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ABSTRACT

We reconstruct the dark energy density �X (z) as a free function from current Type Ia supernova (SN Ia)
data, together with the cosmic microwave background (CMB) shift parameter from CMB data from the Wilkinson
Microwave Anisotropy Probe (WMAP), Cosmic Background Imager (CBI), and Arcminute Cosmology Bo-
lometer Array Receiver (ACBAR), and the large-scale structure (LSS) growth factor from the Two-Degree Field
(2dF) galaxy survey data. We parameterize �X (z) as a continuous function, given by interpolating its amplitudes
at equally spaced z-values in the redshift range covered by SN Ia data, and a constant at larger z [where �X (z) is
only weakly constrained by CMB data]. We assume a flat universe and use the Markov Chain Monte Carlo
(MCMC) technique in our analysis. We find that the dark energy density �X (z) is constant for 0P zP 0:5 and
increases with redshift z for 0:5P zP 1 at a 68.3% confidence level, but is consistent with a constant at a 95%
confidence level. For comparison, we also give constraints on a constant equation of state for the dark energy.
Flux averaging of SN Ia data is required to yield cosmological parameter constraints that are free of the bias
induced by weak gravitational lensing. We set up a consistent framework for flux-averaging analysis of SN Ia
data, based on the work of Wang. We find that flux averaging of SN Ia data leads to slightly lower �m and smaller
time variation in �X (z). This suggests that a significant increase in the number of SNe Ia from deep SN surveys
on a dedicated telescope is needed to place a robust constraint on the time dependence of the dark energy density.

Subject headings: cosmology: observations — cosmological parameters — supernovae: general

1. INTRODUCTION

Observational data of Type Ia supernovae (SNe Ia) indicate
that our universe is dominated by dark energy today (Riess
et al. 1998; Perlmutter et al. 1999). The nature of dark energy is
one of the great mysteries in cosmology at present. The time
dependence of the dark energy density �X (z) can illuminate
the nature of dark energy and help differentiate among the
various dark energy models (for example, Freese et al. 1987;
Peebles & Ratra 1988; Frieman et al. 1995; Caldwell, Dave, &
Steinhardt 1998; Dodelson, Kaplinghat, & Stewart 2000;
Deffayet 2001; Albrecht et al. 2002; Boyle, Caldwell, &
Kamionkowski 2002; Freese & Lewis 2002; Griest 2002;
Sahni & Shtanov 2003; Carroll, Hoffman, & Trodden 2003;
Farrar & Peebles 2003; see Padmanabhan 2003 and Peebles &
Ratra 2003 for reviews with more complete lists of references).

SNe Ia can be calibrated to be good cosmological standard
candles, with small dispersions in their peak luminosity
(Phillips 1993; Riess, Press, & Kirshner 1995). The measure-
ments of the distance-redshift relations of SNe Ia are most
promising for constraining the time variation of the dark
energy density �X (z). The luminosity distance dL(z) ¼ (1þ z)
r(z), with the comoving distance r(z) given by

r(z) ¼ cH�1
0

Z z

0

dz0

E(z0)
ð1Þ

for a flat universe, where

E(z) �
h
�m(1þ z)3 þ �k(1þ z)2 þ �X�X (z)=�X (0)

i1=2
;

ð2Þ

with �k � 1� �m � �X . If the dark energy equation of state
wX (z) ¼ w0 þ w1z, then

�X (z)

�X (0)
¼ e3w1z(1þ z)3(1þw0�w1): ð3Þ

The dark energy density �X (z) ¼ �X (0)(1þ z)3(1þw0) if the
dark energy equation of state is a constant given by w0.
Most researchers have chosen to study dark energy by

constraining the dark energy equation of state wX . However,
because of the smearing effect (Maor, Brustein, & Steinhardt
2001) arising from the multiple integrals relating wX (z) to the
luminosity distance of SNe Ia, dL(z), it is extremely hard to
constrain wX using SN data without making specific assump-
tions about wX (Barger & Marfatia 2001; Huterer & Turner
2001; Maor et al. 2002; Wasserman 2002). If we constrain the
dark energy density �X (z) instead, we minimize the smearing
effect by removing one integral (Wang & Garnavich 2001;
Tegmark 2002; Daly & Djorgovski 2003).
It is important that there are a number of other probes of

dark energy that are complementary to SN Ia data (for exam-
ple, see Podariu & Ratra 2001; Schulz & White 2001; Bean &
Melchiorri 2002; Hu 2002; Sereno 2002; Bernstein & Jain
2004; Huterer & Ma 2003; Jimenez 2003; Majumdar & Mohr
2004; Mukherjee et al. 2003; Munshi & Wang 2003; Munshi,
Porciani, & Wang 2004; Seo & Eisenstein 2003; Viel et al.
2003; Weller & Lewis 2003; Zhu & Fujimoto 2003). Since
different methods differ in systematic uncertainties, the com-
parison of them allows for consistency checks, while the com-
bination of them could yield tighter constraints on dark energy
(for example, see Gerke & Efstathiou 2002; Hannestad &
Mortsell 2002; Kujat et al. 2002).
The most pressing question about dark energy that can be

addressed by observational data is whether the dark energy
density varies with time. In order to constrain the time
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variation of dark energy density in a robust manner, it is im-
portant that we allow the dark energy density to be an arbitrary
function of redshift z (Wang & Garnavich 2001; Wang &
Lovelace 2001; Wang et al. 2003). In this paper, we present a
model-independent reconstruction of the dark energy density
�X (z), using SN Ia data published recently by the High-z
Supernova Search Team (HZT) and the Supernova Cosmology
Project (SCP) (Tonry et al. 2003; Barris et al. 2004; Knop
et al. 2003), together with constraints from cosmic microwave
background (CMB) data from the Wilkinson Microwave An-
isotropy Probe (WMAP; Bennett et al. 2003), Cosmic Back-
ground Imager (CBI; Pearson et al. 2003), and Arcminute
Cosmology Bolometer Array Receiver (ACBAR; Kuo et al.
2004), and large-scale structure (LSS) data from the Two-
Degree Field (2dF) galaxy survey (Percival et al. 2002).

