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ABSTRACT

We construct models of triaxial galactic nuclei containing central black holes using the method of orbital
superposition and then verify their stability by advancing N-body realizations of the models forward in time. We
assume a power-law form for the stellar density, � / r�� , with � ¼ 1 and 2; these values correspond approxi-
mately to the nuclear density profiles of bright and faint galaxies, respectively. Equidensity surfaces are ellipsoids
with fixed axis ratios. The central black hole is represented by a Newtonian point mass. We consider three triaxial
shapes for each value of �: almost prolate, almost oblate, and maximally triaxial. Two kinds of orbital solution
are attempted for each mass model: the first including only regular orbits, the second including chaotic orbits as
well. We find that stable configurations exist, for both values of �, in the maximally triaxial and nearly oblate
cases; however, steady state solutions in the nearly prolate geometry could not be found. A large fraction of the
mass, of order 50% or more, could be assigned to the chaotic orbits without inducing evolution. Our results
demonstrate that triaxiality may persist even within the sphere of influence of the central black hole and that
chaotic orbits may constitute an important building block of galactic nuclei.

Subject headings: galaxies: elliptical and lenticular, cD — galaxies: nuclei — galaxies: structure —
stellar dynamics

1. INTRODUCTION

Schwarzschild (1979) demonstrated how to construct self-
consistent models of stellar systems in the absence of analytic
expressions for the orbital integrals. His method consists of
three steps: (1) represent the stellar system by a smooth density
law and divide it into discrete cells, (2) compute a library of
orbits in the potential corresponding to the assumed density law
and record the time spent by each orbit in the cells, and (3) find a
linear combination of orbits that reproduces the cell masses.
Using his method, Schwarzschild (1979, 1982) demonstrated
self-consistency of triaxial mass models with and without figure
rotation. Most of the orbits in his solutions were regular, i.e.,
nonchaotic (Merritt 1980). Subsequently, Statler (1987) found
a variety of self-consistent solutions for the integrable, or
‘‘perfect,’’ triaxial mass models in which all orbits are regular.

Models like these with large, constant-density cores are
now known to be poor representations of elliptical galaxies,
almost all of which have high central densities (Crane et al.
1993; Ferrarese et al. 1994). Stellar densities rise toward the
center approximately as power laws, � / r�� . Fainter galaxies
have steeper cusps, � � 2, while brighter galaxies have
weaker cusps, 0P � P 1, and exhibit an obvious break in
the surface brightness profile. Following this discovery,
Schwarzschild (1993) investigated triaxial models with sin-
gular density profiles, � � r�2, and Merritt & Fridman (1996)
constructed self-consistent solutions for triaxial galaxies with
both weak and strong central cusps. A significant portion of
the phase space in these models was found to be occupied by
stochastic orbits. Furthermore, triaxial self-consistency could
sometimes only be achieved by including some stochastic
orbits. Models containing stochastic orbits can represent bona
fide equilibria as long as the stochastic orbits are represented

as fully mixed ensembles (Merritt & Fridman 1996; Merritt &
Valluri 1996).
In the last decade, evidence has grown that supermassive

black holes are generic components of galactic nuclei
(Ho 1999). There are roughly a dozen galaxies in which a
compelling case for the presence of a supermassive black hole
can be made based on the kinematics of stars or gas (Merritt &
Ferrarese 2001), as well as a number of active galactic nuclei in
which the kinematics of the broad emission line region implies
the existence of a supermassive black hole (Peterson 2003).
Inferred masses range from �106 to �109.5 M� and correlate
well with stellar velocity dispersions (e.g., Ferrarese et al. 2001)
and bulge luminosities (e.g., McLure & Dunlop 2002).
The possibility of maintaining triaxiality within a galactic

nucleus containing a supermassive black hole remains a topic
of interest. Very close to the black hole, the gravitational force
can be considered a perturbation to the Kepler problem and
the phase space is essentially regular (Merritt & Valluri 1999;
Sambhus & Sridhar 2000; Poon & Merritt 2001, hereafter
Paper I). Farther from the black hole, the fraction of chaotic
orbits increases, up to a radius where the enclosed stellar mass
is a few times the black hole mass; beyond this radius es-
sentially all centrophilic orbits are chaotic (Paper I). The tube
orbits remain mostly regular since they avoid the destabilizing
center. The persistence of regular orbits throughout the region
where the gravitational force from the black hole dominates
leaves open the possibility of constructing self-consistent so-
lutions. Furthermore, there is growing observational evidence
for the existence of barlike distortions at the very centers of
galaxies (e.g., Erwin & Sparke 2002).
In Poon & Merritt (2002, hereafter Paper II) we presented

preliminary results showing that self-consistent and stable
triaxial equilibria could be constructed for power-law nuclei
with certain axis ratios. In this paper we present a more de-
tailed investigation of triaxial black hole nuclei. We find that
stationary solutions are possible only for certain shapes; mass
models that are too near to prolate axisymmetry always evolve
toward axisymmetry.
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The properties of the mass models are presented in x 2.
Orbital solutions for various shapes and density profiles are
presented in x 3, and their stability is tested by N-body sim-
ulation in xx 4 and 5. Limits on the chaotic mass fraction are
discussed in x 6. In x 7 we discuss some implications for the
nuclear dynamics of galaxies.

2. MASS MODEL

We model the stellar distribution by the density law

�� ¼ �0m
��; ð1Þ

m2 ¼ x2

a2
þ y2

b2
þ z2

c2
: ð2Þ

The equidensity surfaces are concentric ellipsoids with fixed
axis ratios a : b : c, and the radial profile is a power law with
index ��. We define the outer surface by the ellipsoid m ¼
mout and measure the triaxiality via the index T, where

T � a2 � b2

a2 � c2
: ð3Þ

Oblate and prolate galaxies have T ¼ 0 and 1, respectively.
The value T ¼ 0:5 corresponds to a ‘‘maximally triaxial’’
nucleus.

