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ABSTRACT

Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value
problems in an unbounded domain posed by the equilibrium equations. It is well known from virial consid-
erations that stringent global constraints apply for a force-free field to be confined in equilibrium against
expansion into the unbounded space. This property as a basic mechanism for solar coronal mass ejections is
explored by examining several sequences of axisymmetric force-free fields of an increasing total azimuthal flux
with a power-law distribution over the poloidal field. Particular attention is paid to the formation of an azimuthal
rope of twisted magnetic field embedded within the global field, and to the energy storage properties associated
with such a structure. These sequences of solutions demonstrate (1) the formation of self-similar regions in the far
global field where details of the inner boundary conditions are mathematically irrelevant, and (2) the possibility
that there is a maximum to the amount of azimuthal magnetic flux confined by a poloidal field of a fixed flux
anchored rigidly to the inner boundary. The nonlinear elliptic boundary value problems we treat are mathe-
matically interesting and challenging, requiring a specially designed solver, which is described in the Appendix.

Subject headings: MHD — Sun: corona — Sun: coronal mass ejections (CMEs) — Sun: magnetic fields

1. INTRODUCTION

A magnetic field has a basic tendency to expand and fill a
maximal volume in an electrically highly conducting plasma
(Parker 1979; Low 2001). This tendency is driven by magnetic
and plasma pressures until force equilibrium is attained both
inside the volume and at its boundary with its surroundings. The
rigid container wall of a laboratory plasma system provides a
reaction force for its confinement. In an open astrophysical
atmosphere, there are no external rigid walls, of course. In its far
regions, inward forces are usually negligible, and the existence
of an equilibrium for a magnetic structure in such an atmo-
sphere depends on an anchoring effect of the stellar surface and
the structure’s internal force balance. The open atmosphere is
physically distinct from rigid-wall confinement in that certain
constraints apply for a magnetic structure to be self-confining.
Failing confinement, a part of the structure will be ejected out of
the atmosphere in order that the residual part can meet these
constraints and relax into an equilibrium state. This has been
suggested to be at the root of coronal mass ejections (CMEs), a
hydromagnetic phenomenon occurring 1 to 3 times a day in the
solar corona (Howard et al. 1985, 1997; Hundhausen 1999;
Low 1996, 2001).

Consider a theoretical static atmosphere in the one-fluid
hydromagnetic approximation described by the force-balance
equation

1

4�
: < Bð Þ < B�:p� �GM�

r2
r̂ ¼ 0; ð1Þ

:=B ¼ 0; ð2Þ

where p, �, and B are, respectively, the plasma pressure,
plasma density and magnetic field. We present a hydromag-
netic study of the self-confinement of magnetic fields in the
unbounded region outside a sphere of radius r0 in the force-
free approximation

: < Bð Þ < B ¼ 0; ð3Þ

taking the atmosphere to be so tenuous that we may neglect
the pressure and gravitational forces (Lüst & Schüler 1954).
These forces may be viewed as higher order effects associated
with a small departure from the exact force-free state. We
rewrite equation (3) in the form

�:
1

2
B2

� �
þ B = :ð ÞB ¼ 0; ð4Þ

showing a balance between the forces due to the magnetic
pressure and magnetic tension. A reaction force at the inner
boundary r ¼ r0 is involved in the global equilibrium. As we
show below, equilibrium can exist only if there is a significant
amount of magnetic flux anchored to the unit sphere. The
outward magnetic pressure force is globally countered by the
tension force arising from the strapping effect of that anchored
flux.
In a paper to follow (N. Flyer et al. 2004, in preparation),

