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ABSTRACT

We investigate the structure of the dark matter halo formed in the cold dark matter scenarios by N-body
simulations with a parallel tree code on GRAPE cluster systems. We simulated eight halos with the mass of
4:4 ; 1014 to 1:6 ; 1015 M� in SCDM and LCDM models using up to 30 million particles. With the resolution of
our simulations, the density profile is reliable down to 0.2% of the virial radius. Our results show that the slope
of inner cusp within 1% virial radius is shallower than �1.5, and the radius where the shallowing starts exhibits
run-to-run variation, which means that the innermost profile is not universal.

Subject headings: cosmology: theory — dark matter — galaxies: clusters: general —
methods: N-body simulations — galaxies: halos

On-line material: color figures

1. INTRODUCTION

Since the ‘‘finding’’ of the universal profile by Navarro,
Frenk, & White (1996, 1997, hereafter NFW), the structure of
dark matter halos formed through dissipationless hierarchical
clustering from cosmological initial setting has been explored
by many researchers. NFW performed a number of N-body
simulations of the halo formation using 10–20 thousand par-
ticles and found that the profile of dark matter halo could be
fitted to a simple formula (hereafter the ‘‘NFW profile’’):

� ¼ �0

(r=r0)(1þ r=r0)
2
; ð1Þ

where �0 is a characteristic density and r0 is a scale radius.
They also argued that the profile has the same shape, inde-
pendent of the halo mass, the power spectrum of the initial
density fluctuation, or other cosmological parameters.

Several groups reported the results of similar simulations
with much higher resolutions. However, disagreement con-
cerning the inner structure still remains. Some researchers
claimed that the slope of the inner cusp is steeper than that in
the NFW’s results. Fukushige & Makino (1997) performed a
similar simulation with 768 k particles and found that a galaxy-
sized halo has a cusp steeper than � / r�1. Moore et al. (1998,
1999, hereafter M99) and Ghigna et al. (2000) performed
simulations with up to 4 million particles and obtained the
result that the profile has a cusp proportional to r�1.5 in both
galaxy-sized and cluster-sized halos. M99 proposed the mod-
ified universal profile (hereafter ‘‘M99 profile’’),

� ¼ �0

(r=r0)
1:5½1þ (r=r0)

1:5�
: ð2Þ

Fukushige & Makino (2001, 2003 [hereafter Papers I and II])
performed two series of N-body simulations and found that the

halos have density cusps proportional to r�1.5, independent of
the halo mass and cosmological models.

On the other hand, other researchers obtained the slope of
inner cusp shallower than �1.5 and close to that in the NFW
profile. Jing & Suto (2000, 2002) performed a series of
N-body simulations and concluded that the power of the cusp
depends on mass. It varies from �1.5 for a galaxy mass halo
to �1.1 for a cluster mass halo. Klypin et al. (2001) obtained a
slope at the center that could be approximated by r�1.5. They,
however, argued that the NFW fit is still good up to their
resolution limit. Power et al. (2003) simulated an LCDM
galaxy-sized halo with 3 M particles and claimed that the
circular velocity profile obtained is in better agreement with
the NFW profile than with the M99 profile.

The purpose of this paper is to explore the inner structure of
the dark matter halo by means of N-body simulations with
about 10 times higher mass resolution than that of previous
simulations. We simulated the formation of eight cluster-sized
halos in the SCDM and LCDM models using a parallel
Barnes-Hut tree code (Barnes & Hut 1986) on parallel
GRAPE cluster.

The structure of this paper is as follows. In x 2 we describe
the model of our N-body simulation. In x 3 we present the
results of simulation. Section 4 is for oour conclusion and
discussion.