Note that for clarity of presentation, we label the samples of
SNe Ia that we use according to the papers in which they were
published. Hence we refer to the 194 SNe Ia from Tonry et al.
(2003) and Barris et al. (2004) as the ‘‘Tonry/Barris sample’’
and the 58 SNe Ia from Knop et al. (2003) as the ‘‘Knop
sample.’’

Flux averaging of SN Ia data is required to yield cosmo-
logical parameter constraints that are free of the bias induced
by weak gravitational lensing (Wang 2000b). In this paper, we
set up a consistent framework for flux-averaging analysis of
SN Ia data, based on Wang (2000b).

We assume a flat universe, and use the Markov Chain
Monte Carlo (MCMC) technique in our analysis.

Section 2 contains a consistent framework for flux-averaging
analysis. We present our constraints on dark energy in x 3. A
summary and discussion follow in x 4.

2. A CONSISTENT FRAMEWORK FOR
FLUX-AVERAGING ANALYSIS

Since our universe is inhomogeneous in matter distribution,
weak gravitational lensing by galaxies is one of the main
systematics2 in the use of SNe Ia as cosmological standard
candles (Kantowski, Vaughan, & Branch 1995; Frieman 1997;
Wambsganss et al. 1997; Holz & Wald 1998; Metcalf & Silk
1999; Wang 1999; Wang, Holz, & Munshi 2002; Munshi &
Wang 2003). Flux averaging justifies the use of the distance-
redshift relation for a smooth universe in the analysis of SN Ia
data (Wang 2000b). Flux averaging of SN Ia data is required
to yield cosmological parameter constraints that are free of the
bias induced by weak gravitational lensing (Wang 2000b).3

Here we set up a consistent framework for flux-averaging
analysis of SN Ia data, based on Wang (2000b).

2.1. Why Flux Averaging?

The reason that flux averaging can remove or reduce
gravitational-lensing bias is that because of flux conservation,
the average magnification of a sufficient number of standard
candles at the same redshift is 1.

The observed flux from a SN Ia can be written as

F(z) ¼ Fint �;

Fint ¼ F tr(zjstr)þ�Fint; ð4Þ

where F tr(zjstr) is the predicted flux due to the true cosmo-
logical model parameterized by the set of cosmological
parameters {str}, �Fint is the uncertainty in SN Ia peak
brightness due to intrinsic variations in SN Ia peak luminosity
and observational uncertainties, and � is the magnification due
to gravitational lensing by intervening matter. Therefore,

�F2 ¼ �2 �Fintð Þ2þ Fintð Þ2 ��ð Þ2: ð5Þ

Without flux averaging, we have

�2
Ndata

(str) ¼
X
i

F(zi)� F tr(zijstr)½ �2

�2
F; i

¼
X
i

F tr(zi)(�i � 1)½ �2þ�2
i �F

ið Þ
int

h i2
�2
F; i

þ 2
X
i

F tr(zi)�F
ið Þ
int �i(�i � 1)

�2
F; i

¼ Ndata þ 2
X
i

F tr(zi)�F
ið Þ
int �i(�i � 1)

�2
F; i

: ð6Þ

The flux averaging described in x 2.3 leads to the flux in
each redshift bin

F(zibin ) ¼ F tr(zibin )h�iibin þ h��Fintiibin : ð7Þ

For a sufficiently large number of SNe Ia in the ith bin,
h�iibin ¼ 1. Hence

�2
Nbin

(str) ’
XNbin

ibin

�
h��Fintiibin

�2
�2
F; ibin

’
XNbin

ibin

�
h�Fintiibin

�2
�2
F; ibin

< Nbin ð8Þ

Comparison of equations (8) and (6) shows that flux averaging
can remove or reduce the gravitational lensing effect and leads
to a smaller �2 per degree of freedom for the true model,
compared to that produced without flux averaging.

2.2. Flux Statistics versus Magnitude Statistics

Normally distributed measurement errors are required if the
�2 parameter estimate is to be a maximum likelihood esti-
mator (Press et al. 1994). Hence, it is important that we use the
�2 statistics with an observable that has a error distribution
closest to Gaussian.

So far, it has been assumed that the distribution of observed
SN Ia peak brightness is Gaussian in magnitudes. Therefore,
for a given set of cosmological parameters {s}

�2 ¼
X
i

�0(zi)� �p
0(zijs)

� �2
�2
�0

; ð9Þ

where �p
0(z) ¼ 5 log dL(z)=Mpc½ � þ 25, and dL(z) ¼ (1þ z)r(z)

is the luminosity distance.
However, while we do not have a very clear understanding

of how the intrinsic dispersions in SN Ia peak luminosity are
distributed, the distribution of observational uncertainties in
SN Ia peak brightness is Gaussian in flux, since CCDs have
replaced photometric plates as detectors of photons.

