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ABSTRACT

An artificial neural network (ANN) scheme has been employed that uses a supervised back-propagation
algorithm to classify 2000 bright sources from the Calgary database of Infrared Astronomical Satellite (IRAS )
spectra in the region 8–23 �m. The database has been classified into 17 predefined classes based on the spectral
morphology. We have been able to classify over 80% of the sources correctly in the first instance. The speed and
robustness of the scheme will allow us to classify the whole of the Low Resolution Spectrometer database,
containing more than 50,000 sources, in the near future.

Subject headings: infrared: galaxies — methods: data analysis

On-line material: machine-readable table

1. INTRODUCTION

The Infrared Astronomical Satellite (IRAS ) Low Resolution
Spectrometer (LRS) recorded spectra of some 50,000 sources in
blue (8–15 �m) with k=�k� 40 and in red (13–23 �m) with a
resolution �20. A total of 5425 objects with better quality
spectra were included in the Atlas of Low-Resolution IRAS
Spectra (1986, hereafter the Atlas). Volk & Cohen (1989a)
published spectra of 356 IRAS point sources with F�(12 �m) >
40 Jy that were not included in the Atlas. These brighter
sources were classified into nine classes based upon the spec-
tral morphology. Sixty percent of the sources have silicate
emission and red-continuum spectra associated with H ii region
sources. No emission-line sources formed part of the set of
356 spectra. This sample was also used to test the classification
scheme of IRAS sources based on broadband colors. Classifi-
able spectra were found for 338 of the sources in the sample.
The remaining 18 sources had either extremely noisy or in-
complete spectra. It was found that some class of sources over-
lapped on the color-color diagrams and, therefore, the nature
of some of the IRAS sources could not be determined from
the IRAS photometry.

Volk et al. (1991) published an additional 486 spectra be-
longing to sources with 12 �m fluxes between 20 and 40 Jy that
were also not in the Atlas. Classifiable spectra were found for
424 sources. The spectra were classified into nine groups as in
Volk & Cohen (1989a) that describe the astrophysical nature
of these sources. Kwok et al. (1997) processed 11,224 spectra
(including sources in the Atlas), corresponding to a flux limit
of 7 Jy at 12 �m. These spectra were also classified by eye and
put into nine classes based on the presence of emission and
absorption features and on the shape of the continuum. They
identified optical counterparts of these IRAS sources in the
existing optical and infrared catalogs and listed the optical
spectral types if they were known.

It is evident that large databases like the one referred to
above require automated schemes for any analysis. Artificial

neural networks (ANNs) have been employed extensively
in several branches of astronomy for automated data analysis
(Lahav & Storrie-Lombardi 1994). ANNs have been used pre-
viously by the IUCAA group in three distinct areas of stellar
astronomy. They have been applied to classify digitized optical
and ultraviolet spectra (Gulati et al. 1994a, 1994b; Singh et al.
1998); to compare a set of observed spectra of F and G dwarfs
with a library of synthetic spectra (Gulati et al. 1997a; Gupta
et al. 2001); and to determine the reddening properties of hot
stars from the low-dispersion ultraviolet spectra (Gulati et al.
1997b).

We have attempted to classify the 2000 brightest sources
from the Atlas into 17 classes by means of ANNs. In the next
section we describe features of the 17 new classes. In x 3, we
present details of the ANN scheme. Results are discussed in x 4,
and important conclusions of the study are presented in the last
section. Further, an Appendix has been added to explain the
general ANN architecture for the benefit of the readers.

2. SPECTRAL CLASSES

The set of 2000 spectra were classified into the 17 classes by
eye by one of us (K. Volk). These classifications are assumed to
from the reference set of ‘‘correct’’ classifications. Such by-eye
classification has an element of subjectivity in it, and is more
apt to have problems when the spectra are noisy. This set of
2000 sources are the brightest sources in the Atlas, and they
have the least problems with noise or spectral peculiarities.
This makes the by-eye classification as accurate as possible
despite the element of subjectivity.