We consider two types of nuclei, the weak cusp (� ¼ 1) and
the strong cusp (� ¼ 2), which correspond roughly to the den-
sity profiles observed at the centers of bright and faint elliptical
galaxies, respectively. For each value of �, we consider three
shapes: almost oblate (T ¼ 0:25, a : b : c ¼ 1:0 : 0:9 : 0:5),
maximally triaxial (T ¼ 0:50, a : b : c ¼ 1:0 : 0:79 : 0:5), and
almost prolate (T ¼ 0:75, a : b : c ¼ 1:0 : 0:66 : 0:5). All mod-
els have c=a ¼ 0:5.

The black hole is represented by a central point mass with
M� ¼ 1, which imposes a scale to the otherwise scale-free
stellar mass model. We define two characteristic radii associ-
ated with the presence of the black hole (Tables 1 and 2): (1)
Parameter rg is defined such that the enclosed stellar mass
within an ellipsoid withm ¼ rg is equal to that of the black hole.
For T ¼ 0:5, rg ¼ 0:64 for � ¼ 1 and rg ¼ 0:20 for � ¼ 2. (2)
Parameter rch is the radius beyond which the regular, boxlike
orbits become almost all stochastic. For T ¼ 0:50, rch � 2rg
for � ¼ 1 and rch � 6rg for � ¼ 2.

The gravitational potential can be obtained from
Chandrasekhar’s theorem (Chandrasekhar 1969), which is
valid for density laws that are stratified on similar ellipsoids.
The corresponding forces may be obtained in analytical form by
taking partial derivatives of the potential. The details are given
in x 2 of Paper I.

Our orbital solutions require a finite outer radius. Our aim
was to explore the possibility of maintaining triaxiality out to
a radius of at least rch; hence, we chose the outer surface of our
model to be large enough that almost all of the density at rch in
a real galaxy would be contributed by orbits with apocenters
r+ lying below this surface.

To estimate mout , we considered a spherical galaxy with
density

�sph� ¼ �0r
��: ð4Þ

The isotropic distribution function corresponding to the den-
sity law given by equation (4) can be found using Eddington’s
formula,

f sph(E ) ¼
ffiffiffi
2

p

4�2

Z a

E

d2�sph�
d�2

d�ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� E

p

þ
ffiffiffi
2

p

4�2
lim

�!�1

d�sph�
d�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� E

p ; ð5Þ

where � is the potential generated by ��(r) and by the central
point mass and �1 � limr!1�(r). We then change variables
such that

d�sph� ¼ 2�

r2
f sph�
vr

@ E; L2ð Þ
@ rþ; r�ð Þ

����
���� drþ dr�; ð6Þ

where vr ¼ ½2(E � L2)=2r2 � �(r)�1=2 is the radial velocity and
r+ and r� are the apocenter and pericenter, respectively, of an
orbit with energy E and angular momentum L. The Jacobian is

@ E; L2ð Þ
@ rþ; r�ð Þ �

@E

@rþ

@L2

@r�
� @E

@r�

@L2

@rþ

����
����: ð7Þ

According to equation (6), we define

g rþ; rð Þ �
Z rþ

0

2�

r2
f sph�
vr

@ E; L2ð Þ
@ rþ; r�ð Þ

����
���� dr�; ð8Þ

u rþ; rð Þ � 1

�sph� ðrÞ

Z rþ

0

g rþ; rð Þ drþ: ð9Þ

Here u(rþ; r) is the fraction of the mass at r contributed by
orbits with apocenters r 	 rþ.

Figure 1 plots u(rþ; r) as a function of r+ /r for both weak-
and strong-cusp nuclei. The red curves correspond to infinite
r, i.e., no influence from the black hole. The black curves
correspond to very small r, where the potential is almost
Keplerian. The u(rþ; r) for the weak-cusp case is smaller than
that for the strong cusp at a given r+ /r because the density of
the strong cusp falls off faster, thus the mass at a given r has to
rely more heavily on nearby orbits.

Based on these results, we took mout to be 5rch for � ¼ 1
and 3rch for � ¼ 2, so that about 70% (75%) of the mass at rch
is accounted for in the weak-cusp (strong-cusp) case. Tables 1
and 2 give the values of the characteristic radii in model units.

3. CONSTRUCTION OF ORBITAL SOLUTIONS

We followed standard procedures for constructing the
Schwarzschild solutions. The cells used to define the mass
distribution were defined as follows. Each model with outer
surface mout was divided into 64 shells. The inner 63 shells
were equidensity surfaces; the outermost shell was an equi-
potential surface, in order to accommodate chaotic orbits that
fill regions defined by equipotential surfaces. Shells were
more closely spaced near the center. The 42nd shell in each
model corresponded to rch. Each shell was further divided into
48 angular cells per octant as in Merritt & Fridman (1996),
giving a total of 3072 cells per octant. Because of the sym-
metry of the problem, it is necessary to consider only a single
octant when constructing the orbital solutions.

Orbits were computed in two initial condition spaces: sta-
tionary start space, which yields mostly centrophilic orbits
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(pyramids, stochastic orbits), and X-Z start space, which yields
mostly tube orbits. Orbital energies were selected from a grid
of 42 (52) values for � ¼ 1 (2), defined as the energies of
equipotential surfaces that were spaced similarly in radius to
the equidensity shells. The outermost energy shell, which is
also an equipotential surface, intersects the x-axis at x ¼ mout

for both mass models. X-Z start space consists of orbits that
begin on the X-Z plane with vx ¼ vz ¼ 0; stationary start space
consists of orbits that begin with zero velocity. A total of
18;144 (22,464) orbits were integrated for 100 dynamical
times for � ¼ 1 (2), and their contributions to the masses in
the cells were recorded. In order to distinguish regular from
stochastic trajectories, the largest Liapunov exponent was
computed for each orbit.

