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ABSTRACT

We calculate the one-point probability distribution function (PDF) for the cosmic density � in the nonlinear
regime of gravitational evolution. Under the local approximation that the evolution of cosmic fluid fields can be
characterized by Lagrangian local dynamics with finite degrees of freedom, the analytic expressions of the PDF are
derived taking into account the smoothing effect. The validity and the usefulness of the local approximation are
then discussed, comparing those results with N-body simulations with Gaussian initial conditions. Adopting the
ellipsoidal collapse model (ECM) and the spherical collapse model (SCM) for Lagrangian local dynamics, we
found that the PDFs from the local approximation excellently match the simulation results in the case of a cold
dark matter initial spectrum. As for the scale-free initial spectra given by P(k) / kn, the N-body results suffer from
spurious numerical effects, which prevent us from giving a detailed comparison. Nevertheless, for the quality of
the N-body data, the model predictions based on the ECM and the SCM quantitatively agree with the N-body
results in cases with spectral index n < 0. For index n � 0, the choice of Lagrangian local dynamics becomes
crucial for an accurate prediction, and a more delicate modeling is required. However, we find that the model
prediction based on the ECM provides a better approximation to the N-body results of cumulants and PDFs.

Subject headings: cosmology: theory — dark matter — galaxies: clusters: general —
large-scale structure of universe — methods: analytical

1. INTRODUCTION

The probability distribution function (PDF) of the cosmo-
logical density fluctuation is a fundamental statistical quantity
characterizing the large-scale structure of the universe. In the
standard picture of cosmic structure formation based on the
cold dark matter (CDM) scenario, the gravitational evolution
of the dark matter distribution plays an essential role in the
hierarchical nature of observed luminous distributions. Usu-
ally, the evolution of the dark matter distribution is believed
to develop from a small initial fluctuation with a Gaussian
random distribution. While the PDF of the density fluctuation
retains a Gaussian shape in the linear regime, the deviation
from a Gaussian distribution becomes significant in the non-
linear regime of gravitational evolution.

A number of studies in quantifying the non-Gaussian
properties of the density field have been developed theoreti-
cally and observationally. From numerical and observational
studies, a systematic analysis using a cosmological N-body
simulation or the observed galaxy distribution yields various
phenomenological prescriptions for the density PDF in the
nonlinear regime (e.g., Saslaw & Hamilton 1984; Hamilton
1985; Gaztañaga & Yokoyama 1993; Ueda & Yokoyama
1996). Among them, the lognormal distribution has long been
known to fit simulations quite accurately (e.g., Coles & Jones
1991; Coles et al. 1993; Bernardeau & Kofman 1995; Taylor
& Watts 2000). Recently, Kayo et al. (2001) critically exam-
ined this issue using a high-resolution N-body simulation with
Gaussian initial conditions and found that the accuracy of
the lognormal model remains valid, irrespective of the nature

of the initial spectra. The weak dependence of the initial
spectra was later investigated using phenomenological models
with a dark halo approach (Taruya et al. 2003).

On the other hand, in an analytical study, a perturbative
construction of the PDFs was exploited by Bernardeau (1992,
1994a), employing a field-theoretical approach, and the pre-
dictions including the smoothing effect excellently match the
N-body simulations in the weakly nonlinear regime. Beyond
the perturbative prediction, however, no exact treatment is
available, and a nonperturbative approximation or a phe-
nomenological approach taking into account the empirical
simulation results is necessary. Fosalba & Gaztañaga (1998a)
and Scherrer & Gaztañaga (2001) proposed to use a spherical
collapse model (SCM) as a nonperturbative approximation to
predict the higher order moments and PDFs. In their treatment,
one assumes that the Lagrangian dynamics of the local density
field is simply described by an SCM. Although this approxi-
mation clearly misses the nonlocality of the gravity in the
sense that the evolution of the local density field can be de-
termined by one-to-one local mapping, the advantage of this
treatment is that one can easily calculate the higher order
corrections of the moments and PDFs. Furthermore, it turns
out that the spherical collapse approximation exactly recovers
the leading-order results of perturbation theory.

Recently, we generalized the idea of the spherical collapse
approximation to a local approximation in which the evolution
of the local density field is characterized by Lagrangian local
dynamics with finite degrees of freedom (Ohta et al. 2003). As
a demonstration, the PDFs were computed using the ellip-
soidal collapse model (ECM). In the ECM the local density at
a position is expressed as the multivariate function of initial
parameters, i.e., the principal axes of the ellipsoid given at
the same position. Thus, the relation between the initial and
evolved density field cannot be described by one-to-one local
mapping. As a consequence, the local approximation with
an ECM successfully explains the stochastic nature seen in
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the simulation, i.e., the joint probability between the initial
and evolved density fields, as has been reported by Kayo et al.
(2001). In addition, the leading-order results from the ECM
correctly reproduce those obtained from exact perturbation
theory.

In the present paper we extend the previous study to a
quantitative comparison between the local approximation and
N-body simulations. Evaluating the PDF of the local density
fields, taking into account the smoothing effect, we consider
the validity and the limitation of the local approximation with
SCMs and ECMs. The PDFs from the SCM were previously
compared with N-body simulations in the case with a CDM
power spectrum (Scherrer & Gaztañaga 2001). In this paper,
taking into account the smoothing effect, N-body results with
scale-free initial spectra as well as a CDM spectrum are
compared.

This paper is organized as follows: In x 2 we start by
reviewing the local approximation of one-point statistics de-
veloped by Ohta et al. (2003) and briefly show how to com-
pute the PDF and the moments from the Lagrangian local
collapse model. As representative models of Lagrangian local
dynamics, the SCM and ECM are considered. Then, we
consider the smoothing effect and discuss how to incorporate
it into the model predictions. Based on this, the perturbative
calculation of cumulants up to the two-loop order is presented,
and the qualitative behaviors of the model prediction are
discussed in x 3. In x 4 the validity and the usefulness of the
local approximation for one-point statistics is investigated by
comparing the PDFs and cumulants from the local collapse
models with those obtained from N-body simulations. Finally,
x 5 is devoted to discussion and conclusions.

2. ONE-POINT STATISTICS FROM THE LOCAL
COLLAPSE MODEL

In many analytical works on the gravitational evolution of
density distributions, the CDM distribution is often treated as
a pressureless and nonrelativistic fluid. This treatment is not
exact, but in a statistical sense, it would provide a better ap-
proximation if the scale of our interest were large enough, so
that no shell crossing appeared in the smoothed density fields.
Denoting the mass density and velocity field of the fluid by �
and v, the evolution equations for the fluid in a homogeneous
and isotropic background universe are expressed as

@�

@t
þ 1

a
:= (1þ � )v½ � ¼ 0; ð1Þ

@v

@t
þ Hvþ 1

a
v =:ð Þv ¼ � 1

a
:�; ð2Þ

where � is the density fluctuation: � � (�� �m)=�m. The
quantity a is the scale factor of the universe, and H is the
Hubble parameter, given by H � ȧ=a. The gravitational po-
tential � is determined by the Poisson equation:

92� ¼ 4�G�ma
2�: ð3Þ

Below, using the local approximation, we consider the one-
point PDF of the density fluctuation � and the higher order
moments, taking into account the smoothing effect.

