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ABSTRACT

The relatively large Thomson optical depth, �es, inferred recently from the WMAP observations suggests that
the universe was reionized in a more complex manner than previously believed. However, the value of �es
provides only an integral constraint on the history of reionization and, by itself, cannot be used to determine the
nature of the sources responsible for this transition. Here we show that the evolution of the ionization state of the
intergalactic medium (IGM) at high redshifts can be measured statistically using fluctuations in 21 cm radiation
from neutral hydrogen. By analogy with the mathematical description of anisotropies in the cosmic microwave
background, we develop a formalism to quantify the variations in 21 cm emission as a function of both frequency
and angular scale. Prior to and following reionization, fluctuations in the 21 cm signal are mediated by density
perturbations in the distribution of matter. Between these epochs, pockets of gas surrounding luminous objects
become ionized, producing large H ii regions. These ‘‘bubbles’’ of ionized material imprint features into the 21 cm
power spectrum that make it possible to distinguish them from fluctuations produced by the density perturba-
tions. The variation of the power spectrum with frequency can be used to infer the evolution of this process. As
has been emphasized previously by others, the absolute 21 cm signal from neutral gas at high redshifts is difficult
to detect as a result of contamination by foreground sources. However, we argue that this source of noise can be
suppressed by comparing maps closely spaced in frequency, i.e., redshift, so that 21 cm fluctuations from the
IGM can be measured against a much brighter, but smoothly varying (in frequency), background.

Subject headings: cosmology: theory — diffuse radiation — intergalactic medium

On-line material: color figures

1. INTRODUCTION

One of the long-standing goals of cosmology is to understand
how structures have grown through time. In the usual paradigm,
weak density perturbations were imprinted on the universe
during the inflationary era. These grew through gravitational
instability, eventually forming bound halos, as well as the
cosmic web of sheets and filaments. Precise measurements of
the cosmic microwave background (CMB) anisotropies have
fixed the initial conditions of the picture (e.g., Spergel et al.
2003). The challenge now is to take structure formation beyond
the well-understood linear regime in order to understand how
baryons collapsed into the bound objects that we observe today,
such as galaxies and galaxy clusters, and to understand how
these objects affect their surroundings. At low or moderate
redshifts (z P 6), galaxies and quasars can be studied in detail
with existing technology. Unfortunately, the first generations of
protogalaxies are not yet accessible observationally. Their
properties are nevertheless crucial to understanding both later
generations of galaxies, which form out of these early proto-
galaxies in any hierarchical picture of structure formation, and
the gross evolution of baryons in the universe, since these
objects exhibit strong feedback on their surroundings. Perhaps
the most important such channel is the reionization of the in-
tergalactic medium (IGM). When the first protogalaxies or
quasars form, they ionize pockets of surrounding gas. These H ii

regions grow with time and eventually overlap. The timing,

morphology, and duration of this event contain a wealth of
information about both the ionizing sources and the IGM (e.g.,
Wyithe & Loeb 2003; Cen 2003; Haiman & Holder 2003;
Mackey et al. 2003; Yoshida et al. 2003a, 2004).
A great deal of effort has gone into constraining the tran-

sition from a neutral to ionized IGM. Unfortunately, existing
observational techniques are not optimized to the needed
measurements; they have provided tantalizing constraints on
reionization but cannot be used to map the event in detail. The
most straightforward method is to extend the ‘‘Ly� forest’’ to
high redshifts: regions with relatively large H i densities ap-
pear as absorption troughs in quasar spectra, which presum-
ably deepen and come to dominate the spectra as we approach
the reionization epoch. Indeed, spectra of z � 6 quasars se-
lected from the Sloan Digital Sky Survey4 (SDSS) show at
least one extended region of zero transmission (Becker et al.
2001), indicating that the ionizing background is rising at
this time (Fan et al. 2002). However, the optical depth of the
IGM to Ly� absorption is �Ly� � 6:45 ; 105xH½(1þ z)=10�3=2
(Gunn & Peterson 1965), where xH is the neutral fraction. A
neutral fraction xHk10�3 will therefore render the absorption
trough completely black; quasar absorption spectra can clearly
probe only the latest stages of reionization.
A second constraint comes from the effects of the ionized

gas on the CMB. The free electrons Thomson scatter the CMB
photons, washing out the intrinsic anisotropies but generating a
polarization signal. The total scattering optical depth �es is
proportional to the column density of ionized hydrogen, so it
provides an integral constraint on the reionization history. Re-
cently, the Wilkinson Microwave Anisotropy Probe5 (WMAP)
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used the polarization signal to measure a large � es, indicating
that reionization began at zr k14 (Kogut et al. 2003; Spergel
et al. 2003). More detailed information on the reionization his-
tory could be obtained by measuring the (large) angular scales
over which CMB polarization is generated (Zaldarriaga 1997;
Kaplinghat et al. 2003; Hu & Holder 2003) or the (small) scales
over which secondary anisotropies are generated by the patch-
iness of reionization (Gruzinov & Hu 1998; Knox et al. 1998),
but these signals promise to be difficult to extract (Holder et al.
2003; Santos et al. 2003). A third constraint comes from mea-
surements of the temperature of the Ly� forest at z � 2 4,
which suggest an order unity change in the ionized fraction at
zr P 10 (Theuns et al. 2002; Hui & Haiman 2003), although this
argument depends on the timing and history of He ii reioniza-
tion (e.g., Sokasian et al. 2002).

Taken together, these three sets of observations imply a
complex reionization history extending over a large redshift
interval (�z � 10). This is inconsistent with a ‘‘generic’’
picture of fast reionization (e.g., Barkana & Loeb 2001 and
references therein). The results seem to indicate strong evo-
lution in the sources responsible for reionization, and a de-
tailed measurement of the reionization history would contain
a rich set of information about early structure formation
(Sokasian et al. 2003a; Wyithe & Loeb 2003; Cen 2003;
Haiman & Holder 2003). The optimal reionization experiment
would (1) be sensitive to order unity changes in xH (to probe
the crucial middle stages of reionization), (2) provide mea-
surements that are well localized along the line of sight (rather
than a single integral constraint), and (3) not require the
presence of bright background sources, which may be rare at
high redshifts. The most promising candidate proposed to date
is the 21 cm hyperfine transition of neutral hydrogen in the
IGM (Field 1958, 1959a), which fulfills all three of these
criteria. So long as the excitation temperature TS of the 21 cm
transition in a region of the IGM differs from the CMB tem-
perature, that region will appear in either emission (if TS >
TCMB) or absorption (if TS < TCMB) when viewed against the
CMB. Variations in the density of neutral hydrogen (due either
to large-scale structure or to H ii regions) would appear as
fluctuations in the sky brightness of this transition. Because it

is a line transition, the fluctuations can also be well localized
in redshift space. Thus, in principle, high-resolution obser-
vations of the 21 cm transition in both frequency and angle
can provide a three-dimensional map of reionization. Together
with radio absorption spectra of bright background sources
(which can probe much smaller physical scales in the IGM;
Carilli et al. 2002; Furlanetto & Loeb 2002), these observa-
tions promise to shed light on both the early growth of struc-
ture and reionization.

The physics of this transition has been well studied in the
cosmological context. Early work focused on fluctuations due
to large-scale structure (Scott & Rees 1990; Kumar et al.
1995; Madau et al. 1997; Tozzi et al. 2000; Iliev et al. 2002)
because the signals could be estimated through linear cos-
mological perturbation theory. Shaver et al. (1999) were the
first to explicitly consider the signal at reionization, although
they focused on the ‘‘all-sky’’ signature rather than the fluc-
tuations. Recently, Ciardi & Madau (2003) and Furlanetto
et al. (2004) used numerical simulations of reionization to
estimate how the fluctuations would behave during that epoch.
We show in Figure 1 three time slices from the simulation
analysis described by Furlanetto et al. (2004), corresponding
to the early, middle, and late stages of reionization ( from left
to right). It is clear that both the mean signal and the fluctu-
ations drop abruptly. Interestingly, the fluctuations during
reionization have a very different morphology than those due
to large-scale structure; the spectrum of fluctuations thus has
the potential to constrain the process of reionization.