Twelve equations, six representing the unperturbed motion
and six representing the linearized perturbations, were inte-
grated using the routine RADAU of Hairer & Wanner (1996),
which is a variable time step, implicit Runge-Kutta scheme that
automatically switches between orders of 5, 9, and 13. Energy
was typically conserved to a few parts in 109 over 100 orbital
periods.

An orbit was considered regular if the largest Liapunov
exponent k satisfied kTD < 10�0:9. The dynamical time TD is
defined as the period of a circular orbit of the same energy in the
equivalent spherical potential, which is defined to have a scale
length (abc)1/3 (Paper I). This threshold was determined em-
pirically by making histograms of Liapounov exponents of mono-
energetic orbits at various energies; kTD � 10�0:9 was found to
always separate the two peaks in the histogram corresponding
to regular and chaotic orbits. A large fraction of the computed
orbits were found to be stochastic, as shown in Table 3.
We then found the linear combination of orbits that best

reproduced the cell masses. We did this by varying the orbital
occupation numbers Ci to minimize the quantity �2, defined as

�2 ¼
XN
l¼1

Dl �
XM
i¼1

BliCi

 !2

: ð10Þ

Here Bli is the time spent by the ith orbit in the lth cell, Dl is
the mass of the lth cell, and Ci is the occupation number of the
ith orbit. The quadratic programming problem was solved
using the NAG Fortran library routine E04NFC. We measured
the discrepancies of the orbital solutions by the parameter

�2 ¼ 1

N

XN
l¼1

1� 1

Dl

XM
i¼1

BliCi

 !2

; ð11Þ

the mean error in the cell masses.
We constructed two solutions for each mass model: one

using only regular orbits, and the other using both regular
and chaotic orbits. Schwarzschild (1993) was the first to in-
clude chaotic orbits in self-consistent solutions. Schwarzschild
treated the chaotic orbits like regular orbits, giving each cha-
otic orbit its own occupation number, even though many of
the chaotic orbits in his models were ‘‘sticky’’ and did not
reach a time-averaged steady state during the interval of in-
tegration. He justified this practice by reintegrating all chaotic
orbits with nonzero occupation numbers for longer intervals in
the fixed potential; the extreme error in the cell masses was
found to increase from the original �1% to �10%. Merritt
& Fridman (1996) noted that fully mixed chaotic orbits, i.e.,
chaotic orbits that uniformly fill their accessible phase-space
region, are bona fide building blocks for steady state galaxies
and approximated such building blocks by constructing en-
semble averages of the chaotic orbits at each energy.

Fig. 1.—Plot of u(rþ; r) as a function of r+ /r for � ¼ 1 and 2 and for
different radii, as indicated.

TABLE 1

Model Parameters for � ¼ 1

Parameter T ¼ 0:25 T ¼ 0:50 T ¼ 0:75

rg............................................. 0.594 0.635 0.694

rch ........................................... 1.057 1.128 1.234

mout ......................................... 5.284 5.642 6.168

TABLE 2

Model Parameters for � ¼ 2

Parameter T ¼ 0:25 T ¼ 0:50 T ¼ 0:75

rg............................................. 0.177 0.201 0.241

rch ........................................... 1.114 1.270 1.518

mout ......................................... 3.342 3.811 4.555

TABLE 3

Fraction of Regular Orbits in the Orbit Libraries

Parameter � ¼ 1 � ¼ 2

T ¼ 0:25 .................................................. 0.58 0.72

T ¼ 0:50 .................................................. 0.54 0.67

T ¼ 0:75 .................................................. 0.49 0.65
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We followed Schwarzschild in allowing different chaotic
orbits at a given energy to have different occupation numbers.
In our potentials, the chaotic orbits were observed to very
quickly fill the region accessible to them: their ‘‘mixing
times’’ were generally much shorter than the integration in-
terval. Hence, we expect that our chaotic orbits would indi-
vidually constitute bona fide building blocks for a stationary
solution, without the need to construct ensemble averages as
in Merritt & Fridman (1996). This expectation was confirmed
by the N-body integrations described below.

We could not find quadratic programming solutions that
exactly reproduced the cell masses in all of the cells, including
the outermost ones. This is probably because the number of
orbits visiting the outer shells is small, giving the quadratic
programming algorithm little freedom to fit the cell masses
there. Indeed in all of our self-consistent solutions, most of the
contribution to �2 came from the outermost cells. We there-
fore considered solutions in which the outermost cells were
treated in various ways. Figure 2 illustrates the idea. We de-
fined three kinds of mass shell: (1) the innermost shells with
all the constraints imposed, i.e., all of the angular cells in-
cluded; (2) intermediate shells for which only the total mass
was fitted, with angular details ignored; and (3) the outermost
shells, which were excluded from the fit. We carried out nu-
merous tests in which we attempted to fit various combina-
tions of constraints. As expected, the discrepancy � defined
by the innermost shells always decreased as the total number
of constraints decreased. For instance, for the weak-cusp
model with T ¼ 0:50, including all the orbits allowed the
innermost 60 shells (r � 4rch) to be fitted to machine precision
when the outermost four shells were ignored. When these
‘‘exact’’ solutions were advanced forward in time, however,
they were found to exhibit significant evolution at large radii,
presumably as a result of the poor fit in the outermost cells.
We discuss this further in x 5. Experiments like this persuaded
us to focus on solutions that were not ‘‘exact’’ but rather were
constrained to reproduce the densities in all cells within mout

to as high an accuracy as possible. Such solutions exhibited

smaller fractional errors in the inner cells (r P rch) than in the
outer ones. Models constructed in this way were found to
evolve much less than the ‘‘exact’’ solutions and provide the
basis for the discussion below.