2.1. Local Approximation

As mentioned in x 1, the analytical treatment of the one-point
PDF P(� ) governed by the fluid equations (1)–(3) is generally
intractable because of the nonlinearity and nonlocality of the

gravity. Beyond the perturbative prediction, a nonperturbative
treatment should be exploited. The local approximation is one
way to treat the one-point PDFs analytically, by reducing the
Lagrangian dynamics of the fluid motion given by equations
(1)–(3) to local dynamics with finite degrees of freedom. In this
treatment, the time evolution of the local density field � at a
given position is determined by the local dynamics, with the
initial condition given at the same position in Lagrangian
coordinates. Thus, the solution of the local density field can be
obtained by solving a couple of ordinary differential equations
and can be expressed as a function of initial parameters
k ¼ (k1; k2; : : : ; kn) given at a Lagrangian position and
time, i.e., � ¼ f (k; t). In this paper we consider the SCM and
ECM as representative examples of the Lagrangian local dy-
namics (see xx 2.1.1 and 2.1.2). In this case the initial param-
eters of Lagrangian local dynamics correspond to the linearly
extrapolated density fluctuation �l for the SCM and the prin-
cipal axes of the initial homogeneous ellipsoid (k1, k2, k3) for
the ECM.
Once provided the functional form of the local density,

f (k; t), the one-point PDF of the local density field P(�; t) (in
Eulerian space) can be analytically obtained. With a slight
modification of the definition of the density fluctuation � so
as to satisfy the normalization condition and the zero mean of
� (Ohta et al. 2003), one has

P(�; t) ¼ 1

1þ �

Z Yn
i¼1

dki PI (k)�D � � gðk; tÞð Þ; ð4Þ

where the function g is given by

� ¼ g(k; t) � NE½1þ f (k; t)� � 1;

NE(t) �
Z Yn

i¼1

dki
PI (k)

1þ f (k; t)
: ð5Þ

In equations (4) and (5), the function PI (k) is the probability
distribution of the initial parameters, which characterizes the
randomness of the mass distribution. From equation (4) one
also calculates the moments of the density fields:

�N
� �

�
Z
�NP(�; t) d� ¼

Z Yn
i¼1

dki
gN

1þ g
PI (k): ð6Þ

Expressions (4)–(6) are the heart of the analytical treatment in
the local approximation and are rigorously derived by con-
sidering the evolution equations for the one-point PDFs (Ohta
et al. 2003).

2.1.1. Spherical Collapse Model

To calculate the function f (k; t), let us first consider
the SCM for the simple Lagrangian local dynamics. In the
SCM the evolution of the local density at a given position in
Lagrangian space is determined by the mass M inside a sphere
of radius R collapsing via self gravity:

d 2R

dt2
¼ � GM

R2
þ �

3
R; M ¼ 4�

3
�̄R3 ¼ const; ð7Þ

where � is the cosmological constant. The above equation
is re-expressed in terms of the local density defined by � ¼
(aR0=R)3 � 1:

d 2�

dt2
þ 2H

d�

dt
� 4

3

1

1þ �

d�

dt

� �2

¼ 3

2
H2�m(1þ � )�; ð8Þ
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where �m is the density parameter given by �m �
8�G�m=(3H

2). Note that the SCM can be regarded as the
monopole approximation of the fluid equations neglecting the
shear and vorticity (e.g., Fosalba & Gaztañaga 1998a), since
one obtains the following from equations (1)–(3) with the help
of the Lagrangian time derivative, d=dt � @=@t þ v=a = ::

d 2�

dt2
þ 2H

d�

dt
� 4

3

1

1þ �

d�

dt

� �2

¼ H2(1þ � )
3

2
�m� þ � ij�ij � ! ij!ij

� �
; ð9Þ

�ij ¼
1

2aH

@vi
@xj

þ @vj
@xi

� 2

3
:= v�ij

� �
; ð10Þ

!ij ¼
1

2aH

@vi
@xj

� @vj
@xi

� �
; ð11Þ

where �ij and !ij respectively denote the shear and vorticity
tensors.

The exact solution of equation (7) is obtained in the case
of an Einstein–de Sitter universe (�m ¼ 1, � ¼ 0) and is
expressed as a function of the linearly extrapolated density
fluctuation �l in parametric form:

� ¼ 9

2

(� � sin �)2

(1� cos �)3
� 1; �l ¼

3

5

3

4
(� � sin �)

� �2=3
ð12Þ

for �l > 0, and

� ¼ 9

2

(sinh � � �)2

(cosh � � 1)3
� 1; �l ¼ � 3

5

3

4
(sinh � � �)

� �2=3
ð13Þ

for �l < 0. The relation between � and �l in the above equa-
tion is fairly accurate even in the non–Einstein–de Sitter
universe (e.g., Nakamura & Suto 1995; Fosalba & Gaztañaga
1998b). We extensively use equations (12) and (13) for later
analysis. Note that in computing the density PDF, the linearly
extrapolated density �l should be regarded as an initial pa-
rameter and treated as a random variable. Assuming Gaussian
initial conditions, we have

PI (�l) ¼
1ffiffiffiffiffiffi
2�

p
�l

e�ð�l=�lÞ2=2; ð14Þ

where the variable �l is the rms fluctuation of the linear
density field, �l ¼ h�2l i

1=2
.

2.1.2. Ellipsoidal Collapse Model

The ECM is an extension of the SCM, taking into account
nonsphericity. In this model the dynamics of the local density
is described by a self-gravitating uniform-density ellipsoid
characterized by the half-length of the principal axes � i

(i ¼ 1, 2, 3).
The local density of the ECM is given by

� ¼ a3

�1�2�3

� 1: ð15Þ

According to Bond & Myers (1996), the evolution equations
of the half-lengths of the axes become

d 2

dt2
� i ¼

�

3
� i � 4�G�m� i

1þ �

3
þ bi

2
� þ kext; i

� �
; ð16Þ

bi ¼ �1�2�3

Z 1

0

d�

(�2
i þ �)

Q
j
(�2

j þ �)1=2
� 2

3
: ð17Þ

The quantity kext; i mimics the effect of the external tidal shear,
which was introduced for consistency with the Zel’dovich
approximation:

kext; i ¼
ki �

k1 þ k2 þ k3
3

; linear external tide;

5

4
bi; nonlinear external tide;

8><
>: ð18Þ

where ki denotes the initial perturbation of the principal axis
and evolves as ki(t) ¼ D(t)ki(t0), with the variable D being
the linear growth rate. Note that the inclusion of the external
tidal term is necessary to reproduce the Zel’dovich approxi-
mation when we linearize the evolution equations.3 In this
paper both cases of the external tidal term are considered
in order to reveal the model dependence of the prediction,
but when comparing with N-body simulations, only the ECM
results with the linear external tide are presented for brevity. In
the presence of an external tide, the initial condition is spec-
ified by the Zel’dovich approximation. Identifying the varia-
bles ki with the initial parameters of � i, we have

� i(t0) ¼ a(t0) 1� ki(t0)½ �; ð19Þ
d

dt
� i(t0) ¼ ȧ(t0) 1� ki(t0)½ � � a(t0)k̇i(t0): ð20Þ

Note that the initial parameters ki are related to the linearly
extrapolated density fluctuation �l by �l ¼ k1 þ k2 þ k3. Hence,
the parameters ki should be treated as random variables. For
Gaussian initial conditions, the distribution function of ki is
analytically expressed as (Doroshkevich 1970)

PI (ki) ¼
675

ffiffiffi
5

p

8��6l
exp �3

I 21
�2
l

þ 15
I2

2�2
l

� �
; k1 � k2ð Þ(k2 � k3)(k1 � k3); ð21Þ

where we define I1 ¼ k1 þ k2 þ k3 and I2 ¼ k1k2 þ k2k3 þ
k3k1.