2 The others systematics are possible gray dust (Aguirre 1999) and SN Ia
peak luminosity evolution (Drell, Loredo, & Wasserman 2000; Riess et al.
1999; Wang 2000b); so far, there is no clear evidence of either.

3 To avoid missing the faint end (which is fortunately steep) of the mag-
nification distribution of observed SNe Ia, only SNe Ia detected well above the
threshold should be used in flux averaging.
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In this paper, we assume that the intrinsic dispersions in SN
Ia peak brightness is Gaussian in flux, and not in magnitude
as assumed in all previous publications. The justifications for
this preference will be presented in detail elsewhere (Y. Wang
et al. 2004, in preparation).4 Thus,

�2
Ndata

(s) ¼
X
i

F(zi)� Fp(zijs)½ �2

�2
F; i

: ð10Þ

Since the peak brightness of SNe Ia have been given in
magnitudes with symmetric error bars, mpeak � �m, we obtain
equivalent errors in flux as follows:

�F � F(mpeak þ �m)� F(mpeak � �m)

2
: ð11Þ

We will refer to equation (9) as ‘‘magnitude statistics’’ and
equation (10) as ‘‘flux statistics.’’ For reference and compar-
ison, we present results in both magnitude statistics and flux
statistics in this paper. However, a consistent framework for
flux averaging is only straightforward in flux statistics.5

2.3. A Recipe for Flux Averaging

The procedure for flux averaging in Wang (2000b) is for
minimizing �2 using the subroutines from Press et al. (1994).
As described in Wang (2000b), the fluxes of SNe Ia in a
redshift bin should only be averaged after removing their
redshift dependence, which is a model-dependent process. For
�2 statistics using MCMC or a grid of parameters, here are
the steps in flux averaging:

1. Convert the distance modulus of SNe Ia into ‘‘fluxes,’’

F(zj) � 10� �0(zj)�25½ �=2:5 ¼ ddataL (z)

Mpc

� ��2

: ð12Þ

2. For a given set of cosmological parameters {s}, obtain
‘‘absolute luminosities’’ {L(zj)} by removing the redshift de-
pendence of the fluxes, i.e.,

L(zj) � d2L(zjjs)F(zj): ð13Þ

3. Flux average the ‘‘absolute luminosities’’ {Li
j} in each

redshift bin i to obtain Li
:

Li ¼ 1

N

XN
j¼1

Li
j(z

i
j);

zi ¼
1

N

XN
j¼1

z ij; ð14Þ

4. Place Li
at the mean redshift zi of the ith redshift bin,

and now the binned flux is

F(zi) ¼ Li
=d2L(zijs) ð15Þ

The 1 � error on each binned data point F
i
, �F

i , is taken to be
the rms of the 1 � errors on the unbinned data points in the
ith redshift bin, {Fi

j} ( j ¼ 1; 2; : : : ;N ), multiplied by 1=N1=2

(see Wang 2000a).

5. For the flux-averaged data, F(zi), we find

�2 ¼
X
i

F(zi)� Fp(zijs)
� �2

�2
F; i

; ð16Þ

where Fp(zijs) ¼ dL(zjs)=Mpc½ ��2
.

3. CONSTRAINTS ON DARK ENERGY

The Tonry/Barris SN Ia sample consists of 194 SNe Ia with
z > 0:01 and extinction AV < 0:5 (Tonry et al. 2003; Barris
et al. 2004). To examine the effect of the two SNe Ia at the
high-redshift end (z ¼ 1:199 and z ¼ 1:755, respectively), we
also present the results for 193 SNe Ia (omitting the SN Ia
at z ¼ 1:755) and 192 SNe Ia (omitting the two SNe Ia at
z ¼ 1:199 and z ¼ 1:755).
The Knop SN Ia sample consists of 58 SNe Ia (the ‘‘All

SCP SNe’’ data set from Knop et al. 2003). These data should
be compared with meA

B ¼ 5 log H0dLð Þ þ oAset, with

oAset ¼ 5 log 2997:9=hð Þ þ 25þMSN; ð17Þ

where MSN is the peak absolute magnitude of SNe Ia. Note
that for the Knop sample, the flux statistics must be done with
a revised definition of flux,

F(z) ¼ H0dL(z)½ �data

Mpc

 !�2

¼ 10�2 mB
eA�oAsetð Þ=5; ð18Þ

to be compared with the theoretical prediction of Fp(zjs) ¼
H0dL(zjs)=Mpc½ ��2

for a given set of cosmological parame-
ters {s}.
Note that an additional uncertainty from the redshift dis-

persion due to peculiar velocity must be added to the uncer-
tainty of each SN Ia data point. The Knop sample already
includes a dispersion of 300 km s�1 along the line of sight.
To add 500 km s�1 dispersion in z to the SN data in the
Tonry/Barris sample, one must propagate �z ¼ c�1500 km s�1

into an additional uncertainty in the luminosity distance dL(z),
then add it in quadrature to the published uncertainty in dL(z).
Note that this process is dependent on the cosmological
model and must be done for each set of cosmological pa-
rameters during the likelihood analysis (Riess et al. 1998;
Wang 2000b).
To obtain tighter constraints on dark energy, we also include

constraints from CMB and LSS in our analysis. Since CMB
data clearly indicate that we live in a flat universe, we assume
�m þ �X ¼ 1 in all our results.6

We use the MCMC technique,7 illustrated for example in
Lewis & Bridle (2002), in the likelihood analysis. At its best,
the MCMC method scales approximately linearly in compu-
tation time with the number of parameters. The method
samples from the full posterior distribution of the parameters,
and from these samples the marginalized posterior distri-
butions of the parameters can be estimated. We have derived

4 Our study of intrinsic peak luminosities of nearby SNe Ia shows that their
distribution is much more Gaussian in flux than in magnitude.