2. SIMULATION METHOD

We consider two cosmological models, a SCDM model
(�0 ¼ 1:0, h ¼ 0:5, �8 ¼ 0:6) and a LCDM model (�0 ¼ 0:3,
k0 ¼ 0:7, h ¼ 0:7, �8 ¼ 1:0). Here �0 is the density parame-
ter, k0 is the dimensionless cosmological constant, and H0 ¼
100 h km s�1 Mpc�1 at the present epoch. The amplitudes of
the power spectrum in CDM models are normalized using the
top-hat filtered mass variance at 8 h�1 Mpc according to the
cluster abundance (Kitayama & Suto 1997).
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We simulate the formation of the dark matter halos using
the ‘‘resimulation’’ method, which has been a standard method
for the simulation of halo formation since NFW (1996). The
procedure for setting the initial condition of halos is the same
as that used in Paper II.

We first performed large-scale cosmological simulations
with 3:7 ; 106 particles in a sphere of 150 Mpc comoving
radius. We regard spherical overdensity regions around local
potential minima within rv as candidate halos. We define the
radius rv such that the spherical overdensity inside is 178�0:3

0

times the critical density for SCDM and 178�0:4
0 times for

LCDM model (Eke, Cole, & Frenk 1996).
We selected eight halos from the catalog of candidate halos.

The selected halos are summarized in Table 1. We selected the
three most massive halos and one halo randomly from halo
candidates lying within 100 Mpc from the center in both
models (so that the external tidal field can be included). We
express a region within 5rv from the center of the halo at z ¼ 0
in the cosmological simulation with larger number of par-
ticles. We place particles whose mass is as same as that in the
cosmological simulation in a sphere of �50 Mpc comoving
radius surrounding the high-resolution region, in order to
express the external tidal field. The total number of particles,
N, is listed in Table 1. The generation of initial density fluc-
tuation was done on the HITACHI SR8000 (1 node) at the
Information Technology Center, University of Tokyo using
the GRAPHIC2 package (Bertschinger 2001).

We integrate the system directly in the physical coordinates
for both the cosmological and halo simulations. We used a leap-
frog integrator with shared and constant time steps. The step
size for the cosmological simulation is �t=(tH � ti) ¼ 1=1024,
and that for the halo simulation is 1/4096. Here tH is the Hubble
time and ti is the time at which the simulation starts. The
(Plummer) gravitational softening is constant in the physical
coordinates and the length "grav is 5 kpc for the cosmological
simulation, 1 kpc for runs S1, S2, L1, and L2, and 2 kpc for
other runs of halo simulations.

The force calculation is done with the parallel Barnes-Hut
tree code on GRAPE clusters (Kawai, Makino 2003).1

GRAPE is a special-purpose computer designed to accelerate
N-body simulations. The parallelization scheme that we used
is basically the same as Warren & Salmon’s (1993) Hashed
Oct-Tree algorithm, except that we incorporated Barnes’s
(1990) modified algorithm. The modification is necessary in
order to make GRAPE work efficiently (Makino 1991). We
use only the dipole expansion and the opening parameter

� ¼ 0:4 for the cosmological simulation and � ¼ 0:5 for the
halo simulation.
For high-resolution halo simulations, we used both a par-

allel GRAPE-5 cluster at the University of Tokyo and a par-
allel MDGRAPE-2 cluster at RIKEN. The parallel GRAPE-5
cluster consists of eight host computers (Pentium 4/1.9 GHz,
i845), each of which has one GRAPE-5 (Kawai et al. 2000)
board. The parallel MDGRAPE-2 cluster consists of eight host
computers (Pentium 4/2.2 GHz, i850), each of which has one
MDGRAPE-2 (Susukita et al. 2003) board. For cosmological
simulations we used one board GRAPE-5. The simulation
presented below needs, for example in run S2, �300 s per
time step, and thus one run (4096 time steps) is completed in
350 hr (wall-clock time) with the GRAPE-5 cluster.

3. RESULTS

3.1. Snapshots

Figures 1 and 2 show the particle distribution for run S2
at z ¼ 0:58 and 0. The length of the side for each panel is
6.67 Mpc. For these plots, we shifted the origin of coordinates
to the position of the potential minimum. In Table 1 we
summarized the radius rv, the mass Mv, and the number of
particles Nv within rv at z ¼ 0.