Note that in contrast to the SCM, the ECM can be regarded
as an approximation of the fluid equations taking into account
the effect of tidal shear but neglecting the vorticity (Ohta
et al. 2003). Equation (16) with equation (17) is re-expressed
in terms of the local density � (cf. eq. [9]):

d2�

dt2
þ 2H

d�

dt
� 4

3

1

1þ �

d�

dt

� �2

¼ H2(1þ � )
3

2
�m� þ � ij�ij

� �
; ð22Þ

�ij ¼
1

3H
3
�̇ i

� i

� �̇1

�1

� �̇2

�2

� �̇3

�3

� �
�ij: ð23Þ

2.2. Smoothing Effect

When we evaluate statistical quantities from N-body sim-
ulations, a smoothing procedure is often employed to remedy

3 If this term is dropped, a consistent calculation with the initial distribu-
tion of eq. (21) is also impossible.
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the discreteness of the particle data. In this sense the smoothing
effect is crucial and should be incorporated into the theoretical
prediction. In this paper we adopt top-hat smoothing, and
the smoothed density PDFs are computed from both the local
approximation and the N-body simulation:

�̂(x; R) ¼
Z

d3y �( y)WTH( y� xj j; R); ð24Þ

WTH(r; R) ¼
3

4
�R3; r < R;

0; otherwise;

8<
: ð25Þ

where WTH(r; R) is the top-hat smoothing kernel of radius R.
A systematic method for computing analytic PDFs taking

into account the smoothing effect was first considered by
Bernardeau (1994a), based on perturbation theory. Later, his
method was extended to the nonperturbative calculation of
the PDF using the SCM (Fosalba & Gaztañaga 1998a). We
briefly review the method by Fosalba & Gaztañaga (1998a).

First, notice the fact that in the case of top-hat smoothing,
the leading-order results of cumulants for the local density
field are not affected by smoothing in Lagrangian space
(Bernardeau 1994a). Extrapolating this result to the non-
perturbative approximation with the SCM, one can approxi-
mate the evolved local density with top-hat smoothing by

�̂ � f (�l;L); ð26Þ

where �̂ is the smoothed density and �l;L is the linear density
fluctuation in Lagrangian space. To relate the quantity �l;L
to that in Eulerian space, �l;E, we recall the fact that the radius
R defined in Eulerian space roughly corresponds to the radius
R(1þ �̂ )1=3 in Lagrangian space. Thus, we have

�l;E
�l(R)

¼ �l;L

�l R 1þ �̂
� 	1=3h i : ð27Þ

Substituting equation (27) into equation (26) and identifying
the linear fluctuation �l;E with the smoothed linear fluctuation
�̂l, the relation between �̂ and �̂l becomes

�̂ ¼ f̂ �̂l
� 	

� f
�l R 1þ �̂

� 	1=3h i
�l(R)

�̂l

0
@

1
A: ð28Þ

The above relation can be further simplified with the running
index 	, defined as 	 � d log �2

l =d log R:

f̂ �̂l
� 	

¼ f 1þ f̂ �̂l
� 	
 �	=6

�̂l

� 
; 	 ¼ d log �2

l

d log R
¼ �(nþ 3);

ð29Þ

where n is the index of the initial power spectrum, P(k) / k n.
Notice that the above expression is still valid in the non–
power-law cases of the initial power spectrum. The remark-
able feature in relation (28) or (29) is that the leading-order
result of the cumulants obtained from the perturbation theory
is exactly recovered by the local approximation with the SCM.

Owing to this noticeable fact, we extend the result of
equation (29) to the local approximation with the ECM. In
this case the smoothed density field is related to the top-hat–
filtered principal axis k̂i by

f̂ k̂; t
� 	

¼ f 1þ f̂ k̂; t
� 	
 �	=6

k̂; t
� 

: ð30Þ

Adopting this form, the PDF in equation (4) becomes

P �̂; R
� 	

¼ 1

1þ �̂

Z Y3
i¼1

dk̂i PI k̂
� 	

�D �̂ � ĝ k̂; t
� 	� 	

; ð31Þ

with ĝ(k̂; t) being

ĝ k̂; t
� 	

¼ N̂E 1þ f̂ k̂
� 	

; t

 �

� 1;

N̂E(t) ¼
Z Y

i

dk̂i
PI k̂
� 	

1þ f̂ k̂; t
� 	 : ð32Þ

The above equations seem difficult to evaluate because of the
implicit relation of the functions f̂ and k̂. However, this ap-
parent difficulty can be eliminated by introducing the fol-
lowing variables:

k0i ¼ 1þ f̂ k̂; t
� 	
 �	=6

k̂i: ð33Þ

Then equation (31) becomes

P �̂; R
� 	

¼ 1

1þ �̂

Z Y3
i¼1

dk0i PI 1þ f k0; tð Þ½ ��	=6k0
n o

; �D �̂ � ĝ k0; tð Þ

 � @k̂j

@k0k

�����
�����; ð34Þ

where the quantities ĝ and N̂E can be recast as

ĝ k0; tð Þ ¼ N̂E 1þ f k0; tð Þ½ � � 1;

N̂E(t) ¼
Z Y

i

dk0i
PI 1þ f k0; tð Þ½ ��	=6k0
n o

1þ f k0; tð Þ
@k̂j
@k0k

�����
�����: ð35Þ

In addition, the Jacobian j@k̂j=@k0k j is calculated using the
relation k̂i ¼ ½1þ f (k; t)��	=6k0i as

@k̂j
@k0k

�����
����� ¼ 1þ f k0; tð Þ½ ��	=2 1� 	

6

1

1þ f

X3
i¼1

k0i
@f

@k0i

 !
: ð36Þ

Note that the term �1=(1þ f )
P3

i¼1 k
0
i (@f =@k

0
i ) is related

to the velocity divergence and is expressed as 
 ¼P
i �̇ i=(H� i)� 3 in the case of an Einstein–de Sitter uni-

verse. Thus, provided the solution of the equations for the
ECM (eqs. [15]–[17]), the smoothed density PDF can be
numerically evaluated by substituting the solution f (k; t) into
the above equations. Similarly, the higher order moments of
the local density become

�̂N
� �

¼
Z
�̂NP �̂; R

� 	
d�

¼
Z Y3

i¼1

dk0i
ĝN

1þ ĝ
PI 1þ fð Þ�	=6k0
h i @k̂j

@k0k

�����
�����: ð37Þ

In what follows, we simply denote the smoothed density field
�̂ by �.

3. PERTURBATION THEORY IN THE ELLIPSOIDAL
COLLAPSE MODEL

Before comparing the theoretical models with N-body sim-
ulations, it is useful to examine the perturbative analysis of

OHTA, KAYO, & TARUYA650 Vol. 608



the local collapse models. In this section, based on the ECM,
we present the perturbative calculation of the cumulants of
the density field. The differences between the model pre-
dictions, as well as the qualitative behaviors, are also dis-
cussed in x 3.3.

Here and in what follows, we treat the evolution of the local
density in an Einstein–de Sitter universe. In this case the li-
near growth rate D is simply proportional to the scale factor a.
Let us denote the half-length of the principal axis � i by

� i(t) ¼ a(t) 1� �i(a(t))½ �: ð38Þ

Then, regarding the scale factor a as time-variable, equation (16)
is transformed to

a2
d 2�i
da2

þ 3

2
a
d�i
da

¼ 3

2
1� �ið Þ 1

3
� þ 1

2
bi� þ kext; i

� �
: ð39Þ

In terms of the variable �i, the quantities bi and � are expressed
as

bi ¼ 1� �1ð Þ 1� �2ð Þ 1� �3ð Þ

;

Z 1

0

d�

1� �ið Þ2þ �
h iQ

j

1� �j
� 	2þ �
h i1=2 � 2

3
ð40Þ

� 4

15
3�i � �1 þ �2 þ �3ð Þ½ � þ b̃i; ð41Þ

� � �1 þ �2 þ �3 þ�: ð42Þ

Note that both the quantities b̃i and � are O(�2).
Below, we separately give the perturbation results in the

ECM with a nonlinear external tide and with a linear external
tide. Note that the leading-order results for the cumulants in
each model exactly coincide with each other and reproduce
those of exact perturbation theory (e.g., Bernardeau 1994a,
1994b).