In this paper we present a new approach to 21 cm fluctua-
tions. We draw an analogy between these measurements and
those of the CMB: in both cases we wish to measure the level
of inhomogeneity as a function of scale on the sky. Previous
treatments of the 21 cm signal have focused on measuring
fluctuations on a particular patch of the sky, implicitly referring
to imaging observations. Here we show that a statistical
treatment of the fluctuation power spectrum contains a great
deal of information about reionization. Furthermore, a large set
of tools for CMB predictions and data analysis has already
been developed (see Hu & Dodelson 2002 for a review), so
there is much to be gained by connecting the two. Indeed, some

Fig. 1.—Brightness temperature of the 21 cm transition at several redshifts, as predicted by the ‘‘late reionization’’ simulation analyzed in Furlanetto et al. (2004).
Each panel corresponds to the same slice of the simulation box (with width 10 h�1 comoving Mpc and depth �� ¼ 0:1 MHz), at z ¼ 12:1, 9.2, and 7.6 ( from left to
right). The three epochs shown correspond to the early, middle, and late stages of reionization in this simulation (for details about the simulations see Sokasian et al.
2001; Springel & Hernquist 2003a, 2003b). [See the electronic edition of the Journal for a color version of this figure.]
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steps in this direction have already been taken by Pen (2003)
and Cooray (2003), both of whom considered the effects of
lensing on the 21 cm signal. The analogy with the CMB is not
perfect, however, because the 21 cm signal can be separated in
redshift space; in other words, we can make maps at a series of
frequencies, each of which samples an independent volume.
In this sense the analogy is closer to redshift surveys (e.g.,
Peebles 1980) or weak-lensing tomography (e.g., Hu 1999).
We therefore develop our formalism with explicit consider-
ation of how multifrequency information can be used with
power spectrum statistics, in effect generalizing the method-
ology used to analyze CMB anisotropies. After reviewing the
physics of the 21 cm transition in x 2, we show how to compute
the angular power spectrum of 21 cm fluctuations in x 3.

In x 4 we show some simple applications of our approach.
We give predictions for the angular power spectrum of 21 cm
fluctuations from a fully neutral medium and for a simple toy
model of reionization. In the former case, fluctuations in the
signal are due only to large-scale structure. We show that in
this regime 21 cm measurements essentially yield the power
spectrum of density fluctuations (see also Pen 2003). We then
show that variations in the neutral fraction during reionization
distort the power spectrum.

Another advantage of our approach is that the angular
power spectra are closely related to the physically observed
quantities. This is especially true for the interferometers that
will most likely be used to measure the redshifted 21 cm
signal. Our results thus connect theoretical predictions to the
potential observations. For example, inhomogeneities in the
21 cm signal must be separated from fluctuations in any
foreground sources. This is particularly important because the
absolute foreground signal will swamp the 21 cm signal by
many orders of magnitude. While Galactic foregrounds are
expected to be fairly smooth on the relevant angular scales,
faint radio galaxies, starbursts, and even the galaxies respon-
sible for reionization fluctuate strongly on arcminute scales
and dominate those of the 21 cm signal by at least an order of
magnitude (Di Matteo et al. 2002; Oh & Mack 2003). These
results have been used to argue that the prospects for large
angular scale measurements of the reionization epoch are dim.
However, both Di Matteo et al. (2002) and Oh & Mack (2003)
also pointed out that all of the (known) foreground sources
have featureless power-law spectra. Both suggested that the
foregrounds could therefore be removed in frequency space.
As an example, consider the simple case in which every
foreground source has the same spectral index. Then the
foregrounds between two maps at nearby frequencies would
be exactly correlated, while the 21 cm fluctuations will be
uncorrelated because each frequency samples an independent
volume of the IGM. Comparing two maps closely spaced in
redshift therefore allows one to remove the foreground com-
ponent. We show in x 5 how the foreground sources can be
modeled with our multifrequency formalism. In x 6 we
quantify how well their contamination can be removed. We
find that foregrounds are much less important than previously
assumed so long as the range of allowed spectral indexes for
faint sources is similar to that already measured for brighter
sources. Finally, we estimate in x 7 how well the power
spectrum can be measured with the next generation of low-
frequency radio telescopes, and we conclude in x 8.

When necessary, we assume a �CDM cosmology with
�m ¼ 0:3, �� ¼ 0:7, �b ¼ 0:04, H0 ¼ 100 h km s�1 Mpc�1

(with h ¼ 0:7), and a scale-invariant primordial power spec-
trum with n ¼ 1 normalized to �8 ¼ 0:85 at the present day.

2. THE 21 cm RADIATION FROM THE
INTERGALACTIC MEDIUM

The optical depth of a patch of the IGM in the hyperfine
transition is (Field 1959a)

� ¼ 3c3fA10nH i

16k�20TSH(z)
� 8:6 ; 10�3(1þ � )xH

TCMB(z)

TS

� �

;
�bh

2

0:02

� �
0:15

�mh2

� �
1þ z

10

� �� �1=2
: ð1Þ

Here �0 ¼ 1420:4 MHz is the rest-frame hyperfine transition
frequency, A10 ¼ 2:85 ; 10�15 s�1 is the spontaneous emis-
sion coefficient for the transition, TS is the spin temperature of
the IGM (i.e., the excitation temperature of the hyperfine
transition), TCMB ¼ 2:73(1þ z) K is the CMB temperature at
redshift z, and nH i is the local neutral hydrogen density. In the
second equality, we have assumed sufficiently high redshifts
such that H(z) � H0�

1=2
m (1þ z)3=2 (which is well satisfied in

the era we study, z > 6). The local baryon overdensity is
1þ � ¼ �̄=� and xH is the neutral fraction. The radiative
transfer equation in the Rayleigh-Jeans limit then tells us that
the brightness temperature of a patch of the sky (in its rest
frame) is Tb ¼ TCMBe

�� þ TS(1� e�� ). We define �T(�) to be
the observed brightness temperature increment between this
patch, at an observed frequency � corresponding to a redshift
1þ z ¼ �0=�, and the CMB:

�T (�) � TS � TCMB

1þ z
� � 23(1þ � )xH

TS � TCMB

TS

� �
�bh

2

0:02

� �

;
0:15

�mh2

� �
1þ z

10

� �� �1=2
mK: ð2Þ

Assuming that the radiation background includes only the
CMB, the H i spin temperature is (Field 1958)

TS ¼
TCMB þ ycTK þ yLy�TLy�

1þ yc þ yLy�
: ð3Þ

The second term describes collisional excitation of the hy-
perfine transition, which couples TS to the gas kinetic tem-
perature TK. The coupling coefficient is

yc ¼
C10

A10

T�

TK
; ð4Þ

where C10(TK ) / nH is the collisional de-excitation rate of the
(higher energy) triplet hyperfine level (Allison & Dalgarno
1969) and T� ¼ 2�f�0=k ¼ 0:068 K. For TK � 1000 K, the
coupling becomes strong when 1þ �k 5½(1þ z)=20�2. The
third term in equation (3) describes the Wouthuysen-Field
effect, in which Ly� pumping couples the spin temperature to
the color temperature of the radiation field TLy� (Wouthuysen
1952; Field 1958). We note that TLy� ¼ TK so long as the
medium is optically thick to Ly� photons (Field 1959b). Es-
sentially, the dipole selection rules allow a transition between
the two hyperfine levels of the ground state mediated by the
absorption and subsequent reemission of an Ly� photon.
The excitation and de-excitation rates are then controlled by
the color temperature of the radiation field near the line center,
which (for a sufficiently large number of scatterings) must be
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in thermodynamic equilibrium with the gas temperature. The
coupling constant for this process is

yLy� ¼
P10

A10

T�
TLy�

; ð5Þ

where P10 is the indirect de-excitation rate of the triplet level
due to absorption of an Ly� photon followed by decay to the
singlet level. For a diffuse Ly� background, Madau et al.
(1997) showed that

P10 � 1:3 ; 10�12J�21 s�1; ð6Þ

where J�21 is the intensity of the background radiation field at
the Ly� frequency in units of 10�21 ergs cm�2 s�1 Hz�1 sr�1.
Ly� pumping effectively couples TS and TK when J�21k1.
Ciardi & Madau (2003) argue that J�21 31 even at z k 20. If
so, TS � TK throughout the diffuse IGM, even though the
densities are well below the threshold for collisional coupling.

The spin temperature and optical depth therefore depend on
the kinetic temperature of the IGM. Once Thomson scattering
of CMB photons becomes inefficient at the thermal decou-
pling redshift zd � 140, the IGM cools adiabatically until the
first objects collapse (Couchman & Rees 1986). During this
era, TK < TCMB. The cooling trend reverses itself as soon as
significant structure begins to form, but the subsequent tem-
perature evolution is both inhomogeneous and highly uncertain.
While early estimates suggested that Ly� photons them-
selves would inject significant thermal energy into the IGM,
Chen & Miralda-Escudé (2004) showed that this heating
channel is in reality quite slow. Instead, X-rays (primarily from
supernovae or accreting black holes) and shocks are likely to
control the temperature evolution of the IGM. We expect
shocks to heat overdense structures like sheets, filaments, and
virialized halos to TK > TCMB and radiative feedback from
stars and quasars to heat the rest of the gas. Most estimates
suggest that the two processes will rapidly heat the IGM to
TK > TCMB (Venkatesan et al. 2001; Chen & Miralda-Escudé
2004; Gnedin & Shaver 2003). The topology of the two cases
of course differs; shock heating will tend to exaggerate bright-
ness temperature differences by separating warm, dense regions
from cool voids, while X-ray heating will induce a smooth
temperature distribution.