The groups used for spectral classification are an extension
of the nine classes described in Volk & Cohen (1989a). The
current scheme introduces more classes, for three reasons:

1. The ‘‘H ii region sources’’ group shows a variety of fea-
tures, and so separate classes have been made for the more
obvious feature types so that these classes are, one hopes, more
uniform.
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2. A few new classes have been created within the 10 �m
silicate feature and 11.3 �m SiC feature groups to divide the
objects with weaker features from those with stronger features.

3. Some small groups of unusual sources can be identified
from the ‘‘usual/unknown’’ group of Volk & Cohen (1989a);
hence, these were given their own classes here such as class 14
for 21 �m feature sources.

The division between the spectra with ‘‘stronger’’ and
‘‘weaker’’ features was made at LRS type 25 or 45 (for silicate
emission sources and SiC emission feature sources respec-
tively), since the original LRS classes are based upon the fea-
ture strength. Thus, the spectra with strong features, LRS types
25–29 or 45–49, are separated from the spectra with weaker
features, LRS types 21–24 or 41–44. All objects with LRS
classes near the dividing line were examined by eye to make
sure that the LRS type accurately reflects the feature strength. In
some cases this led to spectra being placed into the ‘‘stronger’’
or ‘‘weaker’’ feature groups even when the LRS type is not as
expected. In the large majority of cases no problem with the
LRS type was found.

A short summary of the 17 classes is given in Table 1, with
representative spectra plotted in Figure 1. A detailed descrip-
tion of the different classes and their relation to the original
LRS types now follows:

(0) Line emission sources.—This class is for spectra with
strong emission lines (line peak to continuum ratio of 1 or
larger) and no obvious dust emission or absorption features.
These are nearly all planetary nebula sources. A few cases of

H ii region sources that may show the 12.8 �m [Ne ii] line
could have been included here, but they were left in the other
‘‘H ii region’’ groups since the 12.8 �m emission line seen in
LRS spectra is sometimes due to an instrumental problem
rather than being an actual emission line, and since the possible
[Ne ii] lines were relatively weak. Comparatively few H ii re-
gion spectra have strong enough emission lines as observed by
the LRS instrument to be potentially included in this group. In
the original LRS classification, these are generally classified as
types 81–96.
The prototype spectrum in Figure 1 shows several emission

lines: 9.0 �m [Ar iii], 12.8 �m [Ne ii], 15.5 �m [Ne v], and
18:7 �m [S iii]. Other objects in this class tend to have fewer
emission lines than this example.
(1) Sources with stronger 11:3 �m SiC emission features.—

In this group one has evolved carbon stars undergoingmass loss
and showing a strong 11.3 �m emission feature. In the original
LRS classification these would be type 45–49 sources, im-
plying the feature peak to estimated continuum ratio is larger
than 1.648.
(2) Stellar continuum sources.—Here is the class for stars

without circumstellar dust shells that radiate significantly in
the 8–23 �m region, including Vega, Sirius, Aldebaran, and
Antares. Most of these sources are of K type to early-M type.
Only a few have spectral types earlier than K0. In the original
LRS classification these would be type 16–19 sources.
(3) Featureless sources with cooler color temperatures.—

This group is as in Volk & Cohen (1989a). The continuum
color temperature is lower than expected for the photospheric

TABLE 1

A Short Description of the 17 ANN Training Classes

Source Type Description ANN Class

Stellar Stellar photospheric spectra; B type to early M type 2

Lower temp. stellar continuum spectra with no features:

mid to late M type, little circumstellar dust

3

Carbon stars Strong 11.3 �m emission 1

Lower temp. continuum (�250 K), e.g., AFGL 3068 and no strong features 10

Weaker 11.3 �m emission 15

Oxygen-rich AGB stars Silicate absorption on an intermediate temp. continuum (400–200 K) 5

Stronger 10 �m emission on a higher temp. continuum (�600 K) 6

Weaker 10 �m emission on a higher temp. continuum (�600 K) 12

10 �m features in transition from emission to absorption 13

Planetary nebulae (PN) and post-AGB

sources (PPN)

Emission lines (PN) 0

Silicate emission on a low temp. continuum (oxygen-rich PN and PPN) 8

Lower temp. (�150 K) featureless (carbon-rich PN and PPN) 11

21 �m emission feature (carbon-rich PPN) 14

ISM spectra: mostly H ii regions; includes

a few PN, PPN and galaxies

UIR or PAH features on a Cat continuum (H ii regions, galaxies, a few PN and PPN) 4