3.1. Ellipsoidal Collapse Model with a Nonlinear
External Tide

In the case of the model with a nonlinear external tide,
the quantity kext; i is given by (5=4)bi , and the right-hand side
of equation (39) becomes 3�i=2þ O(�2). Then we have

a2
d2�i
da2

þ 3

2
a
d�i
da

� 3

2
�i

¼ 1

2
�� ��ið Þ þ 3

4
1� �ið Þbi� þ

15

8
b̃i � �ibi
� 	

¼ O �2
� 	

:

ð43Þ

This equation can be perturbatively solved by substituting the
series expansion �i ¼

P
j¼0 �

ð jÞ
i a j into the above equation.

Under the initial condition (19), one formally obtains the ex-

pression of the coefficient �
ð jÞ
i as

�
ð1Þ
i ¼ ki(t0); ð44Þ

�
ð jÞ
i ¼ 1

2jþ 3ð Þ j� 1ð Þ j!
d j

da j

�
�� ��i

þ 3

2
1� �ið Þbi� þ

15

4
b̃i � �ibi
� 	�����

a¼0

; j > 1; ð45Þ

where we have only considered the growing mode of the
solutions. Note that the coefficient �

ð jÞ
i is a variable of O(k j).

Based on the result in equation (45), the perturbative ex-
pansion for the evolved density, � ¼

P
i �

ðiÞ, can be constructed
from the relations (15), (38), and (40). The results up to the
seventh order become

�ð1Þ ¼ �l; ð46Þ

�ð2Þ ¼ 17

21
�2l þ

4

21
J1; ð47Þ

�ð3Þ ¼ 341

567
�3l þ

338

945
�lJ1 þ

92

3969
J2; ð48Þ

�ð4Þ ¼ 55805

130977
� 4l þ 485288

1091475
�2l J1

þ 234088

4584195
�lJ2 þ

429728

10696455
J 21 ; ð49Þ

�ð5Þ ¼ 213662

729729
�5l þ

292398464

638512875
�3l J1 þ

64182728

893918025
�2l J2

þ 6541246

59594535
�lJ

2
1 þ 828974992

96364363095
J1J2; ð50Þ

�ð6Þ ¼ 21129781

107270163
� 6l þ 15739030628

37246584375
� 4l J1

þ 38380501904

469306963125
�3l J2 þ

334168450808

1825082634375
�2l J

2
1

þ 250313183728

9368757523125
�lJ1J2 þ

63778345006048

7673012411439375
J 31

þ 2272657750768

4603807446863625
J 22 ; ð51Þ

�ð7Þ ¼ 83411812

639441621
�7l þ

42267062029204

116564878828125
�5l J1

þ 63224677073056

769328200265625
� 4l J2 þ

3019799334120902

12565693937671875
�3l J

2
1

þ 9581060236980928

193511686640146875
�2l J1J2

þ 13515215809239748

451527268827009375
�lJ

3
1

þ 276922264619192

162549816777723375
�lJ

2
2

þ 9155185965341512

3521912696850673125
J 21 J2; ð52Þ

where �l denotes the linear fluctuation, given by �l ¼ k1 þ
k2 þ k3. Here we introduced the quantities J1 � x2 þ xyþ y2

and J2 � (x� y)(2xþ y)(xþ 2y), with the variables x and y
being x ¼ k1 � k2 and y ¼ k2 � k3, respectively.

Once provided the perturbative solution for the non-
smoothed density field, cumulants for the smoothed density are
calculated as follows: From the perturbative inversion of re-
lation (30), the smoothed density �̂ is obtained, and the nor-
malization factor N̂E is first calculated by substituting this into
definition (32). Using the probability distribution of the initial
parameter in equation (21), the resulting expression becomes

NE ¼ 1� 1

6
	�2

l þ 10844

848925
� 79

4410
	 � 31

378
	 2 � 1

27
	 3

� �
�4l

þ
�

3891599696

511023137625
� 1248901

278107830
	 � 47093

415800
	 2

� 62341

317520
	 3 � 19

168
	4 � 1

48
	 5

�
�6l ð53Þ
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up to O(�6l ). Then the moments for the smoothed density h�̂N i
are evaluated from the relation

�̂N
� �

¼
Z Y

i

dki
ĝN

1þ ĝ
PI (k)

(cf. eq. [6]). Finally, the perturbative correction for the vari-
ance �2 ¼ h�̂ 2i, the skewness S3 ¼ h�̂ 3i=�4, and the kurtosis
S4 ¼ (h�̂ 4i � 3�4)=�6 are obtained and can be summarized
as series expansions of �2

l :

�2 ¼ �2
l þ s2;4�

4
l þ s2;6�

6
l þ s2;8�

8
l þ : : : ; ð54Þ

S3 ¼ S3;0 þ S3; 2�
2
l þ S3;4�

4
l þ : : : ; ð55Þ

S4 ¼ S4;0 þ S4; 2�
2
l þ S4;4�

4
l þ : : : : ð56Þ

The resulting expressions for the coefficients s2; i, S3; i and S4; i
become

s2;4 ¼
439

245
þ 167

126
	 þ 11

36
	2; ð57Þ

s2;6 ¼
3143785639

695269575
þ 15856223

2037420
	

þ 55273

10584
	2 þ 1835

1134
	3 þ 127

648
	4; ð58Þ

s2;8 ¼
7932609222047169799

537532462889296875
þ 2321384486861437

54752479031250
	

þ 1062497682871

20858087250
	2 þ 16268385923

495093060
	3

þ 61875775

5143824
	4 þ 13831

5832
	5 þ 6877

34992
	6 ð59Þ

for the variance,

S3;0 ¼
34

7
þ 	; ð60Þ

S3;2 ¼
1041064

101871
þ 21946

2205
	 þ 415

126
	2 þ 10

27
	3; ð61Þ

S3;4 ¼
161751288183332

3041804390625
þ 363349617641

3476347875
	þ 415283963

5093550
	2

þ 11299781

357210
	3 þ 2975

486
	4 þ 1841

3888
	5 ð62Þ

for the skewness, and

S4;0 ¼
60712

1323
þ 62

3
	 þ 7

3
	2; ð63Þ

S4;2 ¼
941370178286

3476347875
þ 1518808496

4584195
	

þ 18161033

119070
	2 þ 3935

126
	3 þ 1549

648
	4; ð64Þ

S4;4 ¼
30144942925392628918

13782883663828125
þ 129392230965050887

27376239515625
	

þ 397096017904379

93861392625
	2 þ 30126971437

15002820
	3

þ 1142621801

2143260
	4 þ 6127195

81648
	5 þ 102005

23328
	6 ð65Þ

for the kurtosis.