In developing our formalism, we allow �T(�) to depend on
the parameters �, xH, and TS. This is the most general case
possible (once the cosmological parameters are fixed) and
allows one to incorporate the full range of physics when
necessary. However, the arguments above suggest that the
situation most relevant to observations has TS � TK 3TCMB.
In this limit, the temperature factor in equation (2) approaches
unity and the signal is independent of TS. Thus, we essentially
assume an era of significant X-ray heating; in this scenario, the
extra heating in shocked dense regions can be ignored. For
simplicity, we restrict ourselves to this case for the illustrative
examples in x 4. We emphasize that this is, however, an im-
portant assumption. If, for example, significant heating does
not occur until the early stages of reionization, �Tb will have a
much more complicated distribution than we consider here.

Finally, to orient the reader, we note that an observed
bandwidth �� corresponds to a comoving distance

L � 1:7
��

0:1 MHz

� �
1þ z

10

� �1=2 �mh
2

0:15

� ��1=2

Mpc; ð7Þ

while a given angular scale �� corresponds to

R � 1:9
��

10

� �
1þ z

10

� �0:2

h�1 Mpc ð8Þ

over the relevant redshift range.

3. BASIC FORMALISM

We now show how to compute the angular power spectrum
of 21 cm fluctuations. Unfortunately, a given patch of the sky
observed with frequency bandwidth �� does not correspond
directly to a physical volume of the universe because the
observation is performed in redshift space: peculiar velocities
can move a parcel of gas into or out of this channel. However,
redshift space distortions will be unimportant if ��=� > v=c,
where v is the typical random bulk velocity of the gas. The
importance of redshift space distortions is determined by the
ratio

R ¼ ��=�

v=c
� 20

(1þ z)

11

� �
��

0:2 MHz

� �
v=c

10�4

� ��1

: ð9Þ

For large values of R, redshift distortions have only a mar-
ginal effect.

Furlanetto et al. (2004) have shown that, for typical survey
geometries, redshift space distortions amplify the signal by at
most �25% (see also Tozzi et al. 2000). For simplicity we
ignore them in what follows. In future work, we will examine
the significance of redshift distortions in detail using numer-
ical simulations and assess what cosmological information can
be extracted from their detection.6

If redshift distortions can be neglected, there is a one-to-one
correspondence between frequency and redshift. The bandwidth
of the experiment is characterized by some response function
W(�). The observed brightness temperature is of the form

T (n̂; �) ¼ T0(r0)

Z
dr Wr0 (r) n̂; rð Þ; ð10Þ

where n̂ is the direction of observation, T0 is a normaliza-
tion constant that depends on redshift, and  (n̂; r) is the di-
mensionless brightness temperature,  (n̂; r) ¼ (1þ �)xH(TS �
TCMB)=TS . Note that �T (�) ¼ T0(r0) (n̂; r) in equation (2).
The projection window Wr 0(r) is a function peaked at r0, the
radial distance corresponding to the observed frequency �, and
has a width �r.

We can expand  (x) as a Fourier series,

 (x) ¼
Z

d3k

(2�)3
 ̂(k)eik = x

¼
Z

d3k

(2�)3
 ̂(k)

X
lm

4�iljl(kr)Y
�
lm k̂
� �

Ylm n̂ð Þ; ð11Þ

where jl (x) are the spherical Bessel functions and Ylm(n̂) are
the spherical harmonics. The statistics of  are determined by
its power spectrum,7

6 In principle, if one knows the dark matter power spectrum, comparison
with the observed spectrum could allow one to extract the peculiar velocities
directly. This procedure would be easiest when fluctuations in xH can be
ignored, i.e., in the very early stages of reionization.

7 Actually,  i s unlikely to be a true Gaussian random field because of the
distribution of xH, so its statistics are not entirely determined by P (k).
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 ̂ k1ð Þ ̂ k2ð Þ
� �

¼ (2�)3�D k1 þ k2ð ÞP k1ð Þ: ð12Þ

We use equations (10) and (11) to calculate the spherical
harmonic decomposition alm of the observed temperature:

alm(�) ¼ 4�il
Z

d3k

(2�)3
 ̂(k)� l(k; �)Y

�
lm k̂
� �

;

� l(k; �) ¼ T0 r0ð Þ
Z

drWr0 (r) jl(kr): ð13Þ

We can define the angular power spectrum as

al1m1
�1ð Þa�l2m2

�2ð Þ
D E

¼ �l1l2�m1m2
Cl1 �1; �2ð Þ;

Cl �1; �2ð Þ ¼ 4�

Z
d3k

(2�)3
P (k)� l k; �1ð Þ� l k; �2ð Þ

¼ 4�

Z
dk

k
�2
 (k)� l k; �1ð Þ� l k; �2ð Þ:

ð14Þ

Here �2
 (k) ¼ k3P =(2�

2) and we have used the isotropy of
P . This formula encodes both the case of the power spec-
trum of maps at one particular frequency (when �1 ¼ �2)
and the correlations between maps at different frequencies.
Equation (14) forms the basis for the analysis that makes it
possible to relate the 21 cm fluctuations to the evolution of the
ionization state of the IGM. Note that the Cl values approach
zero as �1 and �2 depart from each other for two reasons:
because the frequency-space window functions no longer
overlap in this limit and because the fluctuations in the IGM
are uncorrelated on large scales. The latter property can be used
to separate the 21 cm signal from contamination by foreground
sources that vary smoothly with frequency.

We can investigate the behavior of equation (14) by consid-
ering various limits. We want to understand how equation (14)
depends on the width of the response function, �r (which
describes the bandwidth of the observation). The figure of
merit is l �r=r (i.e., the ratio of the radial to transverse scales
probed by the observation). We first consider the limit in
which the response function can be considered to be a delta
function, l �r=rT1. In that case,

� l � T0 r0ð Þjl kr0ð Þ; ð15Þ

so that

Cl(�; �) � 4�T2
0 (r0)

Z
dk

k
�2
 (k) j

2
l kr0ð Þ: ð16Þ

In the limit in which the power spectrum can be approximated
by a power law, �2

 (k) ¼ (k=k�)
n, we then have

Cl(�; �) � 4�T 2
0 (r0)�

2
 

l

r0

� �Z
dx

x

x

l

	 
n

j2l (x);

l(l þ 1)Cl(�; �)

2�
� T 2

0 (r0)�
2
 

l

r0

� �
f (n);

f (n; l ) ¼
ffiffiffi
�

p
(l þ 1)� 1� n=2ð Þ� l þ n=2ð Þ

2ln�1�½(3� n)=2�� 2þ l � n=2ð Þ : ð17Þ

With this definition f (n; l ) is a very weak function of both l and
n and it is normalized so that f (0; l ) ¼ 1. Thus, in this limit

(l �r=rT1), the temperature fluctuations simply trace the
underlying  fluctuations,

l(l þ 1)Cl(�; �)

2�
/ T2

0 r0ð Þ�2
 

l

r0

� �
: ð18Þ

We now consider the opposite regime, l �r=r31, the large
bandwidth or Limber limit (Limber 1953; Peebles 1980). We
can approximate the integral in a different way,

Cl(�; �) ¼ 4�

Z
d3k

(2�)3
P (k)�

2
l (k; �)

¼ 4�T2
0

Z
dr1 W r1ð Þ

Z
dr2 W r2ð Þ

;

Z
4�k2 dk

(2�)3
P (k) jl kr1ð Þ jl kr2ð Þ: ð19Þ

The Bessel functions jl(x) are very small for x < l and start to
oscillate when x � l. Thus, the integral over k will receive
contributions only from a region around k � l=r with width of
order �k � 1=�r. Modes with k > k þ�k will be out of
phase for typical separations of the two points r1 and r2. In this
regime we can approximate P (k) � P (l=r1). The integral
over k is then proportional to �D(r1 � r2)=r

2
1 so that

Cl �1; �2ð Þ ¼ T2
0

Z
drW 2(r)

P(l=r)

r2
;

l(l þ 1)Cl(�; �)

2�
/ T 2

0�
2
 

l

r0

� �
r0

l �r
: ð20Þ

This is the standard Limber’s equation, widely used in the
context of weak lensing (e.g., Kaiser 1992).
Equations (18) and (20) are easy to understand. For a suf-

ficiently narrow frequency response (l �r=rT1), the angular
fluctuations directly trace those of the underlying  field.
However, for a surface of finite width �r only those modes
with radial kP1=�r can contribute because the response func-
tion averages out larger k-modes. Thus, when the surface be-
comes too thick in the radial direction, angular fluctuations are
no longer of order �k3P(k) but become �k2P(k)/�r, as seen in
equation (20).
To estimate the l at which the width of the surface begins to

damp the fluctuations, we can consider an Einstein–de Sitter
universe in which a(�) ¼ (�=�0)

2, where a is the scale factor
and � is the conformal time. In this case ��=� ¼ 1

2
�a=a ¼

1
2
��=�. Thus, the changes in radial distance r ¼ �0 � � are just

�r

r

����
���� � 1

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p ��

�
; ð21Þ

where � is the observed frequency, � ¼ �0=(1þ z). For �� ¼
0:2 MHz the corresponding value of l from equation (21) is
l � 5000, or arcminute scales. The damping of fluctuations for
large bandwidths has important implications for the choice of
(��, l ) in a given observation (see Fig. 4 below and the
discussion thereof ).

