11918-1 and NSF grant ATM-0312344.

APPENDIX A
DISPERSION RELATIONS FOR THE EC AND PC BRANCHES

Waves in the EM’ branch interact resonantly with protons, and those in the EM branch interact with electrons only for low values
of «. These interactions mostly affect the acceleration of very low energy particles (see discussion in § 3.2). Waves in the EC and
PC branches are the dominant modes for the acceleration of protons and electrons for intermediate and high values of a and
energies and therefore play key roles in determining the relative acceleration of the two species. In what follows we give some
approximate analytic descriptions of these modes that are considerably simpler than equation (22).

At frequencies w << 6, or |k| K ks = a2, both branches reduce to the Alfvén waves with the dispersion relation
w = |k|Ba = 6(|k|/ka) for the EC branch. The middle portion of the EC branch, ky << |k| < kw = «, corresponds to the Whistler
waves with the dispersion relation w ~ k?/a? = (k/kw)*. At still higher wavenumbers (|k| > kw), w — 1 and the dispersion
relation can be approximated as w ~ 1 — a?/k*. The transition between the Whistler and this portion occurs at kw = . This
suggests that the dispersion relation for the Whistler and electron-cyclotron portions can be approximately described by
w = k?/(k* + a?). For the EC branch we can use the simple approximation

8'2x + x2
sz; x = |k|/kw = |k|/a, (A1)
which agrees with the exact expression within 40% for o > 0.6. For highly magnetized plasmas with av << 1 the Whistler
branch disappears. One then has w = |k| for |k| < 1 and w =1 for |k| > 1 for the EC branch (and the reverse is true for the EM
branch).
Similarly for the PC branch, one gets the Alfvén waves with w = —|k|(a at low wavenumbers (|k| < ka). The proton-cyclotron
waves whose dispersion relation does not have a simple form can be roughly approximated as wpc ~ —8{1 — 1/[2 + (k/ka)?*]} for
high k. We can combine these two forms into one simple expression,

y+y?
=07 = Mk =/ (a8'), (A2)

which agrees with the exact expression to within 10% for a > 0.6. For very highly magnetized plasmas, o < ¢'/2, one again has
w = —lk| for |k| < 6 and w = —§ for |k| > ¢ for the PC branch (and the reverse for the EM’ branch).

APPENDIX B
CRITICAL ENERGIES AND ANGLES FOR RESONANCE WITH THE EC AND PC BRANCHES

With the approximate analytical expressions (Al) and (A2) for the dispersion relation, one can derive the critical velocity
(eq. [24]) and critical angle (eq. [25]) for resonant interactions of low-energy particles with the EC and PC branches. The critical
velocity is for protons with ;4 = 1 interacting with the EC branch. From the resonance condition given by equation (4) and the
dispersion relation given by equation (A1) for the EC branch, we have
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6 8V2x| +x2

This equation has three roots, with two of them being equal and <1 at the critical velocities (see Fig. 1 and eq. [24]). We can
therefore ignore the x2 term in the denominator of the right-hand side of equation (B1). One can show that

Bee =3V6/a ~0.07/a, (B2)
which agrees with the numerical result within 15% (eq. [24]). In general, we have
Ber = 3V6/pex ~ 0.07/ pcx., (B3)

For electron resonances with the EC branch, we have

16120 4 x
o fux + - T (B4)
The equation has three roots, with two of them being equal when
8(y—1)°
(@B 1pe)'= 2 . (B5)
8420y — 12+ \/(8+2077'yz) +64(y—1)
We then have
e ~ 32 /540 for B 1, (B6)
which agrees with equation (25) within 5%.
For proton resonance with the PC branch, we have
6 vl +?
aﬁu\/g ——= 00— yv=k Véa. B7
g L+ [y +y2 / (B)

For low-energy protons at critical pitch angles, the two equal roots of the equation are much larger than unity. We can therefore
approximate the right-hand side of this equation as —6(1 — 1/y?). Then we have

4 6 ’
4 - ( ! ) , (B8)
27 (afype)”  \v—1
which becomes
L = V63 /V/54a for < 1. (B9)
This agrees with equation (25) within 5%.
APPENDIX C

APPROXIMATE ANALYTIC EXPRESSIONS FOR THE ACCELERATION AND
SCATTERING TIMES IN THE RELATIVISTIC AND LOW-ENERGY LIMITS

It is useful to have some approximate analytical expressions for the acceleration and scattering times under certain limits. In the
relativistic region where v > 1, the results for electrons are relatively simple and have been studied under different contexts
(Schlickeiser 1989; PP97). Here we discuss the results for ions. For relativistic particles, and in general for weakly magnetized
plasmas (o > 6'/2), R, > R3. As a result, the acceleration time defined by equation (12) can be approximated as