3.2. Ellipsoidal Collapse Model with a Linear External Tide

For the perturbative solution in the model with a linear
external tide, the calculation is slightly reduced if we intro-
duce the quantities A ¼ �1 þ �2 þ �3, B ¼ �1 � �2, and C ¼
�2 � �3. Recalling the fact that the external tidal term becomes

kext; i ¼ ki � (k1 þ k2 þ k3)=3, the evolution equation (39) is
rewritten as

a2
d 2A

da2
þ 3

2
a
dA

da
� 3

2
A

¼ 3

2
�� 1

2
�A� 3

4

X3
i¼1

�i �bi þ 2kext; i
� 	

; ð66Þ

a2
d 2B

da2
þ 3

2
a
dB

da
� 3

2
k1 � k2ð Þ

¼ 3

4
� (1� �1)b1 � (1� �2)b2½ �

� 1

2
�B� 3

2
�1kext;1 � �2kext;2
� 	

; ð67Þ

a2
d 2C

da2
þ 3

2
a
dC

da
� 3

2
k2 � k3ð Þ

¼ 3

4
� 1� �2ð Þb2 � 1� �3ð Þb3½ � � 1

2
�C

� 3

2
�2kext;2 � �3kext;3
� 	

: ð68Þ

Note also that the right-hand sides of equations (66)–(68) are
of O(k2).
Similar to the procedure in x 3.1, the perturbative expansion

for the density � is constructed from the perturbative solutions
of A, B, and C. After a tedious but straightforward calculation,
the perturbative solutions up to the seventh order become

�ð1Þ ¼ �l; ð69Þ

�ð2Þ ¼ 17

21
�2l þ

4

21
J1; ð70Þ

�ð3Þ ¼ 341

567
�3l þ

1538

4725
�lJ1 þ

4

405
J2; ð71Þ

�ð4Þ ¼ 55805

130977
� 4l þ 952144

2480625
�2l J1

þ 345088

16372125
�lJ2 þ

12368

363825
J 21 ; ð72Þ

�ð5Þ ¼ 213662

729729
�5l þ

237342074

621928125
�3l J1 þ

93363344

3192564375
�2l J2

þ 52865818

638512875
�lJ

2
1 þ 135052

34827975
J1J2; ð73Þ

�ð6Þ ¼ 21129781

107270163
�6l þ

73816004896012

215099024765625
� 4l J1

þ 29134959410408

879950555859375
�3l J2 þ

45534497984

355535578125
�2l J

2
1

þ 1416570594232

129059414859375
�lJ1J2 þ

797014912

132368630625
J 31

þ 162352

1578740625
J 22 ; ð74Þ

�ð7Þ ¼ 83411812

639441621
�7l þ

24700151148166244

85566392051765625
�5l J1

þ 49159400006961656

1480956785511328125
� 4l J2

þ 18569055254261594

116681443706953125
�3l J

2
1 þ 13101172588796

684531136414125
�2l J1J2

þ 9323215177292

488950811724375
�lJ

3
1 þ 1452480606736

4400557305519375
�lJ

2
2

þ 11003633175272

10267967046211875
J 21 J2: ð75Þ
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The normalization factor of the PDF is

NE ¼ 1� 1

6
	�2

l

þ 69668

3898125
þ 701

198450
	 � 31

378
	2 � 1

27
	4

� �
�4l

þ
�

5033872069084

645297074296875
þ 3873942169

223479506250
	

� 38616157

509355000
	2 � 286169

1587600
	3 � 19

168
	4 � 1

48
	5
�
�6l :

ð76Þ

Then the coefficients of the perturbative corrections for cu-
mulants become

s2;4¼
57137

33075
þ 167

126
	 þ 11

36
	2; ð77Þ

s2;6¼
469828713881

111739753125
þ 17130160379

2292097500
	

þ 488945

95256
	2 þ 1835

1134
	3 þ 127

648
	4; ð78Þ

s2;8¼
996244294855051546571

74870593045294921875
þ 152613969392185373

3871782445781250
	

þ 683964582869801

14079208893750
	2 þ 1980638022487

61886632500
	3

þ 306289019

25719120
	4 þ 13831

5832
	5 þ 6877

34992
	6 ð79Þ

for the variance,

S3;0¼
34

7
þ 	; ð80Þ

S3;2¼
646404856

63669375
þ 327062

33075
	 þ 415

126
	2 þ 10

27
	3; ð81Þ

S3;4¼
77881923244216108

1505693173359375
þ 80186055186641

782178271875
	

þ 2052918391

25467750
	2 þ 56239289

1786050
	3

þ 2975

486
	4 þ 1841

3888
	5 ð82Þ

for the skewness, and

S4;0¼
60712

1323
þ 62

3
	 þ 7

3
	2; ð83Þ

S4;2¼
210688932175742

782178271875
þ 188859083824

573024375
	

þ 90600877

595350
	2 þ 3935

126
	3 þ 1549

648
	4; ð84Þ

S4;4¼
102133149992759420855618

47644922847005859375

þ 7007053550215029257

1505693173359375
	 þ 29469590927547677

7039604446875
	2

þ 13726819977457

6876292500
	3 þ 5700735749

10716300
	4

þ 6127195

81648
	5 þ 102005

23328
	6 ð85Þ

for the kurtosis.

3.3. Differences between Model Predictions

To understand both the qualitative and the quantitative
behaviors of the above two predictions, we here briefly dis-
cuss the systematic dependence of the perturbative results.
Table 1 summarizes the numerical values of the coefficients,
s2; i up to the three-loop order and S3; i and S4; i up to the two-
loop order for each model with various spectral indexes. Using
these results, we plot the cumulants up to the two-loop order
in Figure 1, in which the cumulants are normalized by the
leading-order results for �2

l , S3;0, and S4;0 (top to bottom) and
are depicted as functions of linear variance �l. The results
from the SCM (short-dashed lines) are essentially the same
results as those obtained by Fosalba & Gaztañaga (1998a).
Note that the leading-order results for the cumulants in all
model predictions rigorously coincide with those obtained
from exact perturbation theory (e.g., Bernardeau 1994b),
irrespective of the choice of the external tidal term.

Figure 1 shows that the differences between the model pre-
dictions are generally small for the spectral indexes n < 0, and
these are expected to become negligible for decreasing n,
approaching the nonsmoothing results (n ¼ �3), as obtained
previously (Ohta et al. 2003). For n ¼ �2 the predictions up
to the one-loop order give

�2 � �2
l þ 0:61�4l ; ð86Þ

S3 � 3:86þ 3:21�2
l ð87Þ

TABLE 1

Coefficients of Perturbative Correction for the Cumulants of the Density Field

n s2, 4 s2, 6 s2, 8 S3, 2 S3, 4 S4, 2 S4, 4

Nonlinear External Tide

�3 ...................... 1.79 4.52 14.8 10.2 53.2 271 2.19 ; 103

�2 ...................... 0.772 0.539 0.294 3.19 4.20 63.2 146

�1 ...................... 0.363 0.0364 �7.50 ; 10�4 0.525 �0.0169 6.67 0.614

0.......................... 0.566 0.360 0.158 0.00379 0.0646 �0.0227 0.364

Linear External Tide

�3 ...................... 1.73 4.20 13.3 10.2 51.7 269 2.14 ; 103

�2 ...................... 0.708 0.442 0.199 3.19 3.98 63.1 141

�1 ...................... 0.299 �0.0202 �0.0113 0.587 0.0119 7.32 1.16

0.......................... 0.501 0.165 �0.235 0.130 0.246 0.651 1.41
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for the SCM (Fosalba & Gaztañaga 1998a) and