The orbital content and the precision � of the solutions are
represented in various ways in Tables 4–6 and in Figures 3 and
4. We classify orbits into one of four families (see Paper I). The
x- and z-tubes are regular orbits that circulate around the long
and short axes of the figure, respectively. Pyramid orbits are
the closest analogs to box orbits in these potentials; they can be
described as eccentric Keplerian ellipses that precess as a result
of torques from the stellar potential. Their major elongation is
contrary to that of the figure. We indiscriminately refer to these

Fig. 2.—Schematic diagram showing the three kinds of shells used for
constraining the orbital solutions: (1) the innermost shells with all angular
constraints imposed; (2) intermediate shells with angular constraints ignored;
(3) the outermost shells, which are ignored. The highest energy shell is an
equipotential surface, while the other shells are equidensity ellipsoids.

TABLE 4

Orbital Content of Solutions with T ¼ 0:25

Parameter z-Tubes x-Tubes Pyramids Chaotic

� ¼ 1 (Regular), log� ¼ �1:115

r < 0:5 .......................... 0.70 0.06 0.24 . . .

r < 1:0 .......................... 0.62 0.06 0.33 . . .

r < 1:5 .......................... 0.59 0.05 0.36 . . .

� ¼ 1 (All), log� ¼ �1:318

r < 0:5 .......................... 0.40 0.03 0.07 0.50

r < 1:0 .......................... 0.34 0.02 0.06 0.59

r < 1:5 .......................... 0.30 0.01 0.06 0.63

� ¼ 2 (Regular), log� ¼ �1:437

r < 0:4 .......................... 0.81 0.07 0.11 . . .

r < 0:8 .......................... 0.80 0.08 0.12 . . .

r < 1:2 .......................... 0.80 0.08 0.12 . . .

� ¼ 2 (All), log� ¼ �2:633

r < 0:4 .......................... 0.56 0.03 0.07 0.34

r < 0:8 .......................... 0.55 0.03 0.07 0.35

r < 1:2 .......................... 0.53 0.03 0.07 0.37

TABLE 5

Orbital Content of Solutions with T ¼ 0:50

Parameter z-Tubes x-Tubes Pyramids Chaotic

� ¼ 1 (Regular), log� ¼ �1:169

r < 0:5 .......................... 0.64 0.13 0.23 . . .

r < 1:0 .......................... 0.56 0.08 0.36 . . .

r < 1:5 .......................... 0.52 0.07 0.41 . . .

� ¼ 1 (All), log� ¼ �1:307

r < 0:5 .......................... 0.29 0.07 0.11 0.54

r < 1:0 .......................... 0.27 0.03 0.10 0.60

r < 1:5 .......................... 0.25 0.02 0.10 0.62

� ¼ 2 (Regular), log� ¼ �1:295

r < 0:4 .......................... 0.73 0.11 0.16 . . .
r < 0:8 .......................... 0.73 0.11 0.15 . . .

r < 1:2 .......................... 0.73 0.12 0.15 . . .

� ¼ 2 (All), log� ¼ �2:567

r < 0:4 .......................... 0.46 0.05 0.09 0.40

r < 0:8 .......................... 0.45 0.05 0.06 0.44

r < 1:2 .......................... 0.44 0.05 0.05 0.46
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orbits as ‘‘pyramids’’ and ‘‘box orbits’’ in what follows. The
fourth family consists of the chaotic orbits.
Tables 4–6 give the mass fractions within various radii

contributed by the four types of orbit. The z-tube orbits (short-
axis tubes) are the biggest contributors in all of the regular-
orbit solutions, making up at least 50% of the total mass and
as much as 80% in the nearly oblate (T ¼ 0:25) models.
Pyramid orbits are next in importance; their contribution
reaches �40% for � ¼ 1 and �15% for � ¼ 2. The x-tubes
(long-axis tubes) are relatively unimportant in the models with
T ¼ 0:25 and 0.5, making up only a few percent of the total
mass. In the nearly prolate models (T ¼ 0:75), their contri-
bution increases to �20%; however, we argue below that these
prolate solutions do not represent true equilibria.
When chaotic orbits are included in the orbit libraries, the

character of the solutions changes substantially: at least 40%
of the mass is assigned to chaotic orbits by the quadratic
programming algorithm, and as much as 60% in the models
with � ¼ 1 and T ¼ (0:25; 0:5). The inclusion of chaotic
orbits lowers the mean error � by a modest amount in both
the weak- and strong-cusp cases (Tables 4–6). Much of the
mass assigned to the chaotic orbits appears to be ‘‘taken’’ from
the pyramid orbits, as expected. To our knowledge, these
solutions contain a larger fraction of chaotic orbits than in any
other published galaxy models.

TABLE 6

Orbital Content of Solutions with T ¼ 0:75

Parameter z-Tubes x-Tubes Pyramids Chaotic

� ¼ 1 (Regular), log� ¼ �1:379

r < 0:5 .......................... 0.44 0.27 0.29 . . .

r < 1:0 .......................... 0.48 0.20 0.32 . . .

r < 1:5 .......................... 0.47 0.16 0.37 . . .

� ¼ 1 (All), log� ¼ �1:248

r < 0:5 .......................... 0.27 0.14 0.16 0.42

r < 1:0 .......................... 0.26 0.07 0.14 0.53

r < 1:5 .......................... 0.22 0.06 0.16 0.56

� ¼ 2 (Regular), log� ¼ �1:221

r < 0:4 .......................... 0.57 0.20 0.23 . . .

r < 0:8 .......................... 0.59 0.21 0.20 . . .

r < 1:2 .......................... 0.58 0.22 0.20 . . .