3.2. Density Profile

Figures 3 and 4 show the density profiles of all runs at z ¼ 0
for the SCDM and LCDM models, respectively. The excep-
tion is run L4, for which we plot the density profile at z ¼ 0:06
because the merging process occurs just near the center of
halos at z ¼ 0. The position of the center of the halo was
determined using the potential minimum, and the density
was averaged over each spherical shell whose width is
log10(�r) ¼ 0:0172. For illustrative purposes, the densities
are shifted vertically.
We plot the densities by the thick lines only if the criteria

for two-body relaxation introduced in Paper I, trel(r)=t > 3, is
satisfied, where trel(r) is the local two-body relaxation time
given by

trel ¼
0:065v3

G2�m ln (Rmax=")
; ð3Þ

(cf. Spitzer 1987) and Rmax is a maximum impact parameter.
Here we set Rmax to 1 Mpc as a system size. We also confirmed
that other numerical artifacts due to the time integration did
not influence the density profile, as will be discussed in x 3.3.2.
The potential softening does not influence the profile, as will
be discussed in x 3.3.3.

TABLE 1

Run Properties

Model Run

Mv

(M�)

rv
(Mpc)

Nv

(;106)
N

(;106)
m

(107 ; M�) 1þ zi

SCDM ............ S1 1.58 ; 1015 3.08 29.2 60.3 5.39 44.2

S2 1.21 ; 1015 2.84 31.2 60.7 3.86 45.5

S3 1.21 ; 1015 2.84 4.5 10.0 26.5 37.9

S4 4.47 ; 1014 2.03 6.9 13.9 6.46 43.4

LCDM............ L1 9.61 ; 1014 2.43 25.2 62.8 3.80 51.1

L2 6.96 ; 1014 2.20 26.0 59.9 2.67 52.7

L3 6.49 ; 1014 2.15 7.2 16.7 9.01 47.5

L4 4.45 ; 1014 1.88 7.8 13.5 5.67 49.4

1 The source code for both serial and parallel implementations are avail-
able upon request.
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At r > 0:02 Mpc or r > 0:01rv, the density profiles are in
good agreement with the profile given by equation (2) (the
M99 profile) in all runs. This result is consistent with previous
simulations performed with a few million particles (M99;
Ghigna et al. 2000; Paper I; Paper II). The fitting here was
done using Mv and the least-squares fit of (�� �M99)=�M99 at
0:03 < r < 0:5 Mpc. The scale radii r0 obtained by the fitting
are summarized in Table 2.

On the other hand, at r < 0:01rv, we can see a shallowing of
the cusp from the power �1.5 for all runs. The degree of the
shallowing seems to increase as the radius decreases, which
seemingly suggests that the inner cusp profile does not con-
verge to a single slope. Moreover, the point where the profile
starts to depart from the r�1.5 cusp is different for different
runs. For example, in run S1 the departure starts at �0.005rv,
while at �0.02rv in run L3. This means that the density profile
is not universal.

In Figure 5 we plot the density profiles for all runs scaled by
r0 and �0, together with the M99 profile. We can see that at
r=r0 < 0:05 all profiles are systematically shallower than the
r�1.5 cusp and that in this region run-to-run variation of the

profile is significant. On the other hand, at r=r0 > 0:05 the
profiles are in good agreement with M99 profile. Although
there are some dispersions from the M99 profile at r=r0 > 0:3,
they are not systematic.

In Figure 6 we plot the logarithmic slope of the density
profile, d log (�)=d log (r), as a function of radius, but for this
figure, we averaged over a larger spherical shell whose width
is log10(�r) ¼ 0:137. We can see a general trend that the
shallowing inward becomes gradual at around r � 0:2 Mpc,
which cannot be seen in less resolved simulations (e.g.,
Navarro et al. 2004)

3.3. Reliability

3.3.1. Two-Body Relaxation

We test the reliability of criterion (3) by using the simu-
lations of the same initial condition as used in run S1 but with
several different values for the total number of particles (Nv).
Except for N, we used the same simulation parameters as in
run S1. Figure 7 shows the cumulative mass Mr(r) within the
radiiof 0.1, 0.03, 0.01, 0.005, and 0.003 Mpc, as a function of

Fig. 1.—Snapshots from run S2 at z ¼ 0:58. The length of the side is equal to 6.67 Mpc. [See the electronic edition of the Journal for a color version of this
figure.]
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time, for three simulations with 29 (run S1), 14, and 1 million
particles within rv. Figure 8 shows the final density profiles for
three simulations. The vertical bars indicates the reliability
limit obtained by criterion (3).