5 If the dispersions in SN Ia peak brightness were Gaussian in magnitude,
flux averaging would introduce a small bias.

6 Allowing both �m and �X to vary would lead to greatly increased un-
certainty in dark energy constraints, such that no interesting constraints could
be obtained from current data.

7 For a review, see R. M. Neal’s paper available via anonymous ftp at
ftp://ftp.cs.utoronto.ca/pub in the file /radford/review.ps.gz.
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all our probability distribution functions (PDFs) of the cos-
mological parameters from 106 MCMC samples.

3.1. The Likelihood Analysis

We use a �2 statistic

�2 ¼ �2
SN þ �2

CMB þ �2
LSS; ð19Þ

where �2
SN is given by equations (16) and (10) for flux sta-

tistics (with and without flux averaging), and equation (9) for
magnitude statistics. �2

CMB and �2
LSS are contributions from

CMB and LSS data, respectively. The likelihood L / e��2=2 if
the measurement errors are Gaussian (Press et al. 1994).

When the cosmological parameters are varied, the shift in
the whole CMB angular spectrum is determined by the shift
parameter (Bond, Efstathiou, & Tegmark 1997; Melchiorri
et al. 2003; Ödman at el. 2002)

R ¼
ffiffiffiffiffiffiffi
�m

p
H0 r (zdec); ð20Þ

where r(zdec) denotes the comoving distance to the decoupling
surface in a flat universe. Note that this is a robust way to
include CMB constraints since the CMB depends on �m and
h in the combination of the physical parameter �mh

2. The
results from CMB data correspond to R0 ¼ 1:716 � 0:062
(using results in Spergel et al. 2003). We include the CMB
data in our analysis by adding �2

CMB ¼ (R�R0)=�R½ �2,
where R is computed for each model using equation (20).

Following Knop et al. (2003), we include the LSS con-
straints from 2dF in terms of the growth parameter f ¼
d lnD=d ln a, where a is the cosmic scale factor, and D is the
linear fluctuation growth factor D(t) ¼ �(1)(x; t)=�(x), given by

D̈(t)þ 2H(z)Ḋ(t)� 3

2
�mH

2
0 (1þ z)3D(t) ¼ 0; ð21Þ

where the dots denote derivatives with respect to t. The Hubble
parameter H(z) ¼ H0E(z) (see eq. [2]). Since � ¼ f =b1, the
2dF constraints of �(z � 0:15) ¼ 0:49 � 0:09 (Hawkins et al.
2003) and b1 ¼ 1:04 � 0:11 (Verde et al. 2002) yield f0 �
f (z ¼ 0:15) ¼ 0:51 � 0:11. We include the 2dF constraints
in our analysis by adding �2

LSS ¼ ½ f (z ¼ 0:15)� f0�=�f0

� �2
,

where f ¼ d lnD=d ln a is computed for each model using D
obtained by numerically integrating equation (21).

Note that we have chosen to use only the most conservative
and robust information, the CMB shift parameter and the LSS
growth factor, from CMB and LSS observations.8 It is im-
portant that the limits on these are independent of the as-
sumption on dark energy made in the CMB and LSS data
analysis. Furthermore, by limiting the amount of information
that we use from CMB and LSS observations to complement
the SN Ia data, we minimize the effect of the systematics
inherent in the CMB and LSS data on our results.

3.2. Constraints on a Constant Dark Energy
Equation of State w0

The most popular and simplest assumption about dark en-
ergy is that it has a constant equation of state w0. Here we
present constraints on a constant dark energy equation of state.

Figure 1 shows the marginalized PDF of the matter density
fraction �m, the dimensionless Hubble constant h, and the
constant dark energy equation of state w0.

The first four rows of figures in Figure 1 are results obtained
using the Tonry/Barris SN Ia sample, requiring that z > 0:01
and extinction AV < 0:5 (which yields a total of 194 SNe Ia).
To examine the effect of two SNe Ia at the high-redshift end
(z ¼ 1:199 and z ¼ 1:755, respectively), we also present
the results for 193 SNe Ia (omitting the SN Ia at z ¼ 1:755)
and 192 SNe Ia (omitting the two SNe Ia at z ¼ 1:199 and
z ¼ 1:755). The solid, dotted, and dashed lines indicate the
results for 192, 193, and 194 SNe Ia, respectively.

The first two rows of figures in Figure 1 are results for SN Ia
data from the Tonry/Barris sample only, without ( first row)
and with (second row) flux averaging (�z ¼ 0:05). Note that
inclusion of the two highest redshift SNe Ia at z ¼ 1:199 and
z ¼ 1:755 leads to slightly higher �m and more negative w0.
Flux averaging leads to a broader PDF for �m, with somewhat
lower mean �m, and a broader PDF for h.

