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ABSTRACT

We reconstruct the primordial spectrum of the curvature perturbation, P(k), from the observational data of the
Wilkinson Microwave Anisotropy Probe (WMAP) by the cosmic inversion method developed recently. In contrast
to conventional parameter-fitting methods, our method can potentially reproduce small features in P(k) with good
accuracy. As a result, we obtain a complicated oscillatory P(k). We confirm that this reconstructed P(k) recovers
the WMAP angular power spectrum with resolution up to �l ’ 5. Similar oscillatory features are found, how-
ever, in simulations using artificial cosmic microwave background data generated from a scale-invariant P(k)
with random errors that mimic observation. In order to examine the statistical significance of the nontrivial
features, including the oscillatory behaviors, therefore, we consider a method to quantify the deviation from scale
invariance and apply it to the P(k) reconstructed from the WMAP data. We find that there are possible deviations
from scale invariance around k ’ 1:5 ; 10�2 and 2:6 ; 10�2 Mpc�1.

Subject headings: cosmic microwave background — cosmology: theory

On-line material: color figures

1. INTRODUCTION

The Wilkinson Microwave Anisotropy Probe (WMAP) sat-
ellite has brought us interesting information about our universe
(Bennett et al. 2003). From the remarkably precise observation
of the temperature fluctuations and the polarization of the
cosmic microwave background (CMB), one can obtain not
only accurate values of the global cosmological parameters, but
also invaluable information on the properties of the primor-
dial fluctuations (Bennett et al. 2003; Spergel et al. 2003;
Peiris et al. 2003; Komatsu et al. 2003). Although their results
as a whole support the standard �CDM (cold dark matter)
model with Gaussian, adiabatic, and scale-invariant primordial
fluctuations, some features that cannot be explained by the
standard model have also been pointed out, such as (1) lack
of power on large scales, (2) running of the spectral index ns
from ns > 1 on larger scales to ns < 1 on smaller scales, and
(3) oscillatory behaviors of the power spectrum on intermediate
scales.

In fact, feature 1 was known already with COBE data
(Bennett et al. 1996), and a possible explanation was proposed
(Yokoyama 1999). There have been many new proposals (Bi,
Feng, & Zhang 2003; de Deo, Caldwell, & Steinhardt 2003;
Efstathiou 2003a; Uzan et al. 2004; Contaldi et al. 2003; Cline,
Crotty, & Lesgourgues 2003; Feng & Zhang 2003; Kawasaki &
Takahashi 2003; Dvali & Kachru 2003; Piao, Feng, & Zhang
2003), as well as many arguments about its statistical signifi-
cance (Spergel et al. 2003; Tegmark, de Oliveira-Costa, &
Hamilton 2003; de Oliveira-Costa et al. 2003; Gaztañaga et al.
2003; Niarchou, Jaffe, & Pogosian 2004; Efstathiou 2003b,
2004). A number of inflation models that can account for

feature 2 have also been proposed recently (Feng et al. 2003;
Kyae & Shafi 2003; Kawasaki, Yamaguchi, & Yokoyama 2003;
Huang & Li 2003; Chung, Shiu, & Trodden 2003; Yamaguchi
& Yokoyama 2003; Dvali & Kachru 2003).
On the other hand, feature 3, namely, possible oscillatory

behaviors around a simple power-law spectrum, is more diffi-
cult to quantify (Peiris et al. 2003). Although several attempts to
reconstruct the primordial spectrum were made by combining
WMAP data with other independent observational data, such
as the Two-Degree Field Galaxy Redshift Survey (2dFGRS)
and Ly� forest data (Wang, Spergel, & Strauss 1999a, 1999b;
Hannestad 2001, 2003; Tegmark & Zaldarriaga 2002; Wang &
Mathews 2002; Bridle et al. 2003; Mukherjee & Wang 2003a,
2003b, 2003c), they all employed the binning, wavelet band
powers, or direct wavelet expansion method to the data. These
methods cannot detect possible oscillatory behaviors if their
scale is smaller than the binning scale. It is preferable to use a
method that can restore the primordial spectrum as a continuous
function without any ad hoc filtering scale to investigate de-
tailed features such as 3. Fortunately, such a new method has
been proposed in Matsumiya, Sasaki, & Yokoyama (2002,
2003), with the name cosmic inversion method, and their
test calculations using mock data without observational errors
have shown that this method can reproduce possible small
dips and peaks off a scale-invariant spectrum quite well, in the
spatially flat universe with the adiabatic initial condition. In
this paper, we attempt to reconstruct P(k) from the WMAP
data using this method. To apply it to the actual data, we
consider the observational errors by Monte Carlo simulations
and use a modified CMBFAST3 code that adopts much finer
resolution than the original one in both k and l, so that we
can compute the fine structure of angular power spectra ac-
curately. We mention that recently another new method for
the reconstruction of P(k) has been proposed by Shafieloo &
Souradeep (2003).