� ¼ 2 (All), log� ¼ �2:471

r < 0:4 .......................... 0.38 0.13 0.11 0.38

r < 0:8 .......................... 0.35 0.12 0.09 0.44

r < 1:2 .......................... 0.33 0.13 0.08 0.46

Fig. 3.—Cumulative energy distributions of the various orbital families, in self-consistent solutions with T ¼ 0:5. The symbols ‘‘B,’’ ‘‘X,’’ ‘‘Z,’’ and ‘‘C’’ denote
the mass contributed by box, x-tube, z-tube, and chaotic orbits, respectively; filled circles give the total. Solid (dotted) lines show M(<E ) for the equivalent spherical
models defined in the Appendix, with (without) the central black hole.
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Why are such large, chaotic-orbit mass fractions permitted
in these models? Figure 2 gives the answer. The equipotential
surfaces, which define roughly the ‘‘shapes’’of the chaotic
orbits, are only slightly rounder than the equidensity surfaces.
Thus, a chaotic orbit has a time-averaged shape that is well
matched to that of the model. This is a consequence of the
scale-free nature of the mass distribution; in non–scale-free
galaxies, the equipotential surfaces become rounder than the
equidensity surfaces at large energies and the chaotic orbits
are strongly disfavored.

Another way to represent the orbital makeup of the so-
lutions is via the distribution of orbital energies. Let Mi(E ) dE
be the mass in orbits from the ith orbital family whose ener-
gies lie in the range E to E þ dE. The cumulative mass is
given by Mi(<E ) ¼

R E
�1 Mi(E ) dE. Figure 3 shows Mi(<E )

for the self-consistent solutions with T ¼ 0:5. We show for
comparison M sph(<E ) computed for the equivalent spheri-
cal models defined in the Appendix. One expects that
M sph(<E ) �

P
i Mi(<E ), and Figure 3 verifies that this is

correct. At high energies, there are discrepancies between the

Fig. 4.—Cumulative mass fraction F contributed by different kinds of orbits to different shells of the triaxial solutions. Box orbits are blue, tube orbits (both z- and
x-tubes) are orange, and chaotic orbits are purple. Higher energies are represented by darker shades, defined according to the x-intercept of the equipotential that has
the same energy as the orbit. Numbers below the color bar indicate radii where the equidensity shells intersect the x-axis. Figures labeled ‘‘reg’’ represent solutions
constructed only using regular orbits.
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Schwarzschild solutions and the predictions of the spherical
models. This is because the Schwarzschild solutions are
truncated; thus, orbits with the highest energies are forced to
make large contributions, which in turn lowers the con-
tributions from orbits at lower energies. This effect is more
significant for the weak-cusp models, which place most of
their mass at large radii. Nevertheless, at low energies even the

� ¼ 1 solutions have nearly the same M(<E ) dependence as
the equivalent spherical models.
Figure 4 presents yet another representation of the orbital

populations of our self-consistent solutions. We plot the cu-
mulative mass fraction F contributed by different kinds of
orbits to different shells of the model. Box orbits are blue,
tube orbits are orange, and chaotic orbits are purple; higher
energy orbits are represented by darker shades. Color bars
relate the shades to the energy of the orbits. Numbers below
the color bar indicate radii where the equidensity shells and
equipotentials intersect the x-axis; note that the scale is not
linear as a result of the higher resolution at lower radii. For
instance, in the weak-cusp model with T ¼ 0:50, shell 20 is an
equidensity ellipsoid with x-intercept 0.78, and regular box
orbits with energy E ¼ �(0:78; 0:0; 0:0) are represented by
the lightest blue color.
At low energies, many of the z-tube orbits appear as saucers,

i.e., 2:1 resonant orbits; at high energies, higher order reso-
nances are important for these orbits. It is surprising that x-tube
orbits do not dominate the nearly prolate solutions with
T ¼ 0:75. However, configuration-space plots of the x-tube
orbits show that almost all of them are elongated contrary to the
prolate figure: they are thin circular rings lying near the y-z
plane. Even in the nearly prolate solutions, most of the mass is
contributed by z-tube orbits; the remaining contributions are
mostly from high-energy box orbits, many of them associated
with resonances. In the nearly prolate solutions, the most im-
portant resonances are the ‘‘fish’’ (2:3) and the ‘‘pretzels’’
(3:4). In the nearly oblate solutions, the fish and the ‘‘banana’’
(2:1) resonances dominate. Many of the z-tubes and the high-
energy boxes are replaced after the introduction of chaotic
orbits (Fig. 4).
As discussed in more detail below, we were not able to

predict the long-term stability of a model based on its value
of �. Some models with fairly large �-values were found to
exhibit almost no evolution, while other models with smaller
�-values evolved significantly. This suggests that the results
of Schwarzschild modeling should be interpreted with caution
in cases in which the long-term stability of the solution has not
been tested.

4. N-BODY MODELS

Each of the solutions described above was found via a
minimization of the quantity �2 describing the sum of the
squared errors in the cell masses (eq. [10]). While the mag-
nitude of �2 might be expected to correlate with the quality of
the solution, there is really no way to know how small �2 must
be in order for the solution to represent a bona fide steady
state, or how large a value of �2 is consistent with the exis-
tence of a smooth equilibrium solution. One could require that
each of the cell masses be fitted exactly, but we were never
able to do this when the outermost shells were included, and in
any case, the discrete representation of the density renders the
interpretation of an ‘‘exact’’ solution problematic. There are
other uncertainties as well; for instance, both ‘‘sticky’’ chaotic
orbits and nearly resonant, regular orbits may require very
long integration times before their cell masses approximate the
steady state values.
We tested whether our orbital superpositions represent true

equilibria, in two ways. First, we realized them as N-body
models and integrated them forward in time in the grav-
itational potential computed from the N-bodies themselves
(including a point mass representing the black hole). Second,
we carried out integrations in the fixed, smooth potential that

Fig. 5.—Evolution of the axis lengths at different radii for the orbital so-
lutions shown in Fig. 4. The longest axis is defined to have unit length. Black
(purple) curves correspond to solutions containing only regular (both regular
and chaotic) orbits. Green lines indicate the values of the axis lengths in the
underlying mass models.
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was used to build the orbit library. The latter integrations were
much less computationally intensive and could be carried out
for many more orbital periods.