4. SIMPLE MODEL FOR THE CORRELATIONS OF THE
BRIGHTNESS TEMPERATURE

In this section we make a simple model for the correlations
of the dimensionless brightness temperature,  . A more de-
tailed study using simulations is left for future work.
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We assume that TS 3TCMB so that  ¼ xH(1þ �). To cal-
culate the power spectrum of  , we need a model for the
correlations of the neutral fraction, xH. We follow a similar
treatment as that used to model the effect of patchy reioniza-
tion on CMB anisotropies (e.g., Gruzinov & Hu 1998; Knox
et al. 1998). For simplicity, we model the fluctuations in xH as
if they were produced by a set of uncorrelated ‘‘bubbles’’ of
typical size R. We denote the average value of xH as x̄H. We
allow both R and x̄H to depend on redshift. Under this sim-
plifying assumption, we can model the correlations as

xH x1ð ÞxH x2ð Þh i ¼ x̄2H þ x̄H � x̄2H
� �

f x12=Rð Þ; ð22Þ

where f (x) is a function with the following limits: f (x) � 1 for
xT1 and f (x) � 0 for x31. The details of this function
depend on the shape of the bubbles. If the bubbles are cor-
related, one should interpret R as an effective size that depends
on the correlation length between distinct bubbles. To calcu-
late observables, we take f (x) ¼ exp (�x2=2).

The correlations of  , 	(x12) � h (x1) (x2)i � h i2, become

	 x12ð Þ ¼ x̄2H þ x̄H � x̄2H
� �

f x12=Rð Þ
 �


 x12ð Þ
þ x̄H � x̄2H
� �

f x12=Rð Þ þ � x12ð Þ 2x̄H þ � x12ð Þ½ �; ð23Þ

where 
(x12) ¼ h�(x1)�(x2)i is the correlation function of
the density field and �(x12) ¼ h�(x1)xH(x2)i gives the cross-
correlation between the density and neutral fraction fields. To
keep things as simple as possible, we ignore this last term in
what follows. We will explore the consequences of including
it in future work. The correlation function is related to the
density power spectrum by


(r) ¼
Z

dk

k
�2
�(k)

sin kr

kr
: ð24Þ

Equation (23) has the following limits:

	 x12ð Þ �
x̄H
 x12ð Þ þ x̄H � x̄2H

� �
; x12TRð Þ;

x̄2H
 x12ð Þ; x12 3Rð Þ:

(
ð25Þ

When x12 3R, both points are basically independent as far
as the correlations in xH are concerned, so the correlations are
given by those of the density field times the probability that
each of the two points falls in a neutral region, x̄2H. On scales
smaller than the bubble size, both points fall either inside or
outside a bubble so only one factor of x̄H multiplies 
. On top of
the fluctuations produced by the density there are those created
by the presence of the bubbles, (x̄H � x̄2H). To illustrate the
behavior of equation (23), we can take the correlation function
of the density to be a power law, 
(x) ¼ (x=x0)

�n. Moreover,
assume that x0 < R and x̄H � 0:5. On scales smaller than x0,
	(x) � x̄H(x=x0)

�n. In the range x0 < x < R, 	(x) � x̄H(1� x̄H),
while for x3R, 	(x) � x̄2H(x=x0)

�n. Thus, there is a feature in
the correlation function on the scale of the bubbles. In this
simple model the  correlations trace the matter correlations on
both large and small scales (but with different amplitudes). On
scales intermediate between the size of the bubbles and the
nonlinear scale the correlation function flattens out.

We can Fourier transform equation (23) (with � ¼ 0) to
obtain an expression for the power spectrum of  ,

�2
 (k) ¼ x̄2H�

2
�(k)þ x̄H � x̄2H

� �
�2

x�(k)þ x̄H � x̄2H
� �

�2
x (k);

ð26Þ

where we have introduced

�2
x(k) ¼

k3 f̂ (k)

2�2
;

�2
x�(k) ¼

k3

2�2

Z
dk0

(2�)3
P� k� k0ð Þ f̂ k0ð Þ; ð27Þ

where f̂ (k) is the Fourier transform of f (x) and P�(k) is the
power spectrum of the density fluctuations.

In Figure 2 we show the power spectrum of  calculated
from equation (26). For illustrative purposes, we used a simple
model for the mean neutral fraction as a function of redshift,

x̄H(z) ¼
1

1þ exp � z� z0ð Þ=�z½ � ; ð28Þ

with z0 ¼ 10 and �z ¼ 0:5. For the correlation length R we
used a maximum value of 3 h�1 Mpc when x̄H ¼ 0:5 and
smaller values when x̄H deviates in both directions from 0.5 so
as to keep the number density of bubbles fixed. We show results
for (z; x̄H;R) ¼ (12; 0:98; 1:24), (11, 0.88, 2.24), (10, 0.5, 3),
(9, 0.12, 2.24), and (8, 0.02, 1.24). For comparison, we also
show the power spectrum of matter fluctuations at redshift
z ¼ 10. The form of this choice for the evolution of the mean
neutral fraction is motivated by numerical simulations of
reionization (e.g., Figs. 5 and 9 of Sokasian et al. 2003a, 2003b,
respectively). Note that we have simply used the linear dark
matter power spectrum at the appropriate redshift in computing
�2
� for the figure. In reality, of course, we should use the full gas

power spectrum, which includes the nonlinear growth of struc-
ture on small scale and smoothing due to the finite pressure of
the gas. The differences are, however, not large (see, for exam-
ple, Fig. 2 of Furlanetto et al. 2004), so the linear dark matter

Fig. 2.—Power spectrum of  fluctuations, �2
 ¼ k3P =2�

2, in the model
described in the text. The curves correspond to z ¼ 12, 11, 10, 9, and 8. At
z ¼ 10 (solid curve), x̄H ¼ 1

2
. The long-dashed curves correspond to z ¼ 12

and 11 at the beginning of reionization, and the short-dashed curves corre-
spond to z ¼ 9 and 8. The dotted curve shows the power spectrum of the
density field at z ¼ 10. Note that we use the linear dark matter power spectrum
in computing the density fluctuations. [See the electronic edition of the
Journal for a color version of this figure.]
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spectrum will suffice for our purposes here. We will consider
modifications due to the true power spectrum in future work.

Before reionization begins, the power spectrum of  is simply
the power spectrum of the matter fluctuations. As the neutral
fraction decreases, it develops a feature on the scale of the
bubbles, roughly at k � 2=R. The feature has maximum ampli-
tude when x̄H ¼ 0:5. As the neutral fraction decreases further,
the 21 cm fluctuations disappear because there is no longer any
more neutral hydrogen to emit radiation. Note that when the
bubbles appear, the power spectrum on the largest scales is a
power law�2

 / k3, corresponding to Poisson fluctuations. That
is, the Poisson fluctuations induced by the discrete nature of the
bubbles dominate over the fluctuations resulting from �.

In Figure 3 we show the corresponding angular power spec-
trum �T ¼ ½l(l þ 1)Cl=2��1=2 with a window function Wr0 (r)
of Gaussian shape, centered at the appropriate redshift and with
an FWHM of 0.2 MHz. The angular power spectrum traces the
behavior of the three-dimensional power spectrum shown in
Figure 2. It develops a feature on the scale of the bubbles,
l � kr � 2r=R. We emphasize that the precise shapes of the
curves like those in Figures 2 and 3 depend on the morphology
of the ionized regions. Here we have adopted a simple model
in which these bubbles are described by spheres whose size
evolves simply with redshift. In reality, the ionized regions
have complicated morphology and evolution, as indicated by
Figure 1, that will likely imprint more complex features into
the power spectra than suggested by Figures 2 and 3. We will
examine these issues further in due course.

On small scales, the angular power spectrum in Figure 3
changes slope and stops tracing � . This occurs when the
window in frequency becomes too wide and we enter into the
Limber regime (eq. [20]), where the angular fluctuations are
damped by one power of k. To illustrate this further, we plot
the angular power spectrum for several spectral widths in
Figure 4. As the width of the filter increases, the level of
fluctuations decreases. The figure shows that the damping is

insignificant until the Limber regime is reached at l �r=r � 1;
in the regime where the fluctuations are dominated by the
bubbles, this happens when �r=R � 1. For bandwidths larger
than this, the level of fluctuations scales as 1=�r / 1=�� for a
fixed angular scale. On the other hand, the signal per channel
is proportional to the bandwidth. Thus, if one is interested in a
particular angular scale l, it is best to choose the bandwidth
�� such that l �r=r P1.