Low temp. continuum (�100 K) without strong features 7

10 �m absorption on a low temp. continuum (�100 K), includes a few PPN 9

UIR or PAH features on a low temp. continuum (�100 K), includes a few PN 16
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emission of any normal star, including late M-type stars.
Aside from the unusually low color temperature for a stellar
photosphere, there is no overt sign of any dust emission. Many
of these sources have optical counterparts among known Mira
or irregular variables of M type. In the original LRS classifi-
cation, these would be type 12–15 sources. All featureless
continuum sources with kFk ratios of less than 3 between 7.9
and 11 �m but which still have declining continua over the
LRS wavelength range are placed in this class.

(4) Sources with UIR features at 7.6/8.5/11.3/12.5 �m.—
This group includes sources with the UIR features, except for
those with very steep (‘‘red’’ according to the Atlas definition)
continua, which form class 16. These would ideally be type 80
sources in the original LRS classification, but there was con-
siderable confusion with other types of objects.

As long as the spectrum signal to noise ratio is reasonable, it
is possible to objectively distinguish between UIR feature spectra
and silicate absorption, as discussed in Volk & Cohen (1989b).

(5) Sources with 10 �m silicate absorption.—This class
includes objects with silicate absorption features, but we

attempt to exclude cases of compact H ii regions with fore-
ground silicate absorption, which have much lower contin-
uum color temperature than the ‘‘normal’’ silicate absorption
feature sources such as IRAS 01304+6211 (see Fig. 1). If the
spectral continuum is rising from 7.6–23 �m and there is
a silicate absorption feature at 10 �m, the spectrum is put
in class 9. In the original LRS classification, class 5 sources
correspond to types 31–39. An additional refinement is that
sources that are in transition between silicate emission and
silicate absorption at 10 �m are grouped in class 13.

(6) Sources with strong silicate emission at 10 �m.—Spectra
with a falling continuum over the LRS wavelength range and
having a silicate emission feature with a peak greater than
1:628 times the continuum are in this class. These would be
types 25–29 in the original LRS classification. Similar spectra
but with weaker features are put into class 12.

(7) Sources with low temperature (�100 K) dust continuum
emission.—In this group are mostly H ii region spectra that do
not show very strong features owing to silicates or the UIR
features. The continuum must rise over the LRS wavelength

Fig. 1.—LRS spectra for the 17 training classes. There are 10 training spectra each for the 17 Catalog classes, but only one representative spectrum is shown. For
each spectrum the IRAS name and the Catalog class (in parenthesis) are given above the plot. Please note that there exists a crossover region between the ‘‘blue’’ and
the ‘‘red’’ spectra (as a result of the instrument’s settings) ranging between 10 and 14 �m, and this is seen in these plots.
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range from 7.6–23 �m for a spectrum to be included in this
class, corresponding roughly to a color temperature of less than
100 K, but generally the continuum shape cannot be described
by a single color temperature. In the original LRS classification
these would have been given some type in the 60s, 70s, or 80s.
In a few unusual cases there can be other types of spectra mixed
into this group. When there are accompanying strong features
such as the 10 �m feature in emission or absorption the spectra
are put into classes 8, 9, or 12.

(8) Sources with silicate emission and a low temperature
dust continuum.—Here are spectra with continuum shape sim-
ilar to that of class 7 but with a clear 10 �m silicate emission
feature. In principle this corresponds to types 61–69 in the
original LRS classification. Some of the sources are H ii re-
gions, but others are young planetary nebulae such as Hb 12,
Vy 2-2, and SwSt-1; others are their immediate progenitors
caught in the phase between the asymptotic giant branch phase
and the planetary nebula phase (‘‘proto–planetary nebulae’’
or PPNs) such as HD 161796 and IRAS 18095+2704. The
spectrum of 18095+2704 is shown in Figure 1; this has un-
usually strong features, and the continuum is not as steeply
rising as is typically the case for spectra in this class.