In Figure 7 we can see that the cumulative mass evolution
obtained in the simulations with 29 and 14 millions particles
are in good agreement for r > 0:01 Mpc. This agreement
indicates that our criterion (0.009 Mpc for the 14 million
particle run) gives a good reliability limit. In Figure 8 we can
also see that the values of density � obtained in the simulations
with 29 and 14 million particles are in good agreement outside
the reliability limit of 14 million particle run (0.009 Mpc). The
agreement of the averaged density is somewhat worse than that
of the density. This is because the averaged density is an in-
tegrated quantity. Any error in the density inside the sphere of
radius r affects the average density at radius r.

Recently, Power et al. (2003) proposed another reliability
criterion for the two-body relaxation, given by

trel(r)

t
¼ N (r)

8 ln N (r)

�ave
200�crit

� ��1=2

> 0:6: ð4Þ

Although their function form is different from ours and
ignores the dependence on potential softening (see Fig. 3 of
Paper I), it gives reliability limits similar to ours. For example,
in run S1, the reliability limit given by their criterion is 0.007,
0.009, and 0.025 Mpc for simulations with 29, 14, and 1
million particles. These values are within 15% of our limit
shown in Figure 8.

3.3.2. Time Integration

If the step size for the time integration is too large, it also
influences the profile. We check whether the step size of time
integration used in our simulations is small enough by
performing simulations from the same initial model as run S1
but with several different step sizes (�t). Except for�t, we used
the same simulation parameters as in run S1. Figure 9 show the
cumulative mass within radii of 0.1, 0.03, 0.01, 0.005, and
0.003 Mpc, as a function of time, for three simulations with
�t=(tH � ti) ¼1/4096 (run S1), 1/2048, and 1/1024. Figure 10
show the profile of the density � for three simulations at
t=(tH � ti) ¼ 0:78125. We plot the profile at this time since, in
the simulation with�t=(tH � ti) ¼1/2048, the merging process
occurs near the center of halos at around z ¼ 0.

Fig. 2.—Same as Fig. 1, but at z ¼ 0. [See the electronic edition of the Journal for a color version of this figure.]
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In these figures we can see that larger step size makes
the central profile shallower. The density profile outside of
0.007 Mpc converges even by adapting 1/2048. Therefore, we
can conclude that the step size of�t=(tH � ti) ¼1/4096 did not
introduce any numerical artifact.

Power et al. (2003) investigated influences of the large step
size on the profile and showed that the influence depends also
on the softening length. They found that if potential softening
length is larger than an optimal length, " ’ 4rv=

ffiffiffiffiffi
Nv

p
, a reli-

ability limit is given by

tc(r)

tc(rv)
¼ 15

�t

t0

� �5=6

; ð5Þ

and if softening length is smaller than the optical length more
time steps are required than that given by criterion (5).

However, an application of the Power et al. (2003) criterion
to our simulation results seems to give unphysically reliability
limits. For example, in run S1, the reliability limit given by
criterion (5) is 0.016, 0.038, and 0.083 Mpc for simulations
with 1/4096, 1/2048, and 1/1024, respectively. From Figure 10,
it is clear that these values are far too large. Such difference is
possible, given the difference in the time integration methods
used in Power et al. (2003) and ours. We used a constant time
step in physical coordinates, while they used a variable step size
in comoving coordinates.