5. MODELING THE CONTAMINANTS

One of the major challenges in observing this signal is
separating it from the many other (stronger) low-frequency
radio sources. There are several potential sources of noise, but
those associated with foreground sources are likely to be
smooth in frequency space. In this section we show how this
smoothness can be used to remove this contamination. We
explicitly consider point-source foregrounds, as discussed by
Di Matteo et al. (2002) and Oh & Mack (2003), but our
method can easily be extended to other types (such as diffuse
Galactic synchrotron emission), provided that their power
spectra can be estimated.
Let us assume that there is a collection of different types of

sources with a range of spectral indexes �. We describe them
by a luminosity function d 2n=dS d�, which gives the average
number of sources per steradian per unit flux S and spectral
index �. We assume that the sources are clustered but not
necessarily that sources of different spectral indexes are per-
fectly correlated. The clustering on the sky is described by the
angular power spectrum,

acl1m1
�1ð Þacl2m2

�2ð Þ
D E

¼ �l1l2�m1m2
Cc
l1
�1; �2ð Þ

¼ �l1l2�m1m2
Ccl1 �1; �2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cc
l1
�1ð ÞCc

l1
�2ð Þ

q
;

ð29Þ

Fig. 3.—Angular power spectrum of 21 cm fluctuations at z ¼ 12, 11, 10, 9,
and 8 in the model described in the text (the curves are the same as in Fig. 2).
The bandwidth is 0.2 MHz. [See the electronic edition of the Journal for a
color version of this figure.]

Fig. 4.—Top: Angular power spectrum at redshift z ¼ 10 for observations
done with filters of FWHM 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 MHz. The dotted
curve shows the power spectrum of � at z ¼ 10. Bottom: Ratio between the
power spectra in the top panel and one corresponding to a delta function filter.
[See the electronic edition of the Journal for a color version of this figure.]
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where Cc
l (�1; �2) is the cross-correlation between the pop-

ulations and Cc
l (�) ¼ Cc

l (�; �) is the autocorrelation of a given
population. These are nothing more than the Legendre
transforms of the respective correlation functions. We have
also introduced the correlation coefficient Ccl (�1; �2) ¼
Cc
l (�1; �2)=½Cc

l (�1)C
c
l (�2)�

1=2
.

The power spectrum of fluctuations on the sky produced by
these sources is given by

Cl �1; �2ð Þ ¼
Z

dS d�
d 2n

dS d�
S2

�1
�̄

	 
� �2
�̄

	 
�
þ Cc

l �̄
� � Z

dS1 d�1
d2n

dS1 d�1

Z
dS2 d�2

d2n

dS2 d�2

; Ccl �1; �2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cc
l1
�1ð Þ

Cc
l �̄
� �

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cc
l �2ð Þ

Cc
l �̄
� �

s
�1
�̄

	 
�1 �2
�̄

	 
�2
:

ð30Þ

The first term is the Poisson contribution and the second
comes from the clustering of the sources. We have denoted the
average spectral index by �̄.

We will eventually show that what interferes with a mea-
surement of the 21 cm signal is the fact that the foreground
maps in different frequencies may not be perfectly correlated.
If the maps were perfectly correlated, then one could in some
sense subtract the map at one frequency from another and
clean the map of all contamination. In our simple model the
presence of sources with several spectral indexes is at the heart
of the fact that maps at different frequencies become uncor-
related.

To make some progress, we adopt some assumptions about
the different quantities that enter into equation (30). We take

d 2n

dS d�
¼ dn

dS
f (�) ¼ dn

dS

e� ���̄ð Þ2=2��2ffiffiffiffiffiffi
2�

p
��

; ð31Þ

where �� measures the range of spectral indexes of the sources.
This Gaussian form is a reasonable description of the spec-
tral index distribution of low-frequency radio sources mea-
sured by Cohen et al. (2004). We need to model the correlation
coefficient between different sources.We know that Cl(�; �) ¼ 1
and should decay as the two �-values depart from each other.
We take

C �1; �2ð Þ ¼ e� �1��2ð Þ2=2� 2
� ; ð32Þ

where �� measures how sources with different spectral indexes
become uncorrelated. For simplicity, we assume that C is in-
dependent of l. This could be relaxed easily but would make
our expression a bit more complicated. To the extent that all
sources are tracing the same underlying distribution of matter,
they should be perfectly correlated, even if their bias is
somewhat different. Only the stochastic part of the bias con-
tributes to the loss of correlation. Thus, we expect �� to be
large compared to ��; that is, all the sources should be well
correlated on the sky. Finally, we approximateffiffiffiffiffiffiffiffiffiffiffiffiffi

Cs
l (�)

Cs
l �̄
� �

s
� 1þ 1

2

d ln Cl

d ln �

�

�̄
� 1

� �
; ð33Þ

meaning that we compute quantities of interest only to lowest
order in the change of clustering with population.

We use the above formulae to calculate the correlation co-
efficient between maps at different frequencies,

Il �1; �2ð Þ ¼ Cl �1; �2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl �1; �1ð ÞCl �2; �2ð Þ

p : ð34Þ

We calculate Il(�1; �2) as a series in ln (�1=�2) and to lowest
order in d ln Cl=d ln � and ��=�� and obtain

Il �1; �2ð Þ � 1� 1

2
��2 ln2

�1
�2

� �(


1þ 
þ (1þ 2)

(1þ )2
��

��

� �2

þ d ln Cl

d ln �
��

� �2 

4(1þ )2
� 1þ 2(1þ )

2(1þ )3
��

��

� �2
" #)

;

ð35Þ

where  measures the importance of the Poisson term relative
to the term due to clustering:

 ¼ CPoisson
l

Ccluster
l

;

CPoisson
l ¼

Z
dS

dn

dS
S2;

Ccluster
l ¼ Cs

l �̄
� �

I2;

I ¼
Z

dS
dn

dS
S: ð36Þ

These are the standard formulae for the Poisson and clustering
contributions for a single population of sources (e.g., Peebles
1980). Equivalently from equation (30) and to lowest order in
��/�� and d ln Cl=d ln � we find

Cl(�̄; �̄) ¼ CPoisson
l þ Cs

l �̄
� �

I2: ð37Þ

We can point out a few interesting things about equation
(35). First of all, the departure from unity is proportional to
��2 ln2(�1=�2). As expected, there is a loss of correlation only
to the extent that there are sources with a variety of spectral
indexes in the mix. There are several contributions to the loss
of correlation. The first term on each line [proportional to
=(1þ )] is a direct consequence of the Poisson part; they go
to zero as  ! 0. They occur because, if the Poisson contri-
bution is dominant, there is a chance of getting a different
spectral index in different regions of the sky. That is to say,
there are a few sources in any given mode on the sky and so
the fluctuations in the spectral index of actual sources that
happen to be in each region will lead to patterns on the sky
that are not identical at different frequencies. The other terms
come from the clustering part (they go to zero as  ! 1).
Those terms only appear if different sources are not perfectly
correlated (terms proportional to ��/��) or if they cluster dif-
ferently (terms proportional to d ln Cl=d ln �).

The main point of equation (35) is that the difference be-
tween the cross-correlation and unity scales as ��2 ln2(�1=�2),
so it should be quite small. This will imply that the noise from
the smooth foregrounds is unimportant.

6. THE EFFECT OF CONTAMINATION

In this section we show how the frequency information can
be used to discriminate the 21 cm signal from sources of
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contamination. The basic point is that while the contaminants
are presumed to be smooth as a function of frequency, the
21 cm signal varies very rapidly. A small change in frequency
of order a fraction of a megahertz is already enough to sample
an effectively different part of the universe. In what follows,
we present two derivations that show that the measurement is
only contaminated by the parts of the foregrounds that are
uncorrelated between neighboring frequencies. For simplicity
we only consider two frequencies and show how the combi-
nation of information from both can significantly reduce the
level of contamination. Clearly, to make full use of the data
set, one should consider all the frequencies. Here we illustrate
the method with just two, but the generalization is trivial.

6.1. Fisher Matrix

To illustrate how the cleaning works, let us take a simple
model for the data,

alm(�) ¼ a21 cmlm (�)þ a f
lm
(�)þ anoiselm (�): ð38Þ

The three terms are the 21 cm signal, foreground contamina-
tion, and detector noise. We assume that we make Nl mea-
surements at two separate frequencies, �1 and �2, so that the
data vector is of the form xi ¼ (alm(�1); alm(�2)) with i ¼
1; : : : ;Nl. We assume that both the 21 cm signal and the
detector noise are uncorrelated between the two frequencies
while the foregrounds have a correlation coefficient I, very
close to unity. In that case the correlation matrix of the data is

xix
y
j

D E
¼ Cij ¼ �ij

"
C

f
l

1 I
ffiffiffi
�

pffiffiffi
�

p
I �

� �

þ C21 cm
l

1 0

0 1

� �
þ CN

l

1 0

0 1

� �#
; ð39Þ

where � characterizes the frequency dependence of the fore-
grounds and CN

l gives the power spectrum of the noise, which
for simplicity we assumed equal in both channels and un-
correlated between the different Nl measurements (see x 7).