We prepared initial conditions for both sorts of integration
by reintegrating orbits with nonzero occupation numbers and
storing their positions and velocities at fixed time intervals.
The sense of rotation of the tube orbits was chosen randomly.

We carried out the self-consistent integrations using the
N-body code GADGET (Springel, Yoshida, & White 2001), a
parallel tree code with variable time steps. We used �2 ; 106

particles for representing the weak-cusp models and �2 ; 105

particles for the strong-cusp models; a smallerNwas chosen for
� ¼ 2 since the N-body integrations were slower for the more
condensed model. The particle representing the black hole was
allowed to move in response to the forces from the ‘‘stars.’’ The
softening length was 0.005 (0.003) for the weak-cusp (strong-
cusp) case. Energy was conserved to within �0.5% for the
weak-cusp models and �1% for the strong-cusp models.

As our primary index of evolution, we computed the axis
ratios of the models as a function of radius using the iterative
procedure described by Dubinski & Carlberg (1991), as fol-
lows: (1) The moment of inertia matrix of the particles
enclosed by a sphere of radius r is calculated. (2) Axis ratios
are assigned as a ¼ (m11=mmax)

1=2, b ¼ (m22=mmax)
1=2, c ¼

(m33=mmax)
1=2, where mii are the principal moments of inertia

and mmax ¼ max fm11;m22;m33g. (3) Particles are enclosed
within the ellipsoid x2=a2 þ y2=b2 þ z2=c2 ¼ r2 and step 2 is
iterated, until the axis ratios converge.

Figures 5 and 6 show the evolution of the axis ratios and
density profiles of the various models as computed via

GADGET. Integrations were carried out for a time of �6TD as
measured at r ¼ 1:0. None of the density profiles showed sig-
nificant evolution: the radial distribution of mass did not evolve
for any of the models. However, some of the solutions showed
significant evolution in their shapes. For T ¼ 0:5 (maximum
triaxiality) and � ¼ (1; 2), we observed no significant evolu-
tion in the axis ratios, for either the regular-orbit solutions or the
solutions containing chaotic orbits. We conclude that the
maximally triaxial solutions represent bona fide equilibria, at
least over these timescales. For the weak-cusp model with
T ¼ 0:25 (nearly oblate), there is some evolution at late times in
the large-radius axis ratios, while the nearly oblate model with
� ¼ 2 hardly evolves. Contour plots of the particle distribution
suggest that the evolution for � ¼ 1 is due to the relatively large
errors in the cell masses at large radii; as time goes on, these
errors propagate to smaller radii. In spite of these fluctuations,
however, we judged both of the T ¼ 0:25 solutions to be stable.

By contrast, all solutions with T ¼ 0:75 (nearly prolate)
were found to exhibit substantial evolution, reaching nearly
axisymmetric (oblate) shapes by the final time step. (We note
that for the weak-cusp solution with T ¼ 0:75, even the initial
ratio of intermediate to long axis deviated noticeably from that
of the assumed mass model.) We were unable to find any
solutions with T ¼ 0:75 that did not evolve toward complete
axisymmetry. We conclude that these solutions do not repre-
sent bona fide equilibria.

Figure 7 shows contours of the projected density of the
weak-cusp models with T ¼ 0:50 and only regular orbits. The
contours remain approximately ellipsoidal until the end of
the integration.

Fig. 6.—Evolution of density profiles for the orbital solutions of Fig. 4. Different colored curves correspond to the times shown in the upper left panel, in units of
the total integration time. Dotted lines are the density profile of the underlying mass model.
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The integrations just described demonstrate a lack of
evolution in many of the models over timescales of �10TD
as measured at the black hole’s radius of influence. To dem-
onstrate the steady state character of the models over much
longer periods, we integrated two of our model nuclei
containing chaotic orbits in the fixed, smooth potential of
equation (2) for �100 dynamical times. We used N ¼ 309; 440

(30,400) particles for � ¼ 1 (2). Figure 8 (as well as the two-
dimensional contour plots, not shown here) confirms that the
shapes of these two models remain essentially fixed. While this
test is weaker than the self-consistent integrations described
above, it does demonstrate that any evolution due to continued
‘‘mixing’’ of the chaotic orbits is small, at least over �102
crossing times. In other words, the chaotic orbits in our so-
lutions have a sufficiently well mixed phase-space distribution
that their evolution over 102 crossing times is negligible.
Based on these two sorts of N-body tests, we conclude that

our maximally triaxial and nearly oblate models are not only
self-consistent but also ‘‘stable,’’ in the sense of not evolving
significantly in their shape or in their mass distribution, over
timescales long compared with a crossing time.

5. A MODEL WITH OUTER ANGULAR
CONSTRAINTS RELAXED

We mentioned above that relaxing the angular constraints in
the outermost shells led to quadratic programming solutions
with very small errors in the innermost mass cells. However,
these solutions generally exhibited large changes in their
shapes when evolved forward. We illustrate this in the case
of a weak-cusp nucleus with T ¼ 0:50 and only regular orbits.
In the orbital solution for this model, we relaxed the angular
constraints in the outer five shells; i.e., only the masses of
these shells were fitted by the quadratic programming routine,
not the individual cell masses. By relaxing the outermost
angular constraints, we were able to find a solution in which
log� ¼ �2:1 for the innermost shells. Figure 9 shows theFig. 7.—Contours of the projected density of the solution with � ¼ 1,

T ¼ 0:50 and only regular orbits. The upper panels show the contours at
t ¼ 0, and the lower panels show the contours at the end of the integration.
This model was judged stable based on the lack of significant time evolution
of the axis ratios (Fig. 5); note the slight evolution of the contour shapes at the
largest radii.