1 Department of Earth and Space Science, Graduate School of Science,
Osaka University, Toyonaka 560-0043, Japan; kogo@vega.ess.sci.osaka-u
.ac.jp, matumiya@vega.ess.sci.osaka-u.ac.jp, yokoyama@vega.ess.sci.osaka-u
.ac.jp.

2 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-
8502, Japan; misao@yukawa.kyoto-u.ac.jp. 3 See http://www.cmbfast.org.

A

32

The Astrophysical Journal, 607:32–39, 2004 May 20

# 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.



This paper is organized as follows. In x 2, we review the
cosmic inversion method and describe our analysis method
using the WMAP data. In x 3, we apply our method to the
WMAP data and discuss the results. In particular, we investi-
gate statistical significance of deviations from scale invari-
ance. Finally, we present our conclusion in x 4.

2. INVERSION METHOD

First, we briefly review the cosmic inversion method pro-
posed by Matsumiya et al. (2002, 2003). We assume a spatially
flat universe with an adiabatic initial condition, both of which
are generic predictions of standard inflation and have been
supported by theWMAP data. In the end, we obtain a first-order
differential equation for the primordial spectrum P(k).

The CMB anisotropy is quantified by the angular correla-
tion function defined as

C(�) � � n̂1ð Þ� n̂2ð Þh i ¼
X1
l¼0

2l þ 1

4�
ClPl(cos �);

cos � ¼ n̂1 = n̂2; ð1Þ

where �(n̂) is the temperature fluctuation in the direction n̂.
We decompose the Fourier components of the temperature
fluctuations �(�; k) into multipole moments,

�(�; k; �) ¼
X1
l¼0

(�i)l�l(�; k)Pl(�); ð2Þ

where � � k̂ = n̂, k is the comoving wavenumber, and � is the
conformal time, with its present value being �0. Using�l(�; k),
the angular power spectrum is expressed as

2l þ 1

4�
Cl ¼

1

2�2

Z 1

0

dk

k

k3 �l �0; kð Þj j2
D E

2l þ 1
: ð3Þ

The Boltzmann equation for �(�; k) can be transformed into
the following integral form (Hu & Sugiyama 1995):

(�þ�)(�0; k; �) ¼
Z �0

0

d�
h
�0 þ�� i�Vbð Þ

; V(�)þ �̇� �̇
� �

e��(�)
i

; eik�(���0); ð4Þ

where the overdot denotes the derivative with respect to the
conformal time. Here, � and � are the Newton potential and
the spatial curvature perturbation in the Newton gauge, re-
spectively (Kodama & Sasaki 1984), and

V(�) � �̇e��(�); �(�) �
Z �0

�

�̇ d�; ð5Þ

are the visibility function and the optical depth for Thomson
scattering, respectively. In the limit that the thickness of the
last scattering surface (LSS) is negligible, we have V(�) �
�(� � ��); e��(�) � �(� � ��), where �� is the recombination
time when the visibility function is maximum (Hu & Sugiyama

1995). Taking the thickness of the LSS into account, we have a
better approximation for equation (4),

(�þ�)(�0; k; �) �
Z ��end

��start

d�
h
�0 þ�� i��1ð Þ

; V(�)þ �̇� �̇
� �

e��(�)
i

; e�ik�d

� �app þ�; ð6Þ

where d � �0 � �� is the conformal distance from the present
to the LSS and ��start and ��end are the times when the re-
combination starts and ends, respectively. Here we introduce
the transfer functions, f (k) and g(k), defined byZ ��end