�2 � �2
l þ 0:88�4l ; ð88Þ

S3 � 3:86þ 3:18�2l ð89Þ

for exact perturbation theory (Scoccimarro & Frieman 1996;
Scoccimarro 1997). Comparing the above results with Table 1,
the numerical values of the coefficients are close to those from
the ECM prediction. On the other hand, for the n ¼ 0 case a
large discrepancy appears in the variance �2 (Fig. 1). The
skewness and the kurtosis also show a relatively large differ-
ence. These behaviors are indeed consistent with the PDF
shown in Figure 5. The reason why the discrepancy in the
model predictions becomes large for increasing n is partially

ascribed to the Jacobian in the smoothed density PDF in
equation (34). The expression of the Jacobian j@k̂j=@k0k j in
equation (36) contains a quantity related to the velocity di-
vergence 
 multiplied by the spectral dependence factor, 	=6.
In a previous study of the nonsmoothing case (Ohta et al.
2003), we found that while the differences between the model
predictions are almost negligible for the density fields, a large
difference appears in the velocity divergence 
. This readily
implies that the differences between the model predictions also
become significant in the present case, depending on the factor
	 ¼ �(nþ 3). In other words, for a large deviation from
	 ¼ 0, the model predictions sensitively depend on the choice
of the Lagrangian local dynamics in the local approximation.
That is, not only the evolution of the local density but also the

Fig. 1.—Differences between the model predictions for the variance, skewness, and kurtosis. The perturbative results up to the two-loop order are shown in
various models of the Lagrangian local dynamics. While the solid and long-dashed lines represent the predictions based on the ECM with nonlinear and linear
external tides, respectively, the short-dashed lines indicate the results obtained from the SCM (Fosalba & Gaztañaga 1998a).
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evolution of the velocity field should be devised to approxi-
mate the fluid dynamics precisely. This point is important
and should be kept in mind when comparing the predictions
with N-body simulations (see x 4.2).

4. COMPARISON WITH N-BODY SIMULATIONS

We are now in a position to discuss the validity and use-
fulness of the local approximations, comparing the theoret-
ical predictions with N-body simulations. For this purpose,
we specifically use the N-body data for scale-free models
with initial power spectra P(k) / kn (n ¼ �2, �1, 0) (Jing
1998), as well as a CDM model with a cosmological constant
(�-dominated CDM [�CDM]; Jing & Suto 1998). The grav-
itational force calculation is based on the particle-particle-
particle-mesh algorithm. All the models employ N ¼ 2563

dark matter particles in a periodic comoving cube L3BOX, where
the box size of the �CDM model is chosen as LBOX ¼ 300 h�1

Mpc. While the scale-free models assume an Einstein–de
Sitter universe, cosmological parameters of the �CDM model
are set as (�m; ��; h; �8) ¼ (0:3; 0:7; 0:7; 1:0), where the
normalization �8 is the linear rms fluctuation at a top-hat
smoothing radius of R ¼ 8 h�1 Mpc. For the scale-free mod-
els, the normalization of the density fluctuation is determined
by setting the linear rms fluctuation to unity at R ¼ 0:1LBOX.
Below, we first present the results for a �CDM model (x 4.1).
The PDFs in the scale-free models are compared in x 4.2. In
comparing the predictions with simulations, we also present
the perturbation results of the local approximation obtained
in x 3.

4.1. �CDM Model

The validity of the local approximation using the SCM
has been previously studied by Scherrer & Gaztañaga (2001)
in the case of the standard CDM model, and a good agreement
with N-body simulation was found. We thus expect the local
approximation with both the SCM and the ECM to also pro-
vide an excellent agreement with N-body simulation in the
case of the �CDM model.

Figure 2 shows the PDFs obtained from the N-body data for
the top-hat–smoothed density fields (open squares). The error
bars indicate the 1 � errors among the three different real-
izations. The smoothing radii are chosen as R ¼ 16, 8, and
2 h�1 Mpc (top to bottom). In Figure 2 the PDFs from the
SCM and the ECM with a linear external tide are depicted as
long-dashed and solid lines, respectively. We also calculated
the PDFs from the ECM with a nonlinear external tide, but
the results are almost the same as obtained from the ECM with
a linear external tide. Clearly, these models almost coincide
with each other, and the agreement with N-body results is
excellent. For comparison, we also plot the empirical model
of the lognormal distribution (short-dashed lines):

P(� ) ¼ 1ffiffiffiffiffiffi
2�

p
�LN

1

1þ �
exp � 1

2�2
LN

log 1þ �ð Þ þ �2
LN

2

� �2 !
;

ð90Þ

with �2
LN ¼ log (1þ �2). Here the quantity � denotes the

variance of the local density field, which is estimated from
the N-body simulation. Even given the simplicity of the ana-
lytical expression (90), the lognormal PDFs also approximate
the N-body results quite accurately. Agreement with N-body
simulations still remains good, even at the high-density tails

of small radii, R ¼ 2 and 8 h�1 Mpc. Bernardeau & Kofman
(1995) discuss the successful lognormal fit of the PDF in
the CDM models based on the perturbation results.

In order to check the accuracy of the model predictions,
we quantify the cumulants of the density fields. In Figure 3
we plot the variance �2, the skewness S3 � h�3i=�4, and the
kurtosis S4 � (h�4i � 3�4)=�6 as functions of smoothing ra-
dius (top to bottom). In each panel the crosses with error bars
indicate the results obtained from the N-body simulations,
while the open squares show the results from the local ap-
proximation with the ECM, in which the moments h�N i are
calculated from the full knowledge of the PDF P(� ) (see
eq. [37]). On the other hand, the short-dashed and long-dashed
lines show the perturbative calculations of the cumulants
based on the ECM up to the one-loop order and two-loop
order, respectively (see x 3.2). As a reference, we also plot
the leading-order (tree-level) prediction in dotted lines. In
contrast to a naive expectation from Figure 2, the ECM pre-
diction based on the PDF significantly deviates from the
N-body results at the smaller radius RP 8 h�1 Mpc, although
it roughly matches the perturbation results up to the two-
loop order.

Kayo et al. (2001) remarked that the origin of this discrep-
ancy might be due to the fact that the density field � in N-body
simulations does not extend to the entire range between�1 and
+1, but rather is limited in the range �min < � < �max, owing
to the finite size of the simulation box. Indeed, a closer look
at Figure 2 reveals that there exists a sharp cutoff at the high-
density tails of the simulated PDFs (arrows). To examine the

Fig. 2.—PDFs of the density field in the �CDM model with a top-hat
smoothing window, for R ¼ 2 (bottom), 8 (middle), and 16 h�1 Mpc (top). The
open squares represent the N-body results. The error bars indicate the 1 �
variation among the three different realizations. Values of �l in each panel are
the linear variance at each smoothing radius. The arrows indicate the mean
value of the cutoff density �max. Note that the cutoff density at R ¼ 2 h�1 Mpc
reaches 601. Solid lines show the prediction based on the ECM with a linear
external tide. Long-dashed lines show the prediction obtained from the SCM.
Short-dashed lines show the lognormal PDF adopting the variance � 2 calcu-
lated directly from the simulations.
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significance of this effect, the ECM predictions of the cumu-
lants taking into account the finite range [�min, �max] are plotted
in Figure 3 (cutoff 1: open triangles). The cutoff values �min and
�max are estimated from the N-body data. Furthermore, in
Figure 3 we plot the prediction taking into account the cutoff
values determined from the simple assumptions that (1) the
major effect of the finite range of � comes from the finite

sampling effect and (2) the theoretical PDF is correct if the
box size of the simulation becomes infinite. We then have
(Kayo et al. 2001)

L3BOX
4�R3=3

Z �min

�1

P(� ) d� ¼ 1;
L3BOX
4�R3=3

Z 1

�max

P(� ) d� ¼ 1; ð91Þ

Fig. 3.—Variance (top left), skewness (top right) and kurtosis (bottom) of the density field in the �CDM model as functions of smoothing radius R. The crosses
with error bars represent the results from N-body simulations. The open squares show the prediction from the ECM with a linear external tide based on a full
knowledge of the PDF (eq. [37]). The open (cutoff 1) and filled (cutoff 2) triangles show the same prediction as the open squares but taking into account the
limited range of the density PDF, [�min, �max]. While the cutoff values for the open squares are estimated from the N-body data, �min and �max for the filled triangles
are determined from eq. (91) with the help of a theoretical PDF. Long-dashed lines show the perturbative predictions of cumulants based on the ECM up to the
two-loop order. Short-dashed lines show the perturbative predictions up to the one-loop order. Dotted lines show the leading-order results of the perturbation
theory.
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where P(� ) is the PDF obtained from the ECM. The resulting
cutoff values (�min, �max) are plotted as functions of smoothing
radii in Figure 4.