(9) Sources with silicate emission and a low temperature
dust continuum.—This is another class in which the contin-
uum is required to rise over the LRS wavelength range from
7.6–23 �m. Here we include spectra showing the 10 and
18 �m silicate features in absorption. These are nearly all com-
pact H ii region sources with (presumably) foreground cold
dust in the associate molecular cloud. In the original LRS
classification these would be type 71–79 sources.

(10) Extreme carbon stars.—The prototype for this group is
AFGL 3068 (IRAS 23166+1655), which is known to be a
carbon star with an extremely optically thick dust shell. The
spectra are selected for this group on the basis of having low
color temperatures (of order 300 K) in the 10 �m region of the
spectrum and of having no strong emission or absorption fea-
tures. In some cases there is some type of weak feature around
11 �m, which might be due to the 11.3 �m SiC feature in
emission or weak absorption. These objects are discussed in
Volk et al. (1992).

(11) Low color temperature featureless spectra.—The group
of spectra have low color temperature (about 150–200 K)
featureless continua. They have noticeably lower color tem-
peratures than the extreme carbon star spectra (see Fig. 1) but
peak somewhere in the LRS wavelength range and decline
thereafter, unlike the H ii region spectra in classes 7, 9, and 16.
A few of these sources are known to be either young plane-
tary nebulae or PPNs, and they all seem to have carbon-based
dust shells. These objects are discussed by Volk, Kwok &
Woodsworth (1993). In the original LRS classification they
were generally assigned type 05 or 50.

(12) Sources with weaker silicate emission features.—This
group of spectra is the analog of class 6, but they have feature
peak to continuum ratios of less than 1.628. In the original
Atlas classification these would be type 21–24 spectra. In
various cases the feature was not detected at all in the original
LRS Atlas classification, and these were generally classified as
type 15–18.

(13) Sources with intermediate optical depth silicate dust
shells.—Prototype spectra for this class include IRAS 19192+
0922, IRAS 17125�4814, IRAS 15119�6453, and IRAS
16546�4047 (see Fig. 1). All these spectra have continua that
fall between 7.6 and 23 �m. The optical depth of the dust shells
in these objects is such that the 10 �m feature is in transition

between emission and absorption while the 18 �m feature is
still in emission. In the original LRS classification these were
often confused with SiC emission spectra, and so given erro-
neous types of 41–45.
(14) Source with the 21 �m feature.—A small number of

sources are known to have a dust feature at 21 �m, one possible
identification of which is TiC grains (von Helden et al. 2000).
The feature was discovered in the LRS spectra. Less than 20
such sources are known, the brighter of which are used to de-
fine the group here. All sources in this group are carbon-rich
PPNs. A few extreme carbon stars and the planetary nebula
IC 418 appear to have very weak 21 �m features, but these
require the Infrared Space Observatory to detect, and so are not
included here.
(15) Sources with weaker 11:3 �m SiC emission.—All

spectra from carbon stars with the 11.3 �m feature but with a
feature-to-continuum ratio of less and 1.628 are put in this
group, which is closely analogous to class 1. In the original
LRS classification these would be of type 41 to 44.
(16) Cool continuum sources with strong UIR features.—

Any spectrum that has a continuum that rises from 7.6–23 �m
(allowing for the possibility of a strong 7.6 �m feature at the
short-wavelength end of the spectrum) and strong UIR features
at 7.6 and 11.3 �m is placed in this class. These are H ii region
spectra with UIR features. In the original LRS classification
these would be of type 80 or 81. In some cases it is possible that
there is an underlying silicate absorption component as well
as the UIR features, causing a very large rise at the short-
wavelength end of the LRS spectrum. However, these spectra
lack any 18 �m absorption feature, which makes the presence
of strong 10 �m silicate absorption less likely.