��start

d� (�0 þ�)(�; k)V(�)þ �̇� �̇
� �

(�; k)e��(�)
� �

� f (k)�(0; k); ð7ÞZ ��end

��start

d��1(�; k)V(�) � g(k)�(0; k): ð8Þ

We can calculate f (k) and g(k) numerically; they depend only
on the cosmological parameters, for we are assuming that only
adiabatic fluctuations are present. Then, we find the approxi-
mated multipole moments as

�app
l (�0; k) ¼ (2l þ 1) f (k) jl(kd )þ g(k) j0l (kd )

� �
�(0; k) ð9Þ

and the approximated angular correlation function as

C app(r) ¼
Xlmax

l¼lmin

2l þ 1

4�
C

app
l Pl 1� r 2

2d 2

� �
; ð10Þ

whereC
app
l is obtained by putting equation (9) into equation (3),

r is defined as r ¼ 2d sin (�=2) on the LSS, and lmin and lmax

are lower and upper bounds on l due to the limitation of the
observation. In the small-scale limit rTd, using the Fourier
sine formula, we obtain a first-order differential equation for
the primordial power spectrum of the curvature perturbation,
P(k) � �(0; k)j j2

D E
,

� k 2f 2(k)P 0(k)þ �2k 2f (k) f 0(k)þ kg2(k)
� �

P(k)

¼ 4�

Z 1

0

dr
1

r

@

@r
r3C app(r)

� �
sin kr � S(k): ð11Þ

Since f (k) and g(k) are oscillatory functions around zero, we
can find values of P(k) at the zero points of f (k) as

P(ks) ¼
S(ks)

ksg2(ks)
for f (ks) ¼ 0; ð12Þ

assuming that P 0(k) is finite at the singularities, k ¼ ks. If the
cosmological parameters and the angular power spectrum are
given, we can solve equation (11) as a boundary value prob-
lem between the singularities.

However, because equation (11) is derived by adopting the
approximation in equation (6), C

app
l is different from the exact

angular spectrum C ex
l for the same initial spectrum. The errors

caused by the approximation, or the relative differences be-
tween C

app
l and C ex

l , are as large as about 30%. Thus, we
should not use the observed power spectrum Cobs

l directly in
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equation (10). Instead, we must find the C
app
l that would be

obtained for the actual P(k). Of course, this is impossible in
the rigorous sense, since it is the actual P(k) that we are to
reconstruct. It turns out to be possible, however, with accuracy
high enough for our present purpose, because we find that the
ratio

bl �
Cex
l

C
app
l

ð13Þ

is almost independent of P(k) (Matsumiya et al. 2003). Using
this fact, we first calculate the ratio, b

ð0Þ
l ¼C

exð0Þ
l =C

appð0Þ
l ,

for a known fiducial initial spectrum Pð0ÞðkÞ, such as the scale-
invariant one. Then, inserting Cobs

l =b
ð0Þ
l , which is much closer

to the actual C
app
l , into the source term of equation (11), we

may solve for P(k) with good accuracy.
In practice, we cannot take the upper bound of the integration

in the right-hand side of equation (11) to be infinite. The inte-
grand in equation (11) is oscillating with its amplitude in-
creasing with r. We therefore introduce a cutoff scale rcut.
However, this inevitably introduces a smoothing scale to our
method. As the cutoff scale is made larger, the rapid oscillations
of the integrand with increasing amplitude become numerically
uncontrollable. On the other hand, if the cutoff scale is made
smaller, the resolution in the k-space becomes worse as �k ’
�=rcut. In the actual calculations, to maintain as good a nu-
merical accuracy as possible and to obtain simultaneously as
fine a resolution in k-space as possible, we convolve an expo-
nentially decreasing function into the integration of the Fourier
sine transform with the optimized cutoff scale of rcut ’ 0:5d,
corresponding to � ’ 30�, or �l�6. Thus, the resolution of
the Fourier sine transform is limited to �kd ’ 6. We could not
adopt a finer resolution because of the numerical instability.
Nevertheless, the resolution of our method is much finer than
that of any other method. Note that there is an absolute theo-
retical limit rcutP 2d, or�kdk 1:5, because of the finite size of
the LSS sphere.