We assume that the fluctuations are Gaussian and that we
wish to estimate the three parameters of the model, p ¼
(C

f
l ; �;C

21 cm
l ), simultaneously. We can calculate the expected

error bars from the Fisher matrix F ,

F i1;i2 ¼
1

2
Tr C�1 @C

@pi1
C�1 @C

@pi2

� �
; ð40Þ

where i1, i2 run over the three parameters. The inverse of the
Fisher matrix gives the expected covariance matrix of the
recovered parameters (see Tegmark et al. 1997 for a summary
of the Fisher matrix technique). In particular, the error in the
recovered 21 cm power spectrum is simply

�C21 cm
l

� �2¼ F�1
3;3¼

2

Nl

(
C21 cm
l þ CN

l þ 2�

(1þ �)
(1� I )C

f
l

� �2

þ
2�(1� I )C

f
l

(1þ �)

" #2)
; ð41Þ

where we have assumed C
f
l 3C 21 cm

l ;CN
l .

We see that the foreground power spectrum is suppressed
by a factor 1� I ; thus, as long as (1� I )C

f
l < C 21 cm

l , the

noise introduced by foregrounds can be handled with this
technique.

6.2. Another Derivation

We can obtain the same result as above by considering the
following problem. Assume we measure the alm values at two
different frequencies and call the results (xi, yi), where i runs
over the number of observations. The data are intrinsically of
the form

xi ¼ fi þ �i;

yi ¼ �1=2fi þ �i � �1=2xi þ 	i; ð42Þ

where fi is the part coming from the correlated foreground
contribution, �i has the 21 cm signal plus the noise contribu-
tion at the first frequency, and �i has the 21 cm signal, noise,
and an additional contribution from the uncorrelated part of
the foregrounds. Just by diagonalizing the covariance matrix
above, one can show that this uncorrelated component has
variance 2�(1� I )C

f
l , to lowest order in (1� I ). For conve-

nience we have introduced 	i ¼ �i � �1=2�i.
The (xi, yi) data fall on a straight line with unknown slope

(�1/2) that we need to determine. The 21 cm signal is encoded
in the deviations of the data from a perfect line. We can de-
termine the slope by writing a simple �2 for the best-fit line,

�2(b) ¼
X
i

yi � bxið Þ2; ð43Þ

where b is the slope that we are trying to determine. We can
easily minimize �2 with respect to b. The information about
the 21 cm fluctuations is encoded in the value of �2 at this
minimum, for which we obtain

�2 bminð Þ ¼
X
i

y2i �
P

i xi yi
� �2P

i x
2
i

: ð44Þ

Note that in terms of the underlying model variables,

�2 bminð Þ ¼
X
i

	2i �
P

i xi	i
� �2P

i x
2
i

: ð45Þ

We can take averages over the uncorrelated component 	i
(which in a sense is the only random variable in this approach)
to obtain

�2 bminð Þ
� �

¼ (N � 1)�2
	: ð46Þ

Thus, we could use

Ŝ ¼ 1

N � 1
�2 bminð Þ ð47Þ

as the estimator for the variance, which contains the 21 cm
signal. The mean and variance of this estimator are

Ŝ
� �

¼ (1þ �) C21 cm
l þ CN

l þ 2�

(1þ �)
(1� I )C

f
l

� �
;

Ŝ2
� �

� Ŝ
� �� �2¼ 2(1þ �)2

N � 1

; C21 cm
l þ CN

l þ 2�

(1þ �)
(1� I )C

f
l

� �2
: ð48Þ
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This is almost the same as we obtained earlier. The difference
can be traced to the fact that to estimate C21 cm

l from Ŝ we need
to subtract the contribution proportional to (1� I )C

f
l ; this

adds an extra piece to the variance that is second order in
(1� I )C

f
l . The important point, however, is that the fore-

ground term appears only in the form (1� I )C
f
l .

6.3. The Cleaned Foreground Signal

We can now illustrate how the technique we propose re-
duces the importance of contamination from unresolved point
sources. Figure 5 again shows the power spectrum at z ¼10,
with and without the extra power from reionization (the other
curves in this figure are described in x 7). We also show
(1� I )C

f
l for the ‘‘intermediate’’ point-source model of Di

Matteo et al. (2002) (dot-dashed curve), assuming that point
sources with S > 0:1 mJy have been removed. For the corre-
lation coefficient of the maps produced by the point sources we
took 1� I ¼ 8 ; 10�9. This corresponds to the following
choices: �� ¼ 0:3, ln (�2=�1) ¼ 1:3 ; 10�3, (��=��)

2 ¼ 0:1,
 ¼ 0, and d ln Cl=d ln � ¼ 0. This choice of �� is consistent
with the results of Cohen et al. (2004). Note that we have
assumed the Poisson term to be negligible, as argued by Di
Matteo et al. (2002), and we have neglected variations in the
clustering length with spectral index, although we do include
imperfect correlations between sources with different �. As the
figure shows, the expectation is that once the frequency in-
formation is used, the contamination becomes significantly
smaller than the signal we wish to measure.

Oh & Mack (2003) noted another problem related to simple
contamination: if the beam size changes with frequency, the

number of foreground sources in a given beam also changes
with frequency. In our language, an interferometer baseline
samples slightly different l-modes at different frequencies. The
most obvious solution is either careful beam size control with
frequency or fine coverage in Fourier space coverage, both of
which must be determined during the interferometer design. If
this is not possible, an alternative method is to note that this
‘‘leakage’’ contamination is also highly correlated in fre-
quency space and can be removed with techniques similar to
ours (see also Gnedin & Shaver 2003).

Note that in our estimate of the foreground removal we
have assumed that the 21 cm signal between the two fre-
quency channels is completely uncorrelated (i.e., the covari-
ance matrix of the 21 cm signal is diagonal in eq. [39]). In
reality, the off-diagonal elements of the matrix will contain the
cross-correlation of the two frequency bins, C21 cm

l (�1; �2). The
recovered signal is proportional to ½1� C21 cm

l (�1; �2)�. This
essentially provides a minimum bandwidth for foreground
removal using this technique: we need the radial separation of
the two frequency bins to exceed the typical correlation
length. In the example we show, we have chosen L(��)k R,
so the true signal would decrease by a small amount. How-
ever, the method we have presented uses only two neighboring
frequency channels to remove the contaminants. In reality, the
full bandwidth of the observation should be used in estimating
the smooth component of the spectrum at each point on the
sky, which will considerably improve the removal algorithm.
This will allow the single-frequency signal to be isolated
without significant loss from correlations between neighbor-
ing frequencies. We conclude that point-source foregrounds
do not present a significant problem for these measurements
provided that they are smooth in frequency space.

7. DETECTABILITY

In this section we examine the prospects for detecting the
21 cm fluctuations. We follow the notation of White et al.
(1999) where the formalism used to analyze data for CMB
interferometers such as the Degree Angular Scale Interfer-
ometer (DASI) and the Cosmic Background Interferometer
(CBI) was presented. We note that similar sensitivity estimates
have been made for the Giant Metrewave Radio Telescope by
Bharadwaj & Sethi (2001) and Bharadwaj & Pandey (2003).

The measured flux in a visibility is

V (u) ¼ @B�
@T

Z
d 2n �Tb(n̂)A(n̂)e

2�iu = n̂; ð49Þ

where A(n̂) is the primary beam and @B�=@T converts tem-
perature to flux. In the Rayleigh-Jeans part of the spectrum,
@B�=@T ¼ 2kB=k

2. The Fourier wavenumber u is related to
l by u ¼ l=2�. We can express �Tb(n̂) and A(n̂) in terms of
their Fourier components,

�Tb(n̂) ¼
Z

d2u �̃Tb(u)e
�2�iu = n̂;

A(n̂) ¼
Z

d 2u Ã(u)e�2�iu = n̂: ð50Þ

The Fourier components �̃Tb(u) are essentially the same as the
alm values introduced earlier except that the spherical har-
monic decomposition has been replaced by a Fourier de-
composition, valid only over small patches of the sky that can

Fig. 5.—Observability of the estimated 21 cm fluctuation signal. The solid
and dotted curves in each panel are the angular power spectrum of the signal at
z ¼ 10 (with �� ¼ 0:2 MHz) for our toy model and for a fully neutral me-
dium, respectively. The dot–long-dashed curve in the top panel shows the
estimated point-source foreground signal (see text). The other curves show
sensitivity estimates for three proposed experiments: PAST (short-dashed
curve), LOFAR (long-dashed curve), and SKA (dot-dashed curve). The top
panel shows the noise power spectrum, while the bottom panel shows the error
in the estimated power spectrum. We assume 4 weeks of continuous obser-
vations for each experiment. [See the electronic edition of the Journal for a
color version of this figure.]
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be taken to be flat. The variance of �̃Tb(u) is given by the
power spectrum,

�̃Tb u1ð Þ�̃Tb u2ð Þ
� �

¼ �D u1 þ u2ð ÞCl¼2�u1 : ð51Þ

In terms of these Fourier variables the variance of the tem-
perature is

�T2
b (n̂)

� �
¼

Z
d2uCl¼2�u ¼

Z
dl

lCl

2�
; ð52Þ

which can be compared to the exact formula,

�T 2
b(n̂)

� �
¼

X
l

(2l þ 1)Cl

4�
: ð53Þ

We now calculate the averaged value of the square of the
observed visibilities in terms of the power spectrum, where the
average is over an ensemble of possible skies,

V (u)j j2
D E

¼ @B�
@T

� �2Z
d 2u0 Ã u� u0ð Þ

�� ��2Cl¼2�u 0

� Cl¼2�u
@B�
@T

� �2Z
d2u0 Ã u� u0ð Þ

�� ��2: ð54Þ

If the visibility is observed for a time tv, the averaged noise
squared in each visibility is given by (Rohlfs & Wilson 2000)

N (u)j j2
D E

¼ 2kBTsys

Adish

� �2
1

��tv
; ð55Þ

where Tsys is the system temperature, �� is the bandwidth,
and Adish is the area of each individual antenna in the array.