3.3.3. Potential Softening

The potential softening also influences the profile. In order to
see this effect, we simulated the same halo as run S1 but with a

Fig. 3.—Density profile of the halos for all runs of the SCDM model at
z ¼ 0. Only the densities plotted by the thick lines satisfy criterion (3) in x 3.2
at r < rv. The labels indicate the run name. The profiles except for run S1 are
vertically shifted downward by 1, 2, and 3 dex for runs S2, S3, and S4,
respectively. The vertical bars above the profiles indicate 0.01rv. The solid
curves indicate the density profile given by eq. (2) (M99 profile). [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 4.—Same as Figure 3, but for the LCDM model. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 5.—Density profiles for all runs scaled by r0 and �0 (Table 2). The
solid curves indicate the density profile given by eq. (2) (M99 profile). [See
the electronic edition of the Journal for a color version of this figure.]

TABLE 2

Fitting Parameters

r0(Mpc) rc(Mpc)

Run �M99 �NFW �n1 �n2

rv

(Mpc)

S1 ................ 1.36 0.41 0.70 0.0014 3.05

S2 ................ 1.31 0.40 0.68 0.0014 2.82

S3 ................ 0.88 0.42 0.60 0.0036 2.82

S4 ................ 0.66 0.29 0.44 0.0023 1.97

L1 ................ 0.75 0.31 0.50 0.0023 2.40

L2 ................ 0.95 0.33 0.52 0.0015 2.13

L3 ................ 0.48 0.23 0.34 0.0027 2.13

L4 ................ 0.57 0.26 0.38 0.0024 1.82
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smaller number of particles, N ¼ 5:5 ; 106 and with different
softening lengths ("). In Figure 11 we plot the final density
profile for models with " ¼ 0:3, 3, and 10 kpc. For these
three models, the time step size is �t=(tH � ti) ¼ 1=2048. In
Figure 11 we can see that the central density is slightly
lower for larger softening (" ¼ 10 kpc) inside around the soft-
ening length and is significantly lower for smaller softening
(" ¼ 0:3 kpc).

For the 10 kpc run, the inner profile is affected by the force
softening itself. Clearly, the density profile cannot be correct
for a radius smaller than the softening size. However, we can
also see that the maximum radius for which the softening has a
visible effect is rather small. For r > 2", the effect is practi-
cally negligible. For the runs with 0.3 kpc softening, the re-
duction of the central density is primarily due to the error in
the time integration, since the adoption of the smaller time
step did increase the central density. These influences of po-
tential softening were already discussed in Paper I (Fig. 9) and
were comprehensively studied by Power et al. (2003).

Fig. 6.—Logarithmic slope of the density profile, d log (�)=d log (r), plotted
as a function of radius. The thick curves indicate runs with higher resolution
(runs S1, S2, L1, and L2).

Fig. 7.—Cumulative mass within radii of 0.1, 0.03, 0.01, 0.005, and
0.003 Mpc, as a function of time, for three simulations with 29 (run S1; thick
lines), 14 (intermediate lines), and 1 (thin lines) million particles. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 8.—Density profiles for three simulations with 29 (run S1; thick lines),
14 (intermediate lines), and 1 (thin lines) million particles. The vertical bars
indicate the reliability limits obtained by criterion (3) in x 3.2. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 9.—Same as Fig. 7, but for three simulations with �t=(tH � ti) ¼
1/4096 (run S1; thick lines), 1/2048 (intermediate lines), and 1/1024 (thin
lines). [See the electronic edition of the Journal for a color version of this
figure.]
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From the above tests, we conclude that the potential soft-
ening ("grav ¼ 1 kpc for runs S1, S2, L1, and L2, 2 kpc for
others) did not influence the density structure. The softening
itself does not affect the density structure outside of the reli-
ability limit obtained by the criterion for two-body relaxation,
because the limit is more than 3 times larger than the softening
length for all runs. The time integration is accurate enough
for the density structure outside of the limit as shown in the
previous section.