3. ARTIFICIAL NEURAL NETWORK SCHEME

In this analysis, we have used the multilayer back-propagation
(MBPN) neural network scheme with supervised learning as
described in Gulati et al. (1994a, 1994b). This scheme requires
a set of spectra to be predefined as the training set and should
include all the classes of the unknown set that the network is
supposed to classify. The algorithm trains on this training set and
subsequently in the test phase, classifies the unknown test set
into the predefined classes.
A training set of 170 spectra having 10 sources for each

training class was set aside for training purposes. Figure 1
shows a representative sample of each of these 17 classes.
Each spectrum consists of 93 flux values in the range of 8–
23 �m. We may mention that 148 numbers of the 170 training
spectra were included in the 2000 test spectra for validity
checks.
The ANN scheme involved using this set of 170 input

spectra with 17 assigned classes (0–16) to train the ANN al-
gorithm. We refer to these classes as the catalog classes. The
ANN configuration used was 93-16-16-17, implying 93 data
points for each of the 17 output spectral classes with two
hidden layers of 16 nodes each (a detailed explanation on the
ANN architecture is given in the Appendix). The training
session involved an iterative procedure with the network
weights getting modified at each iteration. During an iteration,
the computed output and the desired output were compared
and the resultant error was then utilized to modify the network
weights for the next iteration using a back propagation algo-
rithm. The learning or training was stopped once the error was
minimized to a predefined level and the network weights were
considered to be frozen (Gulati et al. 1994a). A learning curve
for 10,000 iterations is given in Figure 2 (left panel ).
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Subsequent to the above training session, the test session
uses the frozen weights determined above to perform the
classification of the 2000 test set of spectra into 17 catalog
classes.

4. RESULTS AND DISCUSSION

A general picture of the result of our ANN classification
scheme is given in Figure 2 (right panel ) in the form of a
histogram. A total of 1618 spectra have been classified cor-
rectly out of the total sample of 2000 source spectra indicating
a success rate of 80% at the first instance. Table 2 provides a
summary of the ANN classification of the 2000 test sources
into the 17 groups or classes. Table 3 lists 382 of the mis-
classified sources with their catalog class and the correspond-
ing ANN class. In the following, we describe some finer details
of the classification accuracy for individual classes 0 to 16.

Out of a total 23 spectra for class 0, 19 were classified
correctly. From the four that were misclassified, one each was
classified as class 7, 8, 13, and 16. Table 3 lists the four spectra
of class 0 that were misclassified. Source 22036+5306 has
been put in class 16 by the ANN probably because of the strong
feature at around 8 �m, typical of class 16.

Out of a total 136 spectra for class 1, 113 were classified
correctly. From the 23 that were misclassified, 11 were mis-
classified into class 13, six were misclassified into class 15,
three were misclassified into class 4, two were misclassified
into class 6, and one was misclassified into class 14. The
misclassified sources of class 1 are listed in Table 3. Out of
these, 18 spectra seem to belong to the class assigned by the
ANN and not the catalog class, specially those put into classes
13 and 15. ANN classification accuracy of class 2 has the best
agreement with the catalog class. Out of 89 spectra of class 2,

Fig. 2.—ANN learning curve for 10000 iterations (left panel ). The rms error refers to the rms difference between the computed output and the desired output for
each iteration. The right panel shows the histogram of classification accuracy for the 2000 test patterns with 17 training classes.

TABLE 2

2000 Test Sources Classified by ANN into 17 Catalog Classes

ANN Class

Catalog Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

0............................ 19 . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . 1 . . . . . . 1 23

1............................ . . . 113 . . . . . . 3 . . . 2 . . . . . . . . . . . . . . . . . . 11 1 6 . . . 136

2............................ . . . . . . 88 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3............................ . . . 1 5 85 . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . 1 . . . 94

4............................ . . . . . . 1 . . . 34 22 . . . . . . . . . 2 1 . . . . . . 10 2 4 11 87

5............................ . . . . . . . . . . . . 4 88 . . . . . . . . . 2 . . . . . . . . . 1 1 . . . 7 103

6............................ . . . 1 . . . . . . . . . . . . 679 . . . 8 . . . 9 . . . 33 5 . . . . . . . . . 735

7............................ 3 . . . . . . . . . . . . . . . . . . 45 . . . 2 . . . 2 . . . . . . . . . . . . 1 53

8............................ 1 . . . . . . . . . . . . . . . . . . . . . 12 . . . . . . . . . . . . . . . . . . . . . . . . 13

9............................ . . . . . . . . . . . . . . . 3 . . . 4 . . . 26 . . . . . . . . . . . . 4 . . . 3 40

10.......................... . . . 1 . . . . . . . . . . . . 2 . . . . . . . . . 38 . . . . . . 3 . . . . . . . . . 44

11.......................... 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . . . . . . 3 . . . . . . 12