In this paper, we also account for the effect of observational
errors on the reconstructed P(k). First, for each l we draw a
random number from a Gaussian distribution whose mean
value is equal to a central value of the observed Cl and variance
is given by the diagonal term of the covariance matrix, and then
we reconstruct P(k) from each simulated data set. In fact, each
Cl is weakly correlated with other multipoles and follows a �2

distribution. However, our procedure is valid because the cor-
relation with other multipoles is weak enough and the �2 dis-
tribution is practically identical to the Gaussian distribution for
sufficiently large l where we analyze. We estimate the mean
value and the variance of the reconstructed P(k) at each k for
1000 realizations. We find that the intrinsic errors caused by our
inversion method itself, whose magnitude is estimated by
inverting Cl spectra calculated from artificial P(k) spectra
without observational errors, are much smaller than the ob-
servational errors of WMAP, except around the singularities
where the numerical errors are amplified.
To calculate Cex

l , we use a modified CMBFAST code with
much finer resolutions than the original one in both k and l. We
limit Cl in the range 20 � l � 700 in order not to use data that
have large observational errors due to the cosmic variance at
small l and the detector noise at large l. We adopt the fiducial

Fig. 1.—Primordial spectrum P(k) reconstructed from the WMAP data for
h ¼ 0:72, �b ¼ 0:047, �� ¼ 0:71, �m ¼ 0:29, and � ¼ 0:17. The solid curve
and the dashed curves represent the mean and the 1 	 errors, respectively, of
the reconstructed P(k), while the dash-dotted curves represent the 1 	 from the
scale invariance. The horizontal axis kd corresponds roughly to l. The sin-
gularities lie at kd ’ 70 and 430. Some prominent features are seen around
kd ’ 200 and 350. [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 2.—Dependence on the cutoff scale rcut. Top: Reconstructed P(k)
spectra from the WMAP data for rcut ’ 0:5d and 0.3d. We see that the reso-
lution becomes better as the cutoff scale is made larger. Bottom: Recovered Cl

spectra from the obtained P(k) spectra. [See the electronic edition of the
Journal for a color version of this figure.]
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initial spectrum, Pð0Þ(k), as the scale-invariant spectrum, and
the fiducial cosmological parameter set as h ¼ 0:72, �b ¼
0:047, �� ¼ 0:71, �m ¼ 0:29, and � ¼ 0:17, which are the
best-fit values to the WMAP data for the scale-invariant spec-
trum, k3P(k) ¼ A. In this case, the positions of the singularities
given by equation (12) are kd ’ 70, 430, 680, . . . , where
d ’ 1:34 ; 104 Mpc. Because the reconstructed P(k) around
the singularities has large numerical errors that are amplified by
the observational errors, we can obtain P(k) with good accuracy
in the limited range 120P kd P380 or 9:0 ; 10�3 Mpc�1P
k P2:8 ; 10�2 Mpc�1. Then, we vary some cosmological
parameters to examine how the shape of the reconstructed P(k)
is affected. That is, we also calculate for some cases of h ¼
0:65, 0.70, 0.75, 0.80, �b ¼ 0:03, 0.04, 0.05, 0.06, and
�� ¼ 0:65, 0.70, 0.75, 0.80, respectively. Note that since �
affects the shape of the power spectrum only on large scales,
except for the normalization, we use a fixed value as � ¼ 0:17.

3. RESULTS AND DISCUSSION

3.1. Reconstruction from Original Data

We show P(k) reconstructed from the WMAP data for the
fiducial cosmological parameter set, namely, h ¼ 0:72,