7'.el_c1 = <Dpp/p2>7 (C1)

where angle brackets denote the average over pitch angle. Relativistic particles with v > |w;|/6 resonate with the Alfvén waves
with w = +8ak. From the resonance condition given by equation (4), we have the wavenumbers of the resonant waves:

ki = wi/[V(Bp F Ba)] = wiBp/. Then we have
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. —2132 1
<Dppjw>”" & [ a1 =) [0 = a0 (8 5]

Pt/ |wl'B?
2R /1 ) g1 AR
~ 1 — )2 =—1' = 2
|Wi|q52 0 du( a ) (ﬂﬂ) q(q+2)a2|w,«|q’ (C )

which is consistent with the numerical results within a factor of 2.
Similarly, one can estimate the scattering time in the relativistic limit:

sc — 1 - 2
= = 2y q< q(fl ) q1>
Tpi (ﬂlu - BA) +(ﬂ/u’+/8A)

o wl® [1=(Ba/B) 1= (Ba/B)Y
N,Vq—zﬁq—l [ 2_q - 4_q ]a (C3)

which is in agreement with the numerical results within 50%. Note that the integral over y has been taken from [G,/3 to 1 here.
Like the acceleration time, protons and electrons with the same energy have the same scattering time. This is consistent with the
result of PP97. We note that in the relativistic region the acceleration and scattering times are identical for all charged particles
except for the w; term.

In the nonrelativistic region where v = 1, from the resonance condition w = —w; + Suk and the dispersion relation given by
equation (22), one can show that

k= —wa (ﬁuk)_l/z. (C4)

Thus, k = (w?a?6~ '~ ")!/3. Using equation (5), we have

1—q)/3
Dy i ~ 1 |Wi|2042 (-
P’ 3a2p32 \  Bu
6 -2(q+2), ,12(0=9) pg—7 1/3
S — ; . Cs
G HaTH o ) (©3)

We note that 3, ~ —23 under the resonance condition. In a previous study (PP97), the minus sign was missed, which causes their
acceleration time to be 3 times shorter than ours. Equation (5) then gives

I+ u<|w,-aﬂu>‘/3rl 2 (w%a2>q/3>
Ba 3Bp \ B
1 2Juwi]'? jwil
(g +6)  (q+4)(g+10) (@B  (q+8)(g+14)(ap)]

ui)~

~ 63737 (|w|a) 2

which agrees with the numerical results within 20%.

APPENDIX D
APPROXIMATE ANALYTIC EXPRESSION FOR THE ACCELERATION BARRIER

To estimate the acceleration time at the barrier in pure hydrogen plasmas, we notice that resonant interactions of protons with
nearly 90° pitch angle (1 < p.,) with proton-cyclotron waves moving in both directions have significant contributions to the proton
acceleration below the critical energy. Because D,,,(R; — R3) is a smooth function near = 0 (Fig. 5) and p,, < 1 (eq. [25]), we
have

p2

Dpp(pr =0, pe(p)’

Tac(P) ~ (D1)

Beyond the critical energy, some protons start to resonate with Whistler waves (see Fig. 2) and the proton acceleration rate
increases sharply with energy.
From equation (5), we have

Dpp(ﬂ =0, p) _ 2ﬁ;§h|k|7q
P Tpszﬂqu‘ ,

(D2)
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where k can be obtained from the dispersion relation given by equation (22) and w = —§/~ is given by the resonance condition

given by equation (4). Then we have

o Tﬂz*qﬂ%qd [ a242(1+ 6)
- 241 56+ —1)
- z(q—l)/sz(S(q—5)/2aq+l 53*‘1
Her

— 7aq+2(2(5)(qfl)/2ﬁ1 745*5/27-17

(1-9)/2
= 7a412675/2 <—E > Tp.

mec?

} (3+9)/2

a?(14 &)y — 0.5(1 — o)y
6+ (v=1)%

for gk 1

(D3)

Combining this with equations (B2) and (C2), one can estimate the height of the acceleration barrier in logarithmic scale at the

critical velocity

6 log(e) = log{ (3126720725712 /[q(q +2)] }. (D4)

Similarly, one can estimate the acceleration time for low-energy electrons:

1 -1
Tac = 2 U duD,, (R — R%)Tp}
-1

Tp727qﬂ2
2ty

Q

(v = DA +~0)

E \(-9/2
=T (> T for < 1.

Mec?

042’}/2(1—"-6) :|(3+‘])/2

(1 + 8y +0.5(1 — &)
(v=1)*(1+16)°

These expressions are consistent with the numerical results within a factor of 2. The discrepancy is large for turbulence with a flat
spectrum. This is mainly due to contributions from electron-cyclotron and proton-cyclotron waves to the acceleration of particles
with two resonances. When the turbulence spectrum becomes flatter, their contributions to the pitch-angle—averaged acceleration
time become more important. However, as we discussed in § 4, this effect is not important in the real astrophysical situation where
the cyclotron waves are damped. Thus, the analytical expressions give a good estimate of acceleration time in the intermediate

energy range.
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