The resulting amplitudes of the cumulants are significantly
reduced, and the model prediction turns out to reproduce the
simulation data very well in the case using the N-body data
(cutoff 1). This readily implies that the apparent discrepancy
in the cumulants mainly comes from the limited range of the
density in the PDF, and one concludes that the local approx-
imation with the ECM provides an accurate prediction for
both the density PDF and the cumulants in the �CDM model.
Similarly, one expects the accuracy of the model prediction to
still remain good for the local approximation with the SCM.
Note, however, that the predictions with equation (91) still
exhibit a discrepancy at smaller scales, RP 4 h�1 Mpc. This
means that the finite sampling effect might be a major nu-
merical effect from the limited range of the density, but
there still remain other nonnegligibile effects. The discreteness
effect could be an important source for the discrepancy on
small scales. This point is particularly important for the self-
consistent calculation of cumulants and should be treated
carefully. Keeping these remarks in mind, we next proceed
to the scale-free models.

4.2. Scale-free Models

N-body simulations in a scale-free model with index n �
�1 generally suffer from spurious numerical effects compared
to the CDM case, which significantly affects the statistical
properties of the mass distribution (e.g., Colombi et al. 1996).
This is not exceptional in our case. Figure 5 shows the density
PDFs for n ¼ �2 to 0 models at different smoothing radii;
R ¼ 0:15LBOX, 0.1LBOX, and 0.02LBOX. For larger smoothing
radii, the PDF obtained from the simulations (open squares)
has a sharp cutoff at high-density tails. Because of this,

the amplitude of the cumulants is significantly reduced, and
the N-body simulation fails to reproduce even the leading-
order results of perturbation theory (see Figs. 6 and 7).
Nevertheless, focusing on the moderately non-Gaussian tails
of the PDF, we find that the predictions based on the SCM and
ECM show a good agreement with N-body simulations for
smaller spectral indexes, n ¼ �2 and �1. Especially at the
nonlinear scale (R ¼ 0:02LBOX), the PDF from the ECM
seems to improve the prediction compared to the results
obtained from the SCM. This is even true for the spectral
index n ¼ 0, indicating that the ECM provides a more physical
model of Lagrangian local dynamics than the SCM. Interest-
ingly, the lognormal model also provides a good approximation
to the N-body simulations, irrespective of the nature of the
initial spectra and the smoothing scales. Apparently, this con-
tradicts the perturbation results, which predict a strong spectral
dependence in the weakly nonlinear regime (Bernardeau
1994b). As stated by Bernardeau (1994a) and Bernardeau &
Kofman (1995), however, the perturbation results themselves
resemble the lognormal PDF near the index n ¼ �1. Fur-
thermore, a systematic comparison with the lognormal pre-
diction done by Kayo et al. (2001), who basically used the
same N-body data as ours, shows that the lognormal model
prediction tends to deviate from the simulation for n ¼ 0 and
+1 in the weakly nonlinear regime, even if the cutoff of the
PDF is taken into account. Thus, no serious contradiction is
found, at least for the quality of our data.

Now consider the cumulants of the density fields. Figures 6
and 7 show the variance, the skewness, and the kurtosis,
which are compared with the predictions from the SCM and
the ECM, respectively. As anticipated from Figure 5, the
amplitudes of the cumulants from N-body data are signifi-
cantly reduced, and the local approximation without cutoff
(open squares) generally overpredicts the simulation results.
A more serious aspect is that the simulation does not converge
to the tree-level results of perturbation theory. Even the pre-
dictions up to the one-loop correction overpredict the simu-
lation results. As previously remarked by Colombi et al.
(1996), the recovery of tree-level results is difficult because of
the limited size of the N-body simulations, and care must be
taken in order to correct the spurious numerical effects.
Colombi et al. (1996) devised a correction to the finite volume
effect to explore the scaling properties of the PDFs. Never-
theless, the general tendency for our simulations and those
obtained by Colombi et al. (1996) is quite similar, i.e., the
nonlinear corrections to the skewness and the kurtosis seen in
the N-body results are generally small, and their amplitudes
are nearly scale-independent.

In Figures 6 and 7, repeating the same procedure as in the
�CDM case, we plot the cumulant predictions from the PDF
taking into account the cutoff (cutoff 1: open triangles; cutoff 2:
filled triangles). Then, the overall behaviors of the model
predictions seem to be greatly improved. The agreement be-
tween the model prediction and the N-body simulation is
reasonably good in both the cutoff 1 and cutoff 2 cases, except
for the strongly nonlinear regime, �lk 5. A closer look at
these figures shows that the prediction based on the ECM
provides a better approximation than that of the SCM, espe-
cially for the n ¼ 0 case. Note, however, that most of the
predictions for the variance slightly overpredict the simula-
tion, except for the n ¼ �2 case. The overprediction might
be partially ascribed to the cutoff of the density [�min , �max],
since the width of the PDF quantified by the variance sensi-
tively depends on the cutoff. On the other hand, the reduced

Fig. 4.—Cutoff values �min and �max of the density field as functions of
smoothing radii. While the open triangles show the cutoff density estimated
from the N-body simulations, the filled triangles represent the values obtained
from the finite sampling effect (eq. [91]).
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amplitudes S3 and S4 rather characterize the shape of the PDF,
which could be, in principle, less sensitive to the cutoff of
the high-density tails than the cumulants themselves if the tails
of the PDF converge closely enough to zero. Actually, the
shape of the predicted PDF resembles that of the PDF in the
simulations, as in Figure 5. The same tendency has been
previously reported by Fosalba & Gaztañaga (1998a).

Thus, at the level of quality of the N-body data, the local
approximation with both the SCM and the ECM works rea-
sonably well, and the approximation with the ECM even
slightly improves the prediction. Of course, one must still care
about the cutoff density arising from spurious numerical
effects. In this respect, the validity of the local approximation

may just reach an acceptable level. In addition, another im-
portant caveat is drawn from the strong model dependence of
the predictions. As discussed in x 3.3, the local approximation
itself becomes more sensitive to the choice of the Lagrangian
local dynamics as the deviation from the spectral index n ¼
�3 gets larger. This is clearly seen in the strong model de-
pendence of the one-point PDF (Fig. 5) and the nonlinear
correction for the cumulant prediction (Fig. 1). Furthermore,
recall the fact that the linear variance �l scales as �l /
R�(nþ3)=2. This means that a slight decrease of the smoothing
radius R significantly increases the linear variance on nonlinear
scales, �l k 1. Hence, one expects the model prediction for
n � 0 to suffer from the nonlinear corrections more seriously,

Fig. 5.—Same as Fig. 2 but with scale-free models (n ¼ �2, �1, and 0) for R ¼ 0:02LBOX (bottom), 0.05LBOX (middle), and 0:15LBOX (top).
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compared to the initial spectra with n ¼ �2 or �1 or �CDM.
Therefore, the local approximation with the ECM should be
used with caution for the index n � 0.