12.......................... . . . 6 . . . 27 . . . . . . 15 . . . . . . . . . . . . . . . 149 1 . . . . . . . . . 198

13.......................... . . . . . . . . . 1 3 4 85 . . . 3 . . . 8 . . . . . . 96 . . . . . . . . . 200

14.......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . 2 . . . . . . 3

15.......................... . . . 18 2 1 3 . . . . . . . . . . . . . . . . . . . . . . . . 3 2 111 . . . 140

16.......................... 1 1 . . . . . . . . . 1 . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . 25 30
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88 spectra were classified correctly, while one spectrum was
misclassified into class 3.

Of the 94 spectra for class 3, 85 were classified correctly.
Of the nine that were misclassified, five were misclassified
into class 2 and one each into classes 1, 12, 13 and 15. At
least one source (20056+1834) has a spectrum that does not
seem to belong to class 3 and has been put in class 13 by the
ANN.

Of a total of 87 sources of class 4, 34 were correctly clas-
sified, while 53 were misclassified; 22 into class 5, 11 into class
16, 10 into class 13, four into class 15, two each into class 9
and 14, and one each into class 2 and 10. As mentioned in x 2,
class 4 corresponds to type 80 sources in the original LRS
classification in which there was a lot of confusion with the
other types of sources. ANN put 22 sources into class 5, which
has sources with 10 �m silicate absorption feature. We note
that in the training sample of class 4, there are at least two
sources (16367�4701 and 19327+3024) that might be result-
ing in contamination of this class with class 5 and hence less
than efficient training for class 4.

Out of a total of 103 spectra for class 5, 88 were correctly
classified. Seven spectra were misclassified into class 16, four
into class 4, two into class 9, and one each into class 13 and 14.
ANN has correctly picked up at least three spectra from the
catalog that should be put in class 4 (Table 3).

Class 6 (strong 10 �m feature) has the largest sample of 735
sources. Out of these, 679 were classified correctly and 33 were
misinterpreted as class 12 (weak 10 �m feature). Similarly,
class 12 has 198 spectra, out of which 15 were misclassified as
class 6, while 27 were misclassified into class 3. As discussed
later, if one were to treat a weak and a strong 10 �m feature
sources as belonging to a single class, percentage of correctly
classified sources will be in excess of 90% for these classes.

For class 7, out of the 53 sources, 45 have been classified
correctly. Three sources were incorrectly classified into class 0,
while two sources each were incorrectly classified into classes
9 and 11. Class 8 has 13 sources, out of which only one has
been wrongly classified into class 0.

Class 9 has 40 sources in all. Twenty-six have been correctly
classified, four each have been misclassified into classes 7 and
14, and three each into classes 5 and 16. Class 10 has 44
sources in all, and 38 have been correctly classified, but three
have been wrongly classified to class 13, two into class 6, and
one into class 1. Class 11 has 12 sources, out of which eight
were correctly classified. Three sources were incorrectly clas-
sified into class 14 and one into class 0.
As mentioned in x 2, in the original LRS classification, class

13 spectra were often confused with SiC feature sources. In the
ANN classification also, out of the 200 class 13 sources, 104
were wrongly classified (85 into class 6), while 96 were cor-
rectly classified. Thewrongly classified sources have been listed
in Table 3 for the purpose of review by the human classifiers.
Class 14 has three sources, out of which one was mis-

classified into class 10. Class 15 had 140 sources, out of which
111 have been correctly classified. But 18 have been classified
into class 1 and three each into classes 13 and 4; two each into
class 2 and 4, and one into class 3. Finally, 25 sources out of a
total of 30 of class 16 were classified correctly. Two sources
were wrongly classified into class 7, while one each were clas-
sified into classes 0, 1, and 5.
If we assume classes 6 and 12 to be the same, (class 12

trained as class 6) and redo the classification exercise, we ob-
tain the overall classification histogram as shown in Figure 3.
A total of 1675 spectra have now been classified correctly,
which is about 84% of the total test data set. This process also
improved the classification of the class 6 sources, as shown in
Figure 4.
We split off class 12 from class 6 because it improved the

classification of silicate emission objects. With the full range
of silicate emission objects in one class there was more dis-
persion of values and the ANN system had more chance of
misclassification. However, it does not matter that sources are
misclassified from class 6 to class 12 or class 12 to class 6
because the dividing line between these two groups is not
sharp and there is a continuous range of silicate feature
strengths, and some objects must fall at the boundary.