�b ¼ 0:047,�� ¼ 0:71,�m ¼ 0:29, and � ¼ 0:17, in Figure 1.
We can see oscillations whose amplitude is about 20%–30% of
the mean value with frequency (�kd )�1 ’ 1=15 1=10. To
check whether our method works correctly, we recalculate Cl

from the obtained P(k) in the range 120P kdP 380, assuming
scale invariance outside of this range, and compare it with the
observational data of WMAP. As mentioned in x 2, our method
reconstructs P(k) with a finite resolution, which is caused by
the cutoff scale of the Fourier sine integral. In Figure 2, we
compare the cases of rcut ’ 0:5d and ’0.3d, which lead to�l �
�kd ’ 6 or �k ’ 4:5 ; 10�4 Mpc�1, and �l��kd ’ 10 or
�k ’ 7:5 ; 10�4 Mpc�1, respectively. We find that the re-
calculated Cl spectra agree with the binned WMAP data cor-
responding to the respective smoothing scales as shown in
Figure 3. These agreements are quite impressive. We also
note that the characteristic frequency of oscillation changes
accordingly as we vary the cutoff scale, so the observed os-
cillatory behavior with frequency (�kd )�1 ’ 1=15 1=10 in
Figure 1 does not necessarily have fundamental meaning. We
confirm that the resolution becomes better as the cutoff scale is
made larger, in agreement with the relation �k ’ �=rcut. Of
course, we adopt the former resolution, the finest possible
scheme without numerical instability in subsequent sections.

Fig. 3.—Accuracy check of our reconstruction method. We show the cases of rcut ’ 0:5d, which leads to �l � 6 (top), and rcut ’ 0:3d, which leads to �l � 10
(bottom), from the relation �l � �kd ’ �d=rcut. Left: Comparison of the binned WMAP data, Cbin

l ( plus signs with error bars), with the angular power spectrum,
Cre
l (solid curve), recovered from the reconstructed P(k) shown in Fig. 2. Right: Relative errors, (Cbin

l � Cre
l )=C

re
l . The relative errors are small for most of the bins

except for those corresponding to the scales of the singularities. [See the electronic edition of the Journal for a color version of this figure.]
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3.2. Reconstruction from Binned Data

Figure 4 demonstrates the dependence of the reconstructed
P(k) on the bin size of the data. These P(k) spectra are re-
constructed from the binned WMAP data whose bin sizes are
�l ¼ 10, 20, and 50, by interpolating through the binned data
points. This is to see both global and local features in P(k). It
is found that the oscillatory feature becomes more prominent
as the bin size is made smaller, even if the spectrum globally
looks scale invariant. We emphasize that such nontrivial fea-
tures cannot be quantified in P(k) as long as conventional
parameter-fitting methods are used.

3.3. Statistical Analysis

To examine whether the oscillatory features are real, we
perform the following simulations and compare the results.
First, we assume a scale-invariant P(k) and calculate theoretical
Cl spectra for the fiducial cosmological parameter set. Then, we
make artificial data of Cl spectra with the same errors as those
of the WMAP data by drawing random numbers. We use these
artificial data to reconstruct P(k), assuming that the cosmo-
logical parameters are known. The resultant P(k) spectra for

some different realizations are shown in Figure 5. We can see
that these reconstructed spectra also have oscillatory features
whose amplitude and frequency are almost the same as the P(k)
from theWMAP data. This is caused purely by the scatter of the
data. In other words, even if P(k) is really scale invariant, it is
likely that the reconstructed P(k) looks oscillatory because of
the observational errors, and thus it is difficult to conclude
whether or not there are some significant features in the
reconstructed P(k) from the WMAP data. It is necessary to
quantify their significance.
For this purpose, we define the deviation from the scale

invariance in P(k) in the range between k1 and k2 as

D(k1; k2) �
Z k2

k1

dk k3P(k)� A
� �2 ð14Þ

and evaluate their statistical significance as follows. First, we
calculate D(k1; k2) for each reconstructed P(k) from mock Cl

data for the scale-invariant P(k) in the same simulation as
mentioned above, with the fiducial cosmological parameters.
Then, we estimate the probability that D(k1; k2) for the simu-
lation exceeds its observed value in the same range of k, by
counting such events for 10,000 realizations. We show the
results of this analysis in Table 1. It is found that only 1.41%
of the simulations exceed the observed value in the range
100 � kd � 400, and especially, only 0.39% in the range
175 � kd � 225 and 0.59% in the range 325 � kd � 375, from
which we may conclude that there are some possible devia-
tions around kd ’ 200 and ’350, as we can also see some
prominent features in Figure 1. This is consistent with
Spergel et al. (2003), who show the contribution to �2 per
multipole in Cl after fitting the �CDM model with the power
law P(k) to the data.