Fig. 8.—Evolution of the axis ratios of the weak- and strong-cusp nuclei
with chaotic orbits with T ¼ 0:5, assuming a fixed potential.

Fig. 9.—Evolution of axis ratios of the weak-cusp solution with the angular
constraints on the outer five shells relaxed.
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evolution of axis lengths of the model as computed via
GADGET. The axis ratios show large fluctuations, especially
at large radii. Figure 10 shows contours of the projected
density. At t ¼ 0, the contours are ellipsoidal only at small
radii; the large-radius contours are irregular as a result of the
large cell mass discrepancies in the outer shells. During the
integration, this model shows significant evolution at large
radii, which in turn affects the contours at small radii. The
final model looks very different from the initial model. We

found similar behavior in other orbital solutions when the
outermost constraints were relaxed.

6. MAXIMIZING THE CONTRIBUTION FROM
CHAOTIC ORBITS

The existence of long-lived triaxial models containing an
abundance of chaotic orbits is particularly interesting: stars on
such orbits pass once per crossing time near the center, greatly
increasing the rate of interactions with the black hole com-
pared with spherical or axisymmetric models (Gerhard &
Binney 1985). We sought to maximize the chaotic content in
our models by minimizing the quantity

�2 ¼
XN
l¼1

Dl �
XM
i¼1

BliCi

 !2

þ
XM
i¼1

WiCi ð12Þ

Fig. 10.—Contours of the projected density of the weak-cusp solution with
T ¼ 0:50 and only regular orbits. The angular constraints of the five outer
shells are ignored. The upper panels show the contours at t ¼ 0, and the lower
panels show the contours at the end of the integration.

Fig. 11.—Cumulative mass fractions F contributed by different kinds of
orbits to different shells of the triaxial solutions in which the contribution from
chaotic orbits has been maximized. The value of WC is indicated in the upper
right corner. Left: T ¼ 0:5, � ¼ 1. Right: T ¼ 0:5, � ¼ 2.
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TABLE 7

Orbital Content of Solutions with T ¼ 0:5 and Different WC

Parameter z-Tubes x-Tubes Pyramids Chaotic

� ¼ 1, WC ¼ 0

r < 0:5 .......................... 0.29 0.07 0.11 0.54

r < 1:0 .......................... 0.27 0.03 0.10 0.60

r < 1:5 .......................... 0.25 0.02 0.10 0.62

� ¼ 1, WC ¼ 1000

r < 0:5 .......................... 0.24 0.06 0.09 0.61

r < 1:0 .......................... 0.21 0.03 0.06 0.70

r < 1:5 .......................... 0.20 0.02 0.06 0.73

� ¼ 1, WC ¼ 10; 000

r < 0:5 .......................... 0.14 0.05 0.05 0.76

r < 1:0 .......................... 0.09 0.02 0.03 0.87

r < 1:5 .......................... 0.07 0.01 0.01 0.91

� ¼ 2, WC ¼ 0

r < 0:4 .......................... 0.46 0.05 0.09 0.40

r < 0:8 .......................... 0.45 0.05 0.06 0.44

r < 1:2 .......................... 0.44 0.05 0.05 0.46

� ¼ 2, WC ¼ 1000

r < 0:4 .......................... 0.26 0.04 0.04 0.65

r < 0:8 .......................... 0.30 0.03 0.03 0.64

r < 1:2 .......................... 0.30 0.02 0.03 0.65

� ¼ 2, WC ¼ 10; 000

r < 0:4 .......................... 0.15 0.03 0.03 0.79

r < 0:8 .......................... 0.18 0.01 0.02 0.78

r < 1:2 .......................... 0.17 0.01 0.02 0.79

Fig. 12.—Evolution of the axis ratios of the orbital solutions illustrated in Fig. 11. Columns on the left show models with � ¼ 1, T ¼ 0:50 and various values of
WC at r ¼ 1:0 ( first column), 2.0 (second column), and 3.0 (third column). Columns on the right show models with � ¼ 2, T ¼ 0:50.



instead of equation (10). Here Wi is the ‘‘penalty’’ associated
with the ith orbit; increasing Wi tends to decrease the contri-
bution Ci from the ith orbit in the solution. We set Wi ¼ 0 for
the chaotic orbits and Wi � WC ¼ (0; 1000; 10; 000) for the
regular orbits. As WC increases, we expect the contribution
from chaotic orbits to increase, although possibly at the ex-
pense of the overall quality of the fit to the cell masses. We
also constructed solutions containing only chaotic orbits.

Figure 11 and Table 7 show the orbital content for weak-
and strong-cusp solutions with T ¼ 0:50 and different values

of WC . The bottom panels of Figure 11 show solutions con-
taining only chaotic orbits. As WC increases, the regular orbits
are replaced by high-energy (low-energy) chaotic orbits in the
weak-cusp (strong-cusp) solutions. Evolution of the axis ra-
tios, computed via GADGET, is shown in Figure 12. Re-
markably, only the models constructed from purely chaotic
orbits show substantial evolution in their axis ratios. Inspec-
tion of the contour plots (e.g., Fig. 13) does reveal some
evolution away from elliptical isophotes in the solutions with
large WC , but the triaxiality appears robust. We conclude that
chaotic mass fractions as large as �75% or more might be
consistent with long-lived triaxiality in galactic nuclei.