TABLE 3

List of LRS Sources Misclassified by ANN

IRAS Designation Catalog Class ANN Class

04395+3601 ............................... 0 13

17069�4149 .............................. 0 7

21014�1133............................... 0 8

22036+5306 ............................... 0 16

03293+6038 ............................... 1 15

04340+4623 ............................... 1 13

15380�6545 .............................. 3 12

17282�5102 .............................. 3 2

17504�0234 .............................. 3 2

19369+2823 ............................... 3 1

20056+1834 ............................... 3 13

22476+4047 ............................... 3 2

14198�6115............................... 4 5

14206�6151 .............................. 4 16

15246�5612 .............................. 4 16

15535�5328 .............................. 4 5

16041�4912 .............................. 4 5

16204�4717 .............................. 4 5

Notes.— Table 3 is available in its entirety in the electronic edition of the
Astrophysical Journal Supplement. A portion is shown here for guidance
regarding its form and content.

Fig. 3.—Histogram of classification accuracy for the 2000 test patterns with
16 training classes (class 12 trained as class 6).
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Fig. 4.—Histogram of classification accuracy for the 735 test patterns of class 6 with 17 training classes (left panel ) and with combined training class 6 and class
12 (right panel ).

Fig. 5.—Histogram of classification accuracy for the 200 test patterns of class 13 with 17 training classes (left panel ) and with combined training class 6 and class
12 (right panel ).



Figure 5 shows the improvement in the class 13 classifi-
cation, namely, earlier 85 sources of this class were wrongly
classified as class 6, which has now reduced to 50 wrong
classifications. This process also improved the classification of
class 4, as seen in Figure 6. There were such improvements
noticed in general, and Figure 3 is really a combined effect of
all these.

5. CONCLUSIONS

We have demonstrated in this paper the application of the
ANN scheme to a large database of 2000 IRAS spectra and
have been able to correctly classify more than 80% of the

data set. The misclassified spectra were looked in detail and
most of them could have been wrongly cataloged or had
features that would have been confusing for even a human
classifier.
We stress here that the speed and robustness of this scheme

can be very useful for classifying the whole of the LRS data-
base containing over 50,000 sources.

R. G. and H. P. S. are grateful to S. K. and K. V. for kind
hospitality while on a visit to Calgary. We thank the two
anonymous referees for very useful comments.

APPENDIX

ARTIFICIAL NEURAL NETWORK ARCHITECTURE

In a feedforward neural network there are several inputs, a few hidden layers, and several outputs (Bailer-Jones et al. 2002). See
Figure 7 for a block view of this architecture. Each node in the input layer holds a value, xi. In our example application, the input
vector, (x1; x2; : : : ; xi; : : :), is the spectrum with 93 flux values, and the output vector, ( y1; y2; : : : ; yl; : : :), has 17 nodes. Each of
the input nodes connects to every node in the next layer of nodes, the first ‘‘hidden’’ layer, and each of these connections has a
weight, wi; j, associated with it. A node in the hidden layer forms a weighted sum of its inputs, and passes this through a nonlinear
transfer function, such that the output from the jth hidden node is

pj ¼ tanh
X
i

wi; jxi

 !
:

These values are passed to a second hidden layer, which performs a similar processing, the output from that layer being the
vector q:

qk ¼ tanh
X
j

wj; kpj

 !
:

The output layer then performs a simple sum of its inputs, so that the network output, yl, is

yl ¼
X
k

wk; lqk :

Fig. 6.—Histogram of classification accuracy for the 87 test patterns of class 4 with 17 training classes (left panel ) and with combined training class 6 and class
12 (right panel ).
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The tanh function in the hidden layers provides the nonlinear capability of the network. Other nonlinear functions are possible; the
sigmoidal function (1=(1� exp ½�

P
wx�)) is used here. Both functions map an infinite possible input range onto a finite output

range, �1 to +1 in the case of tanh. This imitates the transfer function of neurons.
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