3.4. Cosmological Parameters

As is seen in Figure 1, the reconstructed P(k) exhibits se-
vere oscillations, reaching negative values locally around the
singularity kd ’ 430. One may wonder whether this is due to
an inappropriate choice of the fiducial cosmological parame-
ters, because if the different cosmological parameters from
actual values are adopted in the inversion, the reconstructed
P(k) is distorted from the real one, especially around the
singularities as shown by Matsumiya et al. (2003). We find,
however, that 39.36% of the simulations based on the scale-
invariant spectrum with the cosmological parameters fixed
to the fiducial values result in larger values of D(k1; k2)
in the range 380 � kd � 430. Hence, it is likely that the
severe oscillations observed in Figure 1 are not caused by
an inappropriate choice of the cosmological parameters but
are simply due to large observational errors. Still, it is im-
portant to see the dependence of the reconstructed P(k) on
the cosmological parameters, for the oscillatory features may
change and we may be able to find a better choice of their
values. In the ideal situations with sufficiently small obser-
vational errors, we may even constrain the cosmological
parameters by requiring that the reconstructed P(k) be pos-
itive definite.
Figure 6 depicts the dependence of the reconstructed P(k)

on the cosmological parameters. It is found that the oscil-
latory features remain, but the global amplitude and espe-
cially the sharpness of the oscillations around the second
singularity change. We also find some degree of degeneracy
between h, �b, and ��. In Figure 6, we can see that the

Fig. 4.—Reconstruction from the binned WMAP data. Top: Binned WMAP
data whose bin sizes are �l ¼ 10, 20, and 50; the solid curve represents the
fiducial model for the scale-invariant spectrum. Bottom: The P(k) spectra
reconstructed from the binnedWMAP data. As the bin size is made smaller, we
can see more oscillations. [See the electronic edition of the Journal for a color
version of this figure.]
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increase in h has a similar effect as the decrease in �b or
��, that is, the amplitude of the oscillations increases sim-
ilarly. This degeneracy, however, may be resolved if we
could observe fine structures. For example, the reconstructed
P(k) is practically insensitive to h in the range kdP250;
hence, variation in h may be distinguished from that of �b

or ��.
With the current magnitude of observational errors in Cl, we

encounter negative values of the reconstructed P(k) for the
scale-invariant spectrum. Hence, we need Cl with smaller
errors to apply this positivity criterion directly. In any case, we
should examine P(k) systematically for as many parameter
sets as possible beyond those shown in Figure 6, and we need
a statistical method to quantify the positivity criterion in the
presence of observational errors. This issue is currently under
study.

At present, we can reconstruct P(k) only in the range
100 P kd P400. If Cl data improve at lk700, we will be able
to obtain P(k) up to the third singularity, kd ’ 680. This ad-
ditional information on P(k) around the third singularity will
be important for constraining the cosmological parameters,
partly because of reduction in observational errors as dis-
cussed above and partly because the shape of P(k) around the

Fig. 5.—Primordial spectra P(k) reconstructed from artificial CMB data for four different realizations. The original spectrum is taken to be scale invariant, and
each realization is generated by drawing a random number to each Cl with the same error as the WMAP data, assuming that the cosmological parameters are known.
The same oscillatory features as shown in Fig. 1 are seen. [See the electronic edition of the Journal for a color version of this figure.]

TABLE 1

Statistical Significance of the Deviations from the

Scale Invariance

Range ½k1d; k2d�
Probability

(%)

[100, 150]..................................................... 18.20

[150, 200]..................................................... 9.72

[200, 250]..................................................... 3.08

[250, 300]..................................................... 83.31

[300, 350]..................................................... 16.52

[350, 400]..................................................... 2.23

[100, 400]..................................................... 1.41

[175, 225]..................................................... 0.39

[325, 375]..................................................... 0.59

[380, 430]..................................................... 39.36

Notes.—We show the probabilities that the deviation
D k1; k2ð Þ for the simulation exceeds its observed value in
various ranges k1d; k2d½ �. The simulations are performed for
the scale-invariant spectrum with the fiducial cosmological
parameters, which are assumed to be known.
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singularities is sensitive to the cosmological parameters, as
mentioned in x 3.3.