The third and fourth rows of figures in Figure 1 are results for
SN Ia data from the Tonry/Barris sample, combined with con-
straints from CMB and LSS data. The inclusion of the two
highest redshift SNe Ia at z ¼ 1:199 and z ¼ 1:755 makes less
difference in the estimated parameters, since the inclusion of the
CMB and LSS data reduces the relative weight of these two data
points. The main effect of flux averaging is a broader PDF for h.

The fifth row of figures in Figure 1 are results obtained
using 58 SNe Ia from the Knop sample, using flux-averaged
statistics (solid lines) and magnitude statistics (dotted lines),
respectively. Note that flux averaging significantly broadens
all the PDFs. The central figure is equivalent to a PDF in h (see
eq. [17]). These are consistent with similar results derived
using the SNe Ia from the Tonry/Barris sample (third row of
figures in Fig. 1).

Table 1 gives the marginalized 68.3% and 95% confidence
levels (CLs) of �m, h, and w0. These have been computed
using 106 MCMC samples.

3.3. Constraints on Dark Energy Density as a Free Function

To place model-independent constraints on dark energy, we
parameterize �X (z) as a continuous function, given by inter-
polating its amplitudes at equally spaced z-values in the red-
shift range covered by SN Ia data (0 � z � zmax), and a
constant at larger z [z > zmax, where �X (z) is only weakly
constrained by CMB data]. The values of the dimensionless
dark energy density fi � �(zi)=�X (0) (i ¼ 1; 2; : : : ; nf ) are the
independent variables to be estimated from data. We inter-
polate �X (z) using a polynomial of order nf for 0 � z � z max.

Since the present data cannot constrain �X (z) for nf > 2, we
present results for nf ¼ 2, i.e., with �X (z) parameterized by its
values at z ¼ zmax=2, zmax.

Figure 2 shows the marginalized PDF of the matter density
fraction �m ( first column), the dimensionless Hubble constant
h (second column), and dimensionless dark energy density at
z ¼ zmax=2 and z ¼ zmax (third and fourth columns, respec-
tively), obtained using current SN Ia data (Tonry et al. 2003;
Barris et al. 2004; Knop et al. 2003), flux averaged and
combined with CMB and 2dF data. The first three rows of
figures are results for 192, 193, and 194 SNe Ia from the
Tonry/Barris sample, while the fourth row are results for 58
SNe Ia from the Knop sample. The dark energy density at
z ¼ zmax is not well constrained when the z ¼ 1:755 SN Ia is
included in the analysis; this is as expected since this extends
�X (z) to zmax ¼ 1:755, with only one SN Ia at z > 1:2.

Note that when the estimated parameters are well con-
strained, flux averaging generally leads to slightly lower
estimates of �m and �X (z) (at z ¼ zmax=2 and z ¼ zmax).

8 These observations provide a vast amount of information as detailed in
the publications from the WMAP and 2dF teams.
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Table 2 gives the marginalized 68.3% and 95% CLs of �m,
h, �X (zmax=2)=�X (0), and �X (zmax)=�X (0). These have been
computed using 106 MCMC samples.

Figure 3 shows the dark energy density �X (z) reconstructed
from current SN Ia (the Tonry/Barris sample and the Knop
sample), CMB, and LSS data. The heavy and light lines in-
dicate the 68.3% and 95% CLs, respectively, of the recon-
structed �X (z). The dot-dashed line indicates the cosmological
constant model, �X (z)=�X (0) ¼ 1. The 68.3% and 95% CLs
of �X (z) are marginalized confidence levels, computed at each
z using 106 MCMC samples, with the correlation between
�X (0:5 zmax) and �X (zmax) fully included.

Figure 3a shows the reconstructed �X (z) using 192, 193, and
194 SNe Ia from the Tonry/Barris sample, flux averaged and
combined with CMB and LSS data. The densely and sparsely
shaded regions are the 68.3% and 95% CLs, respectively, of

�X (z) for 192 SNe Ia (at z � 1:056). The heavy and light lines
are the 68.3% and 95% CLs, respectively, of �X (z) for 193
(dotted lines) and 194 SNe Ia (dashed lines). Note that the
�X (z) reconstructed from 193 SNe Ia (adding the SN Ia at
z ¼ 1:199) nearly overlaps from that from 192 SNe Ia for
z P 1:056. However, the �X (z) reconstructed from 194 SNe Ia
(adding the SNe Ia at z ¼ 1:199 and z ¼ 1:755) deviates no-
tably from that from 192 SNe Ia for 0:7P zP1:056, although
the 68.3% CL regions overlap. Clearly, the reconstructed �X (z)
is constant for 0P zP0:5 and increases with redshift z for
0:5P zP1 at 68.3% CL but is consistent with a constant at
95% CL. We note that at 90% CL, �X (0:5zmax)=�(0) ¼
½0:83; 1:59�, and �X (zmax)=�(0) ¼ ½1:03; 6:85�; this indicates
that �X (z) varies with time at approximately 90% CL.
Figure 3b shows the reconstructed �X (z) using 192 SNe Ia

from the Tonry/Barris sample (same as in Fig. 3a) and that

Fig. 1.—Marginalized probability distributions of �m, h, and the constant equation of state for the dark energy w0
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TABLE 1

Estimated Cosmological Parameters Assuming wX (z) ¼ w0

Type of Data �m ha w0 �2
min/Ndof

b

Tonry/Barris Sample 192 SNe (zmax ¼ 1:056)