We can compare equations (54) and (55) to define the
power spectrum of the noise,

CN
l ¼ 2kBTsys

Adish@B�=@T

� �2
1

��tv
R
d2u0 Ã u� u0ð Þ

�� ��2 : ð56Þ

The result of the integral in the denominator depends on the
shape of the primary beam (i.e., the beam of the individual
dishes). To get an approximate answer, we can use the fact that
A(u) is different from zero in an area d2u and has to integrate
to 1, so

R
d 2u0 jÃ(u� u0)j2 � 1=d 2u. Moreover, the size of the

primary beam and thus d 2u is directly related to the area of the
dishes. We can approximately use Adish ¼ k2 d 2u. The power
spectrum of the noise then becomes

CN
l ¼

T 2
sys

��tv d 2u
¼

T 2
sys(2�)

2

��tv d 2l
: ð57Þ

This is equation (17) of White et al. (1999) with the mapping
l ¼ 2�u. Perhaps an easier way to understand this equation is
to note that after a time tv the noise in the Fourier space pixel
corresponding to the observed visibility is simply �2

n ¼
T 2

sys=��tv. The noise can be expressed in terms of a power
spectrum using �2

n ¼ d 2uCl ¼ d2l Cl=(2�)
2.

Interferometric CMB experiments such as DASI and CBI
were conducted at much higher frequencies than those in
which we are interested, so the arrays were small enough that
they could be rotated to compensate for the Earth’s rotation.

Consequently, each pair of antennae could integrate for an
arbitrarily long time on a single Fourier component of the sky.
This is not feasible in the present case because the distances
involved are much larger: the arrays must have baselines on
the order of a kilometer. We therefore need to calculate the
fraction of the total observing time to that any given baseline is
being observed. This fraction of time will not be uniform
across the Fourier plane, and the details will depend on the
element configuration.
We make a simple estimate here assuming that the Fourier

coverage is roughly uniform. For a particular maximum sep-
aration of the antennae the interferometer will cover Fourier
space up to a maximum lmax. Thus, owing to the Earth’s ro-
tation, a region of area �l 2max of Fourier space will be covered.
At any given instant, however, only an area Npairs d

2l is being
observed. Thus, each visibility will be observed roughly for a
time

tv � to
Npairs d

2l

�l 2max

¼ to
N 2
dish d

2l

2�l 2max

; ð58Þ

where Npairs ¼ Ndish(Ndish � 1)=2 and where we have assumed
Ndish 31. Combining equations (57) and (58), we obtain

l 2CN
l

2�
¼

T 2
sys(2�)

2

��to

l 2max

Ndish d 2l

� �2
l

lmax

� �2

: ð59Þ

We can think of the array as a big telescope with diameter
D, large enough to make a measurement of mode lmax that
covers a total area Atotal. However, only a fraction of that area
is covered with telescopes, NdishAdish. That covering fraction
can also be expressed in terms of lmax and d2l,

fcover �
NdishAdish

Atotal

¼ Ndish d
2l

l 2max

: ð60Þ

In terms of fcover the noise power spectrum is

l 2CN
l

2�
¼

T 2
sys(2�)

2

��to f 2cover

l

lmax

� �2

: ð61Þ

If one is interested in achieving maximum sensitivity at a
particular scale l with a fixed number of elements of a given
size, it is best to pack the elements as close as possible be-
cause lmax / D but fcover / D�2. This is achieved when the l of
interest is close to lmax. The signal from the bubbles is located
somewhere in the range l � 1000 10; 000 so one needs an
array of size D ¼ lk=2� � 300 m to 3 km to observe it.
For realistic arrays, the distribution of telescopes will not be

uniform, so the coverage in Fourier space will vary with l. For
example, the array may have a core at the center where tele-
scopes are closely packed and a more dilute configuration at
larger separations. Thus, the covering fraction for the l-values
measured by the core of the array will be much larger than for
the higher l-values. We can introduce a function f̃ (l ) that
encodes the geometry of the array, in terms of which

l 2CN
l

2�
¼

T 2
sys(2�)

2

��to f̃ 2(l )
: ð62Þ
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For our simple case of uniform Fourier coverage,

f̃ (l ) ¼ fcover
lmax

l
: ð63Þ

The system temperature at these frequencies will be domi-
nated by the sky brightness temperature so the figure of
merit to compare different experiments is simply f̃ (l ). We take
Tsys to be roughly 200 K, so the noise power spectrum is
approximately

�Tn ¼
l 2CN

l

2�

� �1=2

� 12 mK
Tsys0:1

200 Kð Þ f̃ (l )

" #

;
0:4 MHz 1 month

��to

� �1=2

: ð64Þ

Thus, if we want an experiment to make a map with good
signal-to-noise ratio in a matter of weeks, it needs to have
f̃ (l ) � 0:1 on the scales of interest. Note that this noise esti-
mate does not take cosmic variance into account. Because
each observation samples only a finite region and must ulti-
mately be compared to a statistical model of the universe, at a
certain point (when the signal-to-noise ratio is of order unity
in each Fourier mode) the experimental power becomes lim-
ited by the finite field of view and one is better off increasing
the area of the sky being covered rather than going deeper on
the same spot. We have quoted the answer for a bandwidth of
order 0.4 MHz. There is little to be gained by making the
bandwidth much larger because by doing so one enters the
Limber regime on the angular scales of interest (see Fig. 4 and
discussion thereof ). Once in the Limber regime both signal
and noise scale as 1/��. The exact crossover into the Limber
regime will depend on the sizes of the bubbles. On the other
hand, if the bandwidth is much smaller than the typical cor-
relation length of the 21 cm features, the signal will be difficult
to detect as it will be confounded by the foregrounds.

If one is interested in a statistical detection of the power
spectrum rather than imaging, the required observing time is
significantly reduced simply because one can make several
estimates of the power spectrum on scales smaller than the
total field of view. The error in the power spectrum estimate is
(eq. [41])

�C 21 cm
l

C21 cm
l

¼
ffiffiffiffiffi
2

Nl

r
CN
l

C 21 cm
l

: ð65Þ

The signal-to-noise ratio increases by a factor (Nl=2)
1=2 �

(Ndish=fcover)
1=2 � (Atotal=Adish)

1=2. In terms of the l-modes
sampled, (Nl=2)

1=2 � l=lmin, where lmin corresponds to the
total angular size of the field of view.

Moreover, we have included only one frequency channel in
our estimate (after foreground subtraction). If the signal that
one is seeking has a frequency width 31 MHz, stacking
channels adds even more statistical power: the number of
estimates of C 21 cm

l goes like the number of channels used in
the estimate. For example, Figure 3 shows that the power
spectrum of our toy model changes relatively little over
�z � 1, corresponding to a frequency width of �10 MHz.
Thus, about 25 channels could be stacked without losing too
much redshift information.

Several experiments are now being designed to have the
capability to measure the 21 cm signal. One is a proposed
dedicated experiment called the Primeval Structure Telescope8

(PAST). This instrument will have a core with effective area
NdishAdish � 9000 m2 concentrated in a diameter D � 300 m
(lmax � 103) and a total collecting area �6 ; 104 m2 distrib-
uted within D � 3 km (lmax � 104). For that configuration
f̃ (l ) � (NdishAdish=D

2)(lmax=l) � 0:1(lmax=l ). Thus, the pro-
posed instrument could reach the required sensitivity on scales
of several arcminutes in about 1 month of observation. Note
that some long baselines would also be needed to be able to
remove point-source contamination.

Detecting cosmic 21 cm emission is also one of the major
science goals of the Low Frequency Array9 (LOFAR) and the
Square Kilometer Array10 (SKA). LOFAR will have a total
effective area of about 2 ; 105 m2 with approximately 25% of
that area concentrated in a compact array of D � 2 km. For
this core, lmax � 5000 and f̃ (l ) � 0:016(lmax=l ). The design of
the SKA has not yet been fixed. Current plans call for �20%
of the array elements to lie in a core of D � 1 km and �50%
to lie within a region of D � 6 km. For the inner region
lmax � 2500 and f̃ (l ) � 0:25(lmax=l ), and for the outer one
lmax � 104 and f̃ (l ) � 0:018(lmax=l ). Both of these instruments
also have the advantage of very long baselines (hundreds or
thousands of kilometers) that will help with point-source re-
moval and control of systematics.