3.4. Fitting by NFW Profile

In Figure 12, we fit the density profiles for all runs to the
NFW profile. The fitting here was done usingMv and the least-
squares fit of (�� �NFW)=�NFW at r < 0:5 Mpc (down to the
reliability limit). The scale radii r0 obtained by the fitting are
summarized in Table 2. We can see that the NFW profile is not

in good agreement with simulation results, except for run L3.
Figure 13 show the residual, (�� �NFW)=�NFW, together with
that for the M99 profile. The agreement with the NFW profile
is not good in all radii, while that with the M99 profile is not
good only in inner region (r < 0:03Mpc). Moreover, we can
see that the sign of the residuals for NFW profile systemati-
cally change, which means the central slope of the NFW
profile is too shallower.

3.5. Evolution

Figures 14 and 15 show the growth of the density profile for
all runs. The virial radii and the masses within the virial radius
at the redshift plotted are summarized in Table 3. We fit these
profiles to the M99 profile. The fitting procedure is as same as
that for Figure 3. The scale radii r0 obtained by the fitting are
summarized in Table 3.

At the inner region (r < 0:03 Mpc), we can see the density
keeps almost unchanged from relatively higher redshift for all
runs. This fact also can be seen in the evolution of the cu-
mulative mass shown in Figure 7. This means that the density
at the inner region is determined by that of the smaller halo
that collapsed at higher redshift.

The density profile of the outer region is formed as the halo
grows and shows universality. Moreover, the agreement with
the M99 profile at higher redshift is very good down to the
radius at which the cusp shallowing can be seen at z ¼ 0,
independent of the cosmological model that we simulated in
this paper. Figure 16 shows the relation between the scale
radius r0 and density �0 obtained by the fitting. We can see

Fig. 11.—Density profiles for four simulations of the same model as run S1
with Nv ¼ 5:5 ; 106 and ";�t=(tH � ti)½ � ¼ (3:0 kpc; 1=2048) (thick lines),
(0.3 kpc; 1/2048) (thin lines), (10.0 kpc, 1/2048) (thin lines) and (0.3 kpc;
1/4096) (dashed lines). The numbers beside the profiles indicate the softening
length in kiloparsecs.

Fig. 12.—Density profiles for all runs. The solid curves indicate the density
profile given by eq. (1) (NFW profile). [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 10.—Density profiles for three simulations with �t=(tH � ti) ¼
1=4096 (run S1; thick lines), 1/2048 (intermediate), and 1/1024 (thin lines).
The vertical bars indicate the reliability limits obtained by criterion (3) in
x 3.2. [See the electronic edition of the Journal for a color version of this
figure.]
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clearly an evolutionary pass along a line, �0 / r�1:5
0 , also in-

dependent of the cosmological model.

3.6. Different Fitting

In x 3.2 we see that the agreement with the M99 profile is
not good at the inner region (r < 0:02 Mpc), and also that

with the NFW profile it is worse in the whole range of pro-
files in x 3.4. Therefore, it is worthwhile to fit the results to
other profiles. Here we try to fit the results to two different
profiles.
First, we fit the results to a profile that has an inner cusp

shallower than that of the M99 profile and steeper than that of
the NFW profile (fitting [1]), given as

�n1 ¼
�0

(r=r0)
� 1þ (r=r0)

3��
� � ; ð6Þ

where � is the power of the inner cusp and we set � ¼ 1:3.
In Figure 17 we fit the density profiles to the profile given
by equation (6). The fitting here was done using Mv and the

Fig. 13.—Residuals (�� �M99)=�M99 and (�� �NFW)=�NFW as a function
of radius.

Fig. 14.—Evolution of density profile for all runs of the SCDM model. The
numbers near profiles indicate the redshift. The profiles at z ¼ 0 are plotted by
the thin lines. Only the densities plotted in the thick lines satisfy criterion (3)
in x 3.2 at r < rv. The solid curves indicate the density profile given by
equation (2) (M99 profile). [See the electronic edition of the Journal for a
color version of this figure.]

Fig. 15.—Same as Fig. 14, but for the LCDM model. [See the electronic
edition of the Journal for a color version of this figure.]