7. SUMMARY AND DISCUSSION

We have shown that long-lived triaxial configurations are
possible for nuclei containing black holes. Models with
T ¼ 0:5 (maximally triaxial) and 0.25 (oblate/triaxial) were
constructed and found to be stable, retaining their non-
axisymmetric shapes until the end of the integration interval,
equal to �10 crossing times in the case of the self-consistent
integrations and �102 crossing times in the fixed-potential
integrations. Models with T ¼ 0:75 (prolate/triaxial) were al-
ways found to evolve rapidly to axisymmetry; we speculate
that prolate/triaxial nuclei do not exist. The evolution seen in
the nearly prolate models does not appear to be a consequence
of orbital chaos; indeed, in our stable solutions, we were able
to replace a surprisingly large fraction of the regular orbits by
chaotic orbits without inducing noticeable evolution in their
shapes. We found that at least 50%, and perhaps as much as
75%, of the mass could be placed on chaotic orbits in the
maximally triaxial and oblate/triaxial solutions. Such models
violate Jeans’ theorem in its standard form (e.g., Binney &
Tremaine 1987) but are consistent with a generalized Jeans’
theorem (Merritt 1999) if we assume that the chaotic building
blocks are ‘‘fully mixed,’’ that is, that they approximate a
uniform population of the accessible phase space. This appears
to be the case for the chaotic orbits in our models, based on
both inspection of individual chaotic trajectories and the lack
of evolution seen in the N-body integrations. While a sudden
onset of chaos can effectively destroy triaxiality at large radii in
models containing a large population of regular orbits (Merritt
& Quinlan 1998; Sellwood 2002), our work shows that at least
the central parts of galaxies containing black holes can remain
triaxial even when dominated by chaotic orbits.

Our results have possibly important implications for the rate
at which stars are fed to supermassive black holes in galactic
nuclei. In spherical or axisymmetric nuclei, the feeding rate is
determined by the rate at which stars on eccentric orbits are
scattered into the loss cone, the phase-space region defined by
orbits with pericenters lying within the black hole’s tidal
disruption radius. In the case of chaotic orbits in a triaxial
nucleus, each passage brings the star near to the center, and
the time required for a star to pass within a distance rt of
the black hole should scale roughly as r�1

t (e.g., Gerhard &
Binney 1985). Thus, even in the absence of gravitational
scattering, the loss cone would remain full and the feeding rate
could be orders of magnitude higher than in axisymmetric
nuclei. We examine these ‘‘chaotic loss cones’’ in detail in
Merritt & Poon (2004, hereafter Paper IV).

While our results strengthen the case for triaxiality in ga-
lactic nuclei, the case for nuclear triaxiality could be made
even more compelling by the detection of isophotal twists or
minor-axis rotation at the very centers of galaxies. Such
observations will be challenging, requiring two-dimensional

Fig. 13.—Contours of the projected density of the weak-cusp model with
T ¼ 0:50 and WC ¼ 10; 000. The upper panels show the contours at t ¼ 0, and
the lower panels show the contours at the end of the integration.
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data on an angular scale that resolves the black hole’s sphere
of influence. Existing integral field spectrographs on ground-
based telescopes (e.g., SAURON; Bacon et al. 2001) can only
achieve this resolution for the nearest galaxies. Equally
valuable would be N-body studies demonstrating that triaxial
nuclei can form and persist in realistic mergers.
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APPENDIX

EQUIVALENT SPHERICAL MODELS

We define the equivalent spherical models to have mass density

��(r) ¼
r

d

� ���
; d3 ¼ abc: ðA1Þ

The mass of the central black hole is set to 1. The potential is

�(r) ¼
2�r � 1

r
for � ¼ 1;

4�d2 ln
r

d

� �
� 1

r
� 4�d2 for � ¼ 2:

8><
>: ðA2Þ

The constant terms in the expressions for the potential were obtained by taking the spherical limits of equation (3) of Paper I. The
isotropic distribution function f (E ) is given by Eddington’s formula,

f (E ) ¼
ffiffiffi
2

p

4�2

Z u

E

d�ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� E

p d�

d�

¼
ffiffiffi
2

p

4�2

Z u

E

d2�

d�2

�ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� E

p þ lim
�!u

d�

d�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� E

p
� �

; ðA3Þ

and u � limr!1�(r). We assume that the models extend to infinity. In order to apply Eddington’s formula, we need to express � in
terms of �. For � ¼ 1, we have

r(�) ¼ �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 8d�

p
4d�

ðA4Þ

and

�(�) ¼ d

r
¼ 4d2�

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 8d�

p : ðA5Þ

Thus,

d2�

d�2
¼ 4d2�

�2 þ 8d�
� �3=2 ; ðA6Þ

f (E ) ¼
ffiffiffi
2

p
d2

�

Z 1

E

1

�2 þ 8d�
� �3=2

�� Eð Þ1=2
d�: ðA7Þ

Similarly, for � ¼ 2

r(�) ¼ 1

4�d2

1

W (u)
; ðA8Þ

u ¼ 1

4�d 2
exp � �þ 4�d2(1þ ln d )

4�d2

	 

; ðA9Þ

and

�(�) ¼ d2

r2
¼ 16�2d6 W (u)½ �2: ðA10Þ
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Here W(u) is Lambert’s W function; it is the inverse of the function u(W ) ¼ WeW . The distribution function is

f ðEÞ ¼
ffiffiffi
2

p
d2

d�2

Z 1

E

W ðuÞ½ �2 2þW ðuÞ½ �
1þW ðuÞ½ �3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� E

p d�: ðA11Þ

For both models, the differential energy distribution is given by

MðEÞ dE ¼ 16�2pðEÞ f ðEÞ dE; ðA12Þ

pðEÞ ¼
Z ��1ðEÞ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E � �ðrÞ½ �

p
dr: ðA13Þ
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