Binned fluxc ........................ 0.47, [0.36, 0.57], [0.14, 0.63] 0.661, [0.645, 0.674], [0.631, 0.690] �2.37, [�3.56, �1.20], [�5.34, -0.69] 13.34/19

Unbinned flux ..................... 0.47, [0.43, 0.52], [0.34, 0.55] 0.656, [0.644, 0.666], [0.636, 0.676] �3.08, [�4.09, �2.08], [�5.50, �1.46] 209.10/189

Unbinned magnitude........... 0.49, [0.41, 0.57], [0.22, 0.61] 0.662, [0.651, 0.671], [0.644, 0.681] �2.25, [�3.18, �1.34], [�4.36, �0.80] 193.36/189

Tonry/Barris Sample 193 SNe (zmax ¼ 1:199)

Binned fluxc ........................ 0.48, [0.39, 0.58], [0.18, 0.63] 0.661, [0.645, 0.676], [0.631, 0.690] �2.53, [�3.85, �1.30], [�5.54, �0.73] 14.36/20

Unbinned flux ..................... 0.48, [0.43, 0.52], [0.35, 0.56] 0.656, [0.645, 0.665], [0.637, 0.676] �3.13, [�4.10, �2.13], [�5.64, �1.50] 210.56/190

Unbinned magnitude........... 0.51, [0.44, 0.58], [0.29, 0.62] 0.663, [0.653, 0.671], [0.644, 0.683] �2.47 [�3.42, �1.49], [�5.14, �0.91] 194.86/190

Tonry/Barris Sample 194 SNe (zmax ¼ 1:755)

Binned fluxc ........................ 0.49, [0.40, 0.58], [0.20, 0.63] 0.661, [0.645, 0.675], [0.632, 0.690] �2.54, [�3.80, �1.34], [�5.62, �0.76] 14.40/21

Unbinned flux ..................... 0.48, [0.44, 0.53], [0.37, 0.56] 0.656, [0.645, 0.665], [0.637, 0.675] �3.17, [�4.13, �2.22], [�5.47, �1.58] 210.74/191

Unbinned magnitude........... 0.51, [0.45, 0.58], [0.30, 0.62] 0.663, [0.653, 0.671], [0.644, 0.683] �2.51, [�3.46, �1.55], [�4.97, �0.95] 194.88/191

Tonry/Barris Sample 192 SNe (zmax ¼ 1:056) + CMB and LSS

Binned fluxc ........................ 0.28, [0.23, 0.33], [0.19, 0.39] 0.652, [0.638, 0.665], [0.627, 0.677] �0.95, [�1.09, �0.82], [�1.27, �0.72] 15.44/21

Unbinned flux ..................... 0.26, [0.22, 0.31], [0.18, 0.36] 0.643, [0.634, 0.650], [0.627, 0.657] �1.15, [�1.29, �1.00], [�1.53, �0.90] 216.76/191

Unbinned magnitude........... 0.29, [0.24, 0.34], [0.21, 0.39] 0.654, [0.646, 0.661], [0.639, 0.668] �0.95, [�1.07, �0.83], [�1.24, �0.74] 196.60/191

Tonry/Barris Sample 193 SNe (zmax ¼ 1:199) + CMB and LSS

Binned fluxc ........................ 0.29, [0.24, 0.34], [0.20, 0.39] 0.652, [0.638, 0.663, [0.626, 0.676] �0.95, [�1.08, �0.82] [�1.27, �0.71] 17.04/22

Unbinned flux ..................... 0.27, [0.22, 0.31], [0.18, 0.37] 0.643, [0.635, 0.650], [0.627, 0.658] �1.15, [�1.29, �1.00], [�1.54, �0.90] 219.00/192

Unbinned magnitude........... 0.30, [0.25, 0.35], [0.21, 0.40] 0.654, [0.645, 0.660], [0.638, 0.667] �0.95, [�1.07, �0.82], [�1.25, �0.74] 199.04/192

Tonry/Barris Sample 194 SNe (zmax ¼ 1:755) + CMB and LSS

Binned fluxc ........................ 0.29, [0.24, 0.34], [0.20, 0.40] 0.651, [0.638, 0.663], [0.625, 0.676] �0.95, [�1.08, �0.81], [�1.28, �0.71] 17.44/23

Unbinned flux ..................... 0.27, [0.22, 0.32], [0.18, 0.37] 0.642, [0.634, 0.650], [0.627, 0.657] �1.15, [�1.31, �1.00], [�1.57, �0.90] 219.8/193

Unbinned magnitude........... 0.30, [0.25, 0.35], [0.21, 0.41] 0.654, [0.645, 0.660], [0.638, 0.668] �0.95, [�1.07, �0.82], [�1.27, �0.73] 199.50/193

58 Knop Sample SNe (zmax ¼ 0:863) + CMB and LSS

Binned fluxc ........................ 0.22, [0.15, 0.28], [0.11, 0.36] 0.414, [0.347, 0.480], [0.286, 0.547]d �1.20, [�1.45, �0.96], [�1.73, �0.74] 9.1/13

Unbinned flux ..................... 0.21, [0.16, 0.26], [0.13, 0.32] 0.395, [0.356, 0.434], [0.321, 0.471]d �1.18, [�1.34, �1.02], [�1.54, �0.88] 61.34/57

Unbinned magnitude........... 0.27, [0.21, 0.32], [0.17, 0.39] 0.367, [0.331, 0.406], [0.295, 0.441]d �0.99, [�1.15, �0.83], [�1.34, �0.70] 55.86/57

Note.—Parameters are given for the mean, 68.3%, and 95% confidence levels, respectively.
a Statistical error only, not including the contribution from the much larger SN Ia absolute magnitude error of � int

h ’ 0:05 (see x 4).
b The number of degrees of freedom.
c Flux averaged with �z ¼ 0:05.
d Offset �23.5.



from the 58 SNe Ia of the Knop sample (dotted lines). The
68.3% CL regions overlap. However, the 58 SCP SNe Ia seem
to favor �X (z) P1 at 0 P z P 0:5 and has much larger uncer-
tainties at z k 0:5.