5. CONCLUSION AND DISCUSSION

In the present paper we critically examined the validity
and the usefulness of the local approximation to the PDF and
the cumulant predictions. Adopting the ellipsoidal and the
spherical collapse models as representative models of the
Lagrangian local dynamics, the PDFs and the cumulants are

calculated taking into account the smoothing effect, and the
resulting predictions are compared with the N-body simu-
lations with Gaussian initial conditions. Because of the cutoff
of the density arising from spurious numerical effects, a de-
tailed comparison in cumulants becomes difficult, and a cor-
rection for the cutoff density should be self-consistently
incorporated into the model prediction. At the level of quality
of the N-body data, however, the local approximations with
both the SCM and ECM successfully reproduce the N-body
results for the PDFs and the cumulants, although the

Fig. 6.—Variance, skewness, and kurtosis of the N-body results in scale-free models, compared with the SCM predictions. The crosses with error bars and the
solid line represent the N-body simulations. The squares show the predictions from the SCM based on a full knowledge of the PDF (eq. [37]). The open (cutoff 1)
and filled (cutoff 2) triangles are the same as the squares, but we take into account the cutoff of the density field. While the long-dashed lines represent the
perturbative predictions up to the two-loop order, the short-dashed lines indicate the results up to the one-loop order. As a reference, we also plot the leading-order
results of perturbation theory in dotted lines.
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self-consistent calculation of the local approximation pre-
sented in this paper (cutoff 2) still needs to be improved. This is
indeed the case of the �CDM model and scale-free models
with indexes n ¼ �2 and �1. For a scale-free model with
n ¼ 0, while the discrepancy between the model prediction and
the simulation result is manifest in the local approximation
with the SCM, the agreement with N-body results still remains
good for the ECM prediction. A detailed discussion reveals
that the prediction based on the local approximation sensitively
depends on the slope of the initial spectrum and that the pre-
dictions for n > 0 become more sensitive to the nonlinear
dynamics of the local collapse model. Thus, a more delicate

modeling of the Lagrangian local dynamics is required for an
accurate prediction. Taking this point carefully, we therefore
conclude that the local approximations with the SCM and
ECM provide excellent approximations to the N-body simu-
lations for CDM and scale-free models with n < 0 in both the
linear and the nonlinear regimes, 0P�l P 5, while the local
approximation should be used with caution in the n � 0 cases.
In this paper we found that the predictions based on

the ECM somewhat improve the approximation; however,
the degree of improvement is not very large as long as a
CDM-like initial spectrum (i.e., effective spectral index neA ¼
�3� d log �2

l =d log R < 0) is involved. Compared to the

Fig. 7.—Same as Fig. 6 but for theoretical predictions based on the ECM with a linear external tide approximation.

OHTA, KAYO, & TARUYA660 Vol. 608



prediction from the SCM, the calculation of the PDF from
the ECM is rather complicated and requires a time-consuming
numerical integration. It seems that the SCM provides a
simpler prescription for the PDF in real space and is practi-
cally more useful than the ECM. However, if one considers
the one-point statistics in redshift space, the situation might
be changed drastically. As reported by Scherrer & Gaztañaga
(2001), the local approximation with the SCM only provides a
good approximation to the redshift-space PDFs when �l P 0:4.
A part of this reason is ascribed to the fact that the model
prediction cannot recover the linear perturbation result, re-
ferred to as the Kaiser effect (Kaiser 1987); the variance in the
redshift space �2z is related to the one in the real space as

�2
z ¼ 1þ 2

3
f� þ 1

5
f 2�

� �
�2
l : ð92Þ

In contrast to the SCM, which leads to the incorrect prediction
�2
z ¼ (1þ f�=3)

2�2
l , the Kaiser effect in equation (92) can be

correctly recovered by means of the ECM. The derivation of
equation (92) is presented in the Appendix. This fact is very
interesting and also provides the important suggestion that the
nonsphericity of the Lagrangian local dynamics plays a crucial
role in computing the one-point statistics in redshift space
and is indeed essential for an accurate prediction. A detailed
analysis of the model predictions in redshift space is now in
progress and will be described elsewhere.
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APPENDIX

DERIVATION OF THE KAISER FACTOR BY THE ELLIPSOIDAL COLLAPSE MODEL

In this appendix we derive the Kaiser effect (eq. [92]) from the ECM. Assuming the distant-observer approximation, let us
consider the local density located at r ¼ (r1; r2; r3) in real space and choose the third axis as the line-of-sight direction. Denoting
the corresponding coordinate in redshift space by s ¼ (s1; s2; s3), the relation between r and s becomes

s1 ¼ r1; s2 ¼ r2; s3 ¼ r3 þ v3=H ; ðA1Þ

where v3 is the line-of-sight component of the peculiar velocity field. Then the local density in redshift space, �s, can be expressed
in terms of the quantities in real space as

�s ¼
dM

ds1 ds2 ds3
¼ dM

dr1 dr2 dr3 1þ 1=Hð Þ @v3=@r3ð Þ½ � ¼
�

1þ 1=Hð Þ @v3=@r3ð Þ : ðA2Þ

The peculiar velocity field at the position r is described by the motion of the homogeneous ellipsoid. Introducing a new coordinate
along the principal axis of the ellipsoid, r0 ¼ (r 01; r

0
2; r

0
3), the peculiar velocity v is given by

vi ¼ v̄i þ
�̇ i

� i

� H

� �
r 0i ðA3Þ

in the new coordinate system. Here v̄i is the bulk velocity of the ellipsoid. The new coordinate r0 does not necessarily coincide with
the original one, r. Rather, it is related to the original coordinate through the Euler angle, i.e., r0 ¼ R3( )R2(
)R3(�)r, where Ri is
the rotational matrix with respect to the ith axis. Using this fact, the quantity in equation (A3) is transformed into the original
frame, and we obtain

@v3
@r3

¼
X3
i¼1

R3( )R2(
)R3(�)½ ��1
3i

�̇ i

� i

� H

� �
R3( )R2(
)R3(�)½ �i3

¼ �̇1

�1

� H

� �
cos2 sin2
þ �̇2

�2

� H

� �
sin2 sin2
þ �̇3

�3

� H

� �
cos2
: ðA4Þ

Here we neglect the bulk velocity. Substituting the above into equation (A2) yields

1þ �s ¼
1þ �

1=Hð Þ �̇1=�1ð Þ cos2 sin2
þ �̇2=�2ð Þ sin2 sin2
þ �̇3=�3ð Þ cos2


 � ; ðA5Þ

where the quantity �s is the density fluctuation in redshift space. Note that the expression is exact under the distant-observer limit.
In the linear perturbation, the quantity � i in equation (A5) is replaced with a(1� ki) (eq. [19]). We have

�s ¼ �l þ f� k1 cos
2 sin2
þ k2 sin

2 sin2
þ k3 cos
2


� 	
; ðA6Þ
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where f� � d lnD=d ln a ’ �0:6
m . Hence, the linear variance in redshift space, �2

z , is expressed as

�2
z � �2s

� �
¼ 1þ 2

3
f�

� �
k1 þ k2 þ k3ð Þ2
D E

þ 1

15
f 2
� 3 k21 þ k22 þ k23

� 	
þ 2 k1k2 þ k2k3 þ k3k1ð Þ

� �
; ðA7Þ

where we have taken averages over the angles  , 
, and �. Finally, the ensemble averages over the variable ki are taken with a
knowledge of the distribution function in equation (21):

�2
z ¼ 1þ 2

3
f� þ 1

5
f 2�

� �
�2
l : ðA8Þ

This is exactly the Kaiser effect. Note that in cases adopting the SCM, the variable ki is �l=3. Hence, the ensemble average over �l
in equation (A7) immediately yields an incorrect prediction, �2

z ¼ (1þ f�=3)
2�2

l .
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