4. CONCLUSION

We have reconstructed the shape of the primordial spec-
trum, P(k), from the WMAP angular power spectrum data, Cl,
by the inversion method proposed by Matsumiya et al. (2002,
2003), under the assumptions that the universe is spatially flat
and the primordial fluctuations are purely adiabatic. First, we
have set the cosmological parameters as h ¼ 0:72, �b ¼
0:047, �� ¼ 0:71, �m ¼ 0:29, and � ¼ 0:17. We have ob-
tained an oscillatory P(k). The amplitude of oscillations is
about 20%–30% of the mean value, and the frequency is
about �kdð Þ�1’ 1=15–1=10, which reflects the resolution of
our method. We have also confirmed that the reconstructed
P(k) has good accuracy in the range 120P kd P 380, or
9:0 ; 10�3 Mpc�1P k P 2:8 ; 10�2 Mpc�1, with a resolution
of �kd ’ 5, or �k ’ 3:7 ; 10�4 Mpc�1. Thus, our inversion
method can reconstruct P(k) with a much finer resolution than
other methods proposed so far, such as the binning, wavelet
band powers, or direct wavelet expansion method (Wang et al.
1999a, 1999b; Hannestad 2001, 2003; Wang & Mathews 2002;
Bridle et al. 2003; Mukherjee & Wang 2003a, 2003b, 2003c).

To examine the statistical significance of possible nontrivial
features in the reconstructed spectrum, we have generated
10; 000 sets of mock CMB data from the scale-invariant
spectrum and reconstructed P(k) from these artificial data. We
have found that only 1.41% of them have the values of
D(k1; k2) larger than the observed value in the range 100 �
kd � 400, or 7:5 ; 10�3 Mpc�1P k P 3:0 ; 10�2 Mpc�1, only
0.39% in the range 175 � kd � 225, and 0.59% in the range
325 � kd � 375. From these results we conclude that there
are some possible deviations from scale invariance around
kd ’ 200, or k ’ 1:5 ; 10�2 Mpc�1, and kd ’ 350, or k ’
2:6 ; 10�2 Mpc�1. On the other hand, we conclude that the
severe oscillation of the reconstructed P(k) around the sin-
gularity kd ’ 430, which drives P(k) to negative values in
some regions, is due not to an inappropriate choice of the
cosmological parameters but to the large observational errors.
This is because we find a high probability around the singu-
larity kd ’ 430, or 39.36% in the range 380 � kd � 430.
There are some issues that we plan to investigate in detail.

First, it will be interesting to perform the reconstruction for a
much wider range of the cosmological parameters and obtain
systematic constraints on them, as mentioned in x 3.4. Second,
it may be necessary to apply the D(k1; k2) test to other smooth
forms of P(k), for example, to those reconstructed from the

Fig. 6.—Some cases of different cosmological parameter sets. We show the reconstructed P(k) from the WMAP data for h ¼ 0:65; 0:70; 0:75; 0:80, �b ¼ 0:04,
�� ¼ 0:70 (top left panel ), h ¼ 0:70, �b ¼ 0:03; 0:04; 0:05; 0:06, �� ¼ 0:70 (top right panel ), and h ¼ 0:70, �b ¼ 0:04, �� ¼ 0:65; 0:70; 0:75; 0:80 (bottom
panel ), respectively. The oscillatory features are roughly similar to each other throughout this range, but they are amplified around the second singularity in some
cases. [See the electronic edition of the Journal for a color version of this figure.]

KOGO ET AL.38 Vol. 607



binned data instead of the scale-invariant P(k), as discussed in
x 3.2, for various values of the cosmological parameters. This
is because the global shape of the reconstructed P(k) changes
depending on the cosmological parameters. Third, we should
extend our formalism to include the CMB polarization so
that it may be applied not only to the WMAP data but also to
future CMB observations, such as Planck.4 Inclusion of the
CMB polarization will constrain P(k) more severely, and if
the B-mode polarization is detected, we can investigate the
tensor mode of the primordial perturbations (Starobinsky 1979;

Rubakov, Sazhin, & Veryaskin 1982; Abbott & Wise 1984;
Polnarev 1985; Crittenden et al. 1993a; Crittenden, Davis, &
Steinhardt 1993b).
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