3.4. Comparison with Previous Work

The SN observational teams have published their data to-
gether with constraints on a constant dark energy equation of
state (Tonry et al. 2003; Knop et al. 2003). These results
should be compared with our results for a constant wX (z)
using magnitude statistics (see Table 1). Using a 2dF prior of
�mh ¼ 0:20 � 0:03 (Percival et al. 2002) and assuming a flat
universe, Tonry et al. (2003) found that �1:48 < w0 < �0:72
at 95% CL; this is close to �1:24 < w0 < �0:74 at 95% CL
(using 192 SNe Ia together with CMB and LSS constraints as
discussed in x 3.1) from Table 1. Using the same CMB and
LSS constraints as us and assuming a flat universe, Knop
et al. (2003) found that w0 ¼ �1:05þ0:15

�0:20 (statistical) �0:09
(identified systematics) at 68.3% CL: close to our results of
w0 ¼ �0:99 � 0:16 at 68.3% CL.

At the completion of our analysis, we became aware that
Alam et al. (2003) and Choudhury & Padmanabhan (2003)
have found that current SN Ia data favor wX (z) < �1. Al-
though our results are qualitatively consistent with these, there

are significant differences in both analysis technique and
quantitative results.
Alam et al. (2003) used 172 SNe Ia from Tonry et al. (2003)

and obtained a reconstructed wX (z) that deviates quite sig-
nificantly from wX (z) ¼ �1. In their paper, Figures 3 and 14
(both assuming �m ¼ 0:3) are consistent with our findings.
We note that some of their reconstructed wX (z)’s (see their
Figs. 4, 6, 8, 10, and 16) have decreasing errors for z k 1:2
(where there are only two SNe Ia). This illustrates the fact that
while free-fitting forms for �X (z) or wX (z) generally give in-
creasing errors with redshift (large error when there are very
few observed SNe Ia; see Fig. 3 of this paper), this may not be
true for other parameterizations (such as used in Alam et al.
2003).
Choudhury & Padmanabhan (2004) used 194 SNe Ia (the

Tonry/Barris sample) and presented their results for wX (z) ¼
w0 þ w1z=(1þ z) with �m ¼ 0:29, 0.34, and 0.39 (no mar-
ginalization over �m).

4. SUMMARY AND DISCUSSION

In order to place model-independent constraints on dark
energy, we have reconstructed the dark energy density �X (z)
as a free function from current SN Ia data (Tonry et al. 2003;
Barris et al. 2004; Knop et al. 2003), together with CMB and

Fig. 2.—Marginalized probability distributions of �m, h, and dimensionless dark energy density at z ¼ zmax=2 and z ¼ zmax
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TABLE 2

Estimated Cosmological Parameters for Arbitrary �X (z), from SN Ia Data Combined with CMB and LSS Data

Type of Data �m ha �X (0:5zmax)=�X (0) �X (zmax)=�X (0) �2
min/Ndof

b

Tonry/Barris Sample 192 SNe (zmax ¼ 1.056)

Binned fluxc ........................ 0.33, [0.27, 0.39], [0.22, 0.46] 0.660, [0.644, 0.673], [0.630, 0.688] 1.19, [0.97, 1.42], [0.76, 1.67] 3.61, [0.84, 5.41], [0.73, 7.53] 13.28/20

Unbinned flux ..................... 0.34, [0.28, 0.39], [0.24, 0.45] 0.655, [0.645, 0.663], [0.637, 0.671] 1.09, [0.88, 1.31], [0.67, 1.56] 5.02, [3.27, 6.82], [1.98, 9.15] 208.26/190

Unbinned magnitude........... 0.34, [0.28, 0.40], [0.23, 0.46] 0.662, [0.652, 0.670], [0.645, 0.678] 1.22, [1.01, 1.43], [0.80, 1.66] 3.75, [2.05, 5.40], [0.94, 7.76] 193.30/190

Tonry/Barris Sample 193 SNe (zmax ¼ 1:199)

Binned fluxc ........................ 0.35, [0.28, 0.41], [0.23, 0.48] 0.660, [0.645, 0.674], [0.631, 0.688] 1.39, [1.08, 1.69], [0.84, 2.10] 4.95, [2.55, 7.34], [0.88, 10.35] 14.24/21

Unbinned flux ..................... 0.36, [0.30, 0.42], [0.25, 0.49] 0.656, [0.645, 0.664], [0.637, 0.672] 1.44, [1.06, 1.82], [0.80, 2.41] 7.50, [4.39, 10.69], [2.57, 15.57] 209.42/191

Unbinned magnitude........... 0.36, [0.30, 0.42], [0.25, 0.48] 0.662, [0.653, 0.670], [0.645, 0.678] 1.42, [1.13, 1.71], [0.89, 2.08] 5.14, [2.88, 7.43], [1.41, 10.62] 194.50/191