Figure 5 shows some estimated sensitivity curves for each
of these instruments. To construct the curves, we assumed
1 month of continuous observing on a single field of view. For
PAST, we have assumed a 4 deg2 field of view and the antenna
distribution described above. We assumed a 100 deg2 field of
view for each of the other experiments (comparable to the
nominal specifications for each). We have also made some
assumptions about the antenna distributions in these experi-
ments. For LOFAR, we took (25%, 50%) to have baselines
smaller than (2, 12 km). For SKA, we took (20%, 50%, 55%)
within (1, 6, 12 km). We assumed that f̃ (l ) varies smoothly
between these points and uniform Fourier space coverage
within the core. Note that our sensitivity estimates are only
approximate and depend on the Fourier space coverage of the
array, as well as the correlation procedure.

The top panel shows the noise power spectrum; comparison
to the power spectrum of the 21 cm fluctuations gives the
signal-to-noise ratio value for each measured visibility. This
panel therefore shows the appropriate sensitivity for making a
map. Clearly, creating images with high signal-to-noise ratio
on arcminute scales will be difficult and require large col-
lecting areas (on the order of a square kilometer). Note that the
slope of the sensitivity curves depends on the antenna con-
figuration; for uniform Fourier coverage, �Tn / l. Config-
urations in which the coverage increases at smaller separations
(i.e., the array’s covering fraction increases toward the center)
have steeper slopes.

Fortunately, as noted above, a statistical measurement of the
power spectrum is considerably easier. In the bottom panel we
show the error on the estimated power spectrum in logarithmic
l-bins: this is simply the noise power spectrum multiplied by
N

�1=2
l � l min=l. The large fields of view of LOFAR and SKA

allow rather precise measurements of the power spectrum on

8 See http://astrophysics.phys.cmu.edu/~jbp for details on PAST.
9 See http://www.lofar.org for details on LOFAR.
10 See http://www.skatelescope.org for details on the SKA.
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scales from P10 to �1�. Note also that we show the errors in
the individual frequency channels. If many channels are
stacked together, the errors will decrease further.

8. CONCLUSIONS

The recent successful efforts to map anisotropies in the
CMB have determined the global properties of the universe to
high precision (e.g., Spergel et al. 2003). When combined
with the highly successful paradigm for the hierarchical
growth of structure (e.g., White & Rees 1978), these results
imply that the evolution of the universe on large scales is now
relatively well understood. However, on the smaller scales
characteristic of individual objects, many uncertainties remain
as a result of our ignorance of the nature of dark matter, the
lack of a full physical model for the origin of primordial
density fluctuations, and our poor understanding of galaxy
formation. Determining the properties and consequences of
the first luminous objects at z � 15 30 may help to clarify
these issues.

The evolution of the ionized part of the IGM at high red-
shifts provides a fossil record of the universe at these times. In
principle, the physical state of this diffuse gas constrains when
and where the first luminous objects formed, as well as the
nature of the sources responsible for reionization. The rela-
tively large electron scattering optical depth obtained from the
WMAP observations is indicative of a complex reionization
history but, by itself, does not provide unambiguous answers
to the remaining questions.

In this paper we have argued that fluctuations in 21 cm
emission from the IGM can be used to measure the three-
dimensional distribution of neutral hydrogen at high redshifts.
Measurements of the angular power spectrum at different
frequencies can be used to mitigate contamination by fore-
ground sources that would otherwise overwhelm the 21 cm
signal. Our approach is similar to that employed in analyses of
CMB anisotropies but is more general because of the frequency-
dependent nature of redshifted 21 cm emission, making it
possible to use 21 cm fluctuations to study the evolution of
reionization. We note here that the most basic kind of experi-
ment is to seek an ‘‘all-sky’’ signature corresponding to a global
phase transition in the neutral hydrogen (which could be reion-
ization, reheating, or the onset of Ly� coupling; Shaver et al.
1999). While valuable (especially because they have much less
stringent sensitivity requirements), these measurements only
provide the most basic information. Moreover, they are subject
to severe foreground contamination (Gnedin & Shaver 2003)
because the large-scale signal varies relatively smoothly with
frequency. Thus, frequency differencing will not be as effective
as with small-scale fluctuations. The small-scale fluctuations
we have described will therefore ultimately be a better route to
pursue.

Using a simple conceptual model for the morphological
evolution of ionized regions, we have demonstrated how
reionization imprints characteristic features into the angular
power spectrum of 21 cm fluctuations. Our formulation is
general, but for illustrative purposes we have adopted sim-
plifying assumptions to emphasize salient features of our
methodology. For example, in our toy model of reionization,
we have ignored redshift space distortions in the 21 cm signal
and neglected correlations between the density and neutral
fraction fields. In future work, we will investigate the impact
of these effects explicitly using semianalytic methods and
numerical simulations to show how the formalism can be
adapted to account for these complications.

In principle, measurements of the type we propose can be
used to distinguish between various evolutionary histories.
Models with multiple epochs of reionization (e.g., Cen 2003;
Wyithe & Loeb 2003) lead to a behavior in which the volume
fraction of ionized gas in the universe shows a complex de-
pendence on redshift (e.g., Figs. 8 and 9 of Sokasian et al.
2003b), unlike single episodes of reionization where the trend
is simpler (e.g., Fig. 5 of Sokasian et al. 2003a). These dif-
ferences will be imprinted onto the frequency dependence of
21 cm fluctuations of the IGM and can be discerned using the
approach described here. In fact, the simple model described
in x 4 is only part of the story available to us through 21 cm
observations. For example, the fluctuations constrain the ther-
mal history of the IGM, as well as the ionization history (see
x 2). If the earliest ionizing sources have hard spectra (such
as quasars), we would expect the IGM to be heated rapidly,
while if cool, low-mass stars are responsible for reioniza-
tion, the heating would occur much closer to overlap. An-
other way to look at this is that the reionization history
determines how much information is available to us through
21 cm fluctuations.
For instance, in a scenario with rapid heating, we will have

a long epoch where density variations dominate the signal.
The power spectrum of the 21 cm fluctuations is a direct tracer
of the matter power spectrum. Thus, detailed measurements of
this signal could provide invaluable constraints on the pri-
mordial spectrum on small scales that could tightly constrain
the physics of the early universe. In particular, because one
gets many independent maps by varying the frequency, the
constraints on the power spectrum obtained in this way could
be significantly better than those coming from the CMB pri-
mary anisotropies. In addition, 21 cm fluctuations allow one to
probe the power spectrum at z � 10 20, an epoch inacces-
sible to both the CMB and galaxy surveys, and a relatively large
lever with which to study the growth of fluctuations. On the
other hand, the 21 cm signal depends on complex physical
processes (see x 2) and interpreting the results will require
careful modeling.
Differences in the evolutionary state of the ionized IGM

also contain information about the matter power spectrum on
small scales. For example, in cosmological models with re-
duced small-scale power, the halos hosting star-forming
regions form late, delaying the ionizing effects of the first
luminous objects (e.g., Somerville et al. 2003; Yoshida et al.
2003b, 2003c). Thus, universes with a large component of
warm dark matter or those in which the matter power spectrum
has a running spectral index should exhibit lower amplitude
fluctuations in 21 cm emission from higher redshifts than in
conventional �CDM models.
A detailed study of 21 cm fluctuations can also constrain the

nature of the sources responsible for reionization. In some
scenarios, it is conjectured that reionization occurs ‘‘outside-
in,’’ affecting voids first and high-density regions later (e.g.,
Miralda-Escudé et al. 2000). This progression would be
expected if the sources are rare, but bright. Alternatively,
reionization could proceed in the opposite sense, ‘‘inside-
out,’’ particularly if the sources are numerous but faint (e.g.,
Gnedin 2000; Sokasian et al. 2003a). The former possibility
would apply if quasars were the primary sources of ionizing
radiation, while stars in low-mass galaxies would be more
relevant to the inside-out scenario. The morphological ap-
pearance of the ionized gas is different in these two cases, and
these differences would be reflected in the angular power
spectrum of 21 cm fluctuations and how this quantity varies
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with frequency. In particular, the size of the H ii regions at a
given xH constrains the number density of ionizing sources.
Furthermore, if voids are ionized first, the density and xH fields
will be correlated (i.e., the neutral fraction falls first in regions
that are already underdense), while the opposite is true in an
inside-out scenario. Thus, the amplitude of the brightness
temperature fluctuations contains information about the pro-
cess of reionization.

As we have argued in x 7, the technological requirements
for detecting 21 cm fluctuations from cosmic gas at high
redshifts, while demanding, are within reach. In the near fu-
ture, it is likely that measurements of the power spectrum
of 21 cm fluctuations will reveal the physical state of the

universe at an epoch that is currently inaccessible to other
observational probes.
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