TABLE 3

Parameters at Higher Redshift

Run z

rv
(Mpc)

Mv

(M�)

r0
(Mpc)

S1 ............................ 3.3 0.16 1.9 ; 1013 0.085

1.2 0.65 1.6 ; 1014 0.25

S2 ............................ 3.3 0.15 1.6 ; 1013 0.056

1.2 0.55 9.7 ; 1013 0.20

S3 ............................ 1.2 0.55 9.8 ; 1013 0.29

S4 ............................ 1.2 0.46 5.5 ; 1013 0.20

L1 ............................ 4.5 0.11 1.4 ; 1013 0.11

1.9 0.42 1.2 ; 1014 0.20

L2 ............................ 4.5 0.086 7.3 ; 1012 0.05

1.9 0.40 7.0 ; 1013 0.18

L3 ............................ 1.9 0.32 5.4 ; 1013 0.24

L4 ............................ 1.9 0.31 4.7 ; 1013 0.13
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least-squares fit of (�� �n1)=�n1 for r < 0:5 Mpc (down to the
reliability limit). The scale radii r0 obtained by the fitting
are summarized in Table 2. Figure 18 shows the residual
(�� �n1)=�n1. The agreement is better than both the M99 and
NFW profiles.

We also tried to add another power-law region (/r�) to the
M99 profile (fitting [2]), given as

�n2 ¼
�0

C0(r=rc)
� 1þ (r=rc)½ �1:5��

1þ (r=r0)
1:5

� � ; ð7Þ

where

1=C0 ¼ (r0=rc)
� 1þ r0=rc½ �1:5�� ð8Þ

and rc is another scale radius. Although this profile includes
more parameters to fit, it is based on the observation that two
different mechanisms might be working in the growth of the
halo, as suggested by the analyses in x 3.5.

In Figure 17 we fit the density profiles to the profile given
by equation (7). Here, for simplicity, we set � ¼ 0 for all runs
and, therefore, the equation (7) becomes

�n2 ¼
�0

C0 1þ (r=rc)½ �1:5 1þ (r=r0)
1:5

� � ; ð9Þ

where

1=C0 ¼ 1þ (r0=rc)½ �1:5: ð10Þ

The fitting here was done using r0 obtained in the fitting to
the M99 profile and the least-squares fit of (�� �n2)=�n2 at
r < 0:5 Mpc. The scale radii rc obtained are summarized in
Table 2. Figure 18 shows the residual, (�� �n2)=�n2. As a
matter of course, agreement is better than that for any other
profile, since we increased the number of fitting parameters.

Unfortunately, in the present simulations, the region that
we can use to determine which fitting formula is more ap-
propriate is not so large. Further studies with simulations with
higher resolution and a larger number of samples would be
necessary.

4. CONCLUSION AND DISCUSSION

We performed N-body simulations of dark matter halo
formation in SCDM and LCDM models. We simulated eight

Fig. 16.—Scale density �0 as a function of the scale radius r0 (Table 3) at
the redshift plotted in Figs. 14 and 15. The dashed line indicates �0 / r�1:5

0 .

Fig. 17.—Density profiles for all runs at the inner region. The solid curves
indicate the density profiles given by eqs. (6) and (7). [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 18.—Residuals (�� �n1)=�n1 and (�� �n2)=�n2 as a function of radius
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halos whose mass range is 4:4 ; 1014 to 1:6 ; 1015 M� using
up to 30 millions particles.

Our main conclusions are the following:

1. We found that, in all runs, the slope of inner cusp within
0.01rv is shallower than �1.5, and the radius where the shal-
lowing starts exhibits run-to-run variation, which means the
profile is not universal.

2. We found that the profile is in agreement with the M99
profile for r > 0:01rv and is not in agreement with the NFW
profile. We present different fitting formulae to describe the
whole range of the simulation results.

Although we found interesting features in the inner struc-
ture of dark matter halo by new simulations with much higher
resolution, we could not achieve a final understanding of the
structure. One remaining question is whether or not the CDM
halo has a flat core. Another question is whether the same
shallowing can be seen in halos of galaxy or dwarf galaxy size.
The origin of the inner structure is also still unclear. In order

to answer these questions, we are now planning to perform
larger simulations using a new GRAPE cluster system.
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