Tonry/Barris Sample 194 SNe (zmax ¼ 1:755)

Binned fluxc ........................ 0.40, [0.32, 0.48], [0.25, 0.54] 0.661, [0.646, 0.675], [0.632, 0.688] 3.26, [1.76, 4.76], [1.02, 5.75] 15.64, [6.22, 25.30], [0.92, 30.53] 14.5/22

Unbinned flux ..................... 0.38, [0.32, 0.43], [0.27, 0.48] 0.654, [0.644, 0.662], [0.637, 0.670] 2.85, [1.88, 3.81], [1.18, 4.69] 14.78, [[.77, 20.58], [4.36, 25.83] 209.88/192

Unbinned magnitude........... 0.38, [0.31, 0.44], [0.26, 0.50] 0.662, [0.652, 0.669], [0.645, 0.678] 2.48, [1.66, 3.54], [1.22, 4.35] 10.60, [5.41, 17.81], [2.68, 21.80] 194.70/192

Knop Sample 58 SNe (zmax ¼ 0.863)

Binned fluxc ........................ 0.34, [0.25, 0.43], [0.18, 0.52] 0.311, [0.210, 0.409], [0.127, 0.509]d 0.91, [0.59, 1.22], [0.38, 1.61] 5.92, [2.13, 9.73], [0.58, 13.21] 7.2/12

Unbinned flux ..................... 0.26, [0.18, 0.33], [0.12, 0.41] 0.381, [0.331, 0.428], [0.286, 0.474]d 0.85, [0.67, 1.03], [0.50, 1.21] 1.96, [0.53, 3.55], [0.09, 5.450] 61.32/56

Unbinned magnitude........... 0.39, [0.30 0.48], [0.22, 0.56] 0.309, [0.256, 0.362], [0.208, 0.412]d 1.18, [0.89, 1.46], [0.67, 1.82] 6.10, [2.47, 9.59], [0.86, 12.57] 53.90/56

Note.—Parameters are given for the mean, 68.3%, and 95% confidence levels, respectively.
a Statistical error only, not including the contribution from the much larger SN Ia absolute magnitude error of � int

h ’ 0:05 (see x 4).
b The number of degrees of freedom.
c Flux averaged with �z ¼ 0:05.
d Offset �23.5.



LSS data. We find that the dark energy density �X (z) is con-
stant for 0P zP 0:5 and increases with redshift z for 0:5P
z P 1 at 68.3% CL but is consistent with a constant at 95% CL
(see Fig. 3).

Flux averaging of SN Ia data is required to yield cosmo-
logical parameter constraints that are free of the bias induced
by weak gravitational lensing (Wang 2000b). We have de-
veloped a consistent framework for flux-averaging analysis of
SN Ia data and applied it to current SN Ia data. We find that
flux averaging of SN Ia data generally leads to slightly lower
�m and smaller time variation in �X (z).

We note that flux averaging of SNe Ia has more effect on the
Knop sample than the Tonry/Barris sample. This may be due
to the fact that the measurement errors of the majority of the
SNe Ia in the Tonry/Barris sample have been ‘‘Gaussianized’’
in magnitude by averaging over several different analysis
techniques (Tonry et al. 2003). However, it is likely that SN Ia
peak brightness distribution is Gaussian in flux, instead of
magnitude (Y. Wang et al. 2004, in preparation). A consistent
framework for flux averaging is only straightforward (as
presented in x 2) if the distribution of SN Ia peak brightnesses
is Gaussian in flux. Our results suggest that observers should
publish observed SN Ia peak brightnesses with uncertainties
in flux, to allow detailed flux-averaging studies.

Our results include an estimate of the Hubble constant
H0 ¼ h 100 km s�1 Mpc�1 from the Tonry/Barris sample of
194 SNe Ia. Since the Tonry/Barris sample data used a fixed
value of hBx ¼ 0:65 (Tonry et al. 2003) in the derived dis-

tances, we divide their derived distances H0dL(z) by hBx and
marginalize over H0 in our analysis. Our MCMC method
yields smooth PDFs for all marginalized parameters. The errors
on the estimated h in Tables 1 and 2 are statistical errors only,
not including a much larger systematic error contributed by
the intrinsic dispersion in SN Ia peak luminosity of � int

m ’
0:17 mag (Hamuy et al. 1996). This implies a systematic un-
certainty in h of 7.83%, or � int

h ’ 0:05 for the h-values tabu-
lated in Tables 1 and 2. This yields an estimate for h that
overlaps with those from Branch (1998) and Freedman et al.
(2001) within 1 �.
It is intriguing that the current SN Ia data, together with

CMB and galaxy survey data, indicate that �X (z) varies with
time at approximately 90% CL (see Fig. 3 and x 3.3). If the
trend in �X (z) that we have found is confirmed by future
observational data, it will have revolutionary implications for
particle physics and cosmology. Since the uncertainty in �X (z)
is large where there are few observed SNe Ia (see Fig. 3), we
expect that a significant increase in the number of SNe Ia,
obtained from dedicated deep SN Ia searches (Wang 2000a),
will allow us to place robust and more stringent constraints on
the time dependence of the dark energy density.

This work is supported in part by NSF CAREER grant
AST 00-94335. We are grateful to David Branch and Michael
Vogeley for helpful comments.
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