we will account for plasma pressure and gravitational forces
and show how they modify in physically interesting ways the
results we present here. The goal of both studies is the
mathematical demonstration of equilibrium states, by explicit
solutions, with an interest in the formation of a rope of twisted
magnetic flux levitating in the open atmosphere. The equi-
librium of such a structure presents formidable nonlinear
boundary value problems, even under the simplifying as-
sumption of axisymmetry. The intuition developed out of
examining explicit solutions is one way to gain some insight
into how equilibrium confinement may fail, to result in the
expulsion of such a flux rope to produce a solar CME (Gibson
& Low 1998, 2000; Dere et al. 1999; Ciaravella et al. 2000;
Low 2001; Wolfson & Saran 1998; Zhang & Low 2004).
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In x 2, we formulate the boundary value problem for an
axisymmetric force-free magnetic field, laying down the
physical basis for the model. In x 3, we introduce the nu-
merical solver, described in the Appendix, to be used in the
construction of the explicit solutions. Families of explicit
solutions are presented in x 3 and analyzed in the physical
context of a solar magnetic flux rope. In x 4, the results are
summarized to arrive at several physical conclusions.

2. FORCE-FREE MAGNETIC FIELDS

Consider the axisymmetric magnetic field written in
spherical coordinates and satisfying equation (2)

B ¼ 1

r sin �

1

r

@A

@�
r̂� @A

@r
âþ Qĵ

� �
; ð5Þ

in terms of a flux function A and a scalar function Q to describe
the azimuthal field component. The force-free equation (3)
then describes equilibrium in the r-� plane in terms of a balance
between a force due to the poloidal field as represented by the
flux function A and the force of the isotropic pressure 1

2
Q2

contributed by the toroidal component B’
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:Aþ Q:Q ¼ 0: ð6Þ

Setting the Lorentz force in the ’-direction to be zero imposes
the condition Q(r; �) ¼ Q(A), whereupon we obtain the el-
liptic partial differential equation for A
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þ sin �

r2
@

@�

1

sin �

@A

@�

� �
þ Q

dQ

dA
¼ 0: ð7Þ

With each prescription of the functional form of Q(A), equation
(7) is to be solved for A subject to suitable boundary conditions.

For the unbounded domain r > r0, we impose the Dirichlet
boundary conditions

A r ¼ r0; �ð Þ ¼ B0r
2
0F(�);

9A r; �ð Þj j ! 0 as r ! 1;

A r; � ¼ 0 and �ð Þ ¼ 0; ð8Þ

where F is given. In this paper we treat the case of

F ¼ sin2�; ð9Þ

which we refer to as the dipolar case.
The physical interpretation of solutions to the force-free

equation (7) requires caution, as emphasized by Wolfson
(2003). A distinction needs to be made between a continuous
sequence of solutions generated by varying a free parameter in
Q(A), taken with a fixed functional dependence on A, and a
physical sequence of solutions representing a quasi-static
evolution of a field through a continuum of equilibrium states.
The former has been called the generating function approach.
The latter has been considered in the context of a field
evolving in response to boundary motion under conditions of
perfect electrical conductivity. Under these conditions, the
topology of the evolving field can have no change other than
that introduced through the shearing boundary motions acting
on field lines threading the boundary. In general, any pre-
scribed form of Q(A) with varying free parameters may not

generate solution sequences that meet such a requirement,
and, in such cases, the sequence do not describe a physically
acceptable evolution. This point was made by Klimchuk &
Sturrock (1989) in criticism of a model of evolving force-free
magnetic fields published by Low (1977); see also the reply to
this criticism in Low (1990).

Instead of the generating function approach, a physical
evolution may be constructed by specifying the field topology
of the evolving field, rather than specifying the scalar function
Q(A). This can be accomplished either by a reformulation of
the force-free equation in the form of a integral-partial dif-
ferential equation in which Q(A) is left as an unknown (e.g.,
Low 1978) or by the use of Clebsch variables (Antiochos,
DeVore, & Klimchuk 1999). Both of these reformulations lead
to mathematically formidable problems.

The scope of our paper is limited to full surveys of solutions
to equation (7) for fixed functional forms of Q(A), without
taking a sequence of solutions generated in this manner to
necessarily imply a physical evolution. Our primary motive is
to understand such force-free states through explicit solutions,
a reasonable first step in view of the paucity of known solutions
to equation (7). As we show, our solutions do provide some
useful insights into the nature of force-free fields in the un-
bounded domain and their capacity to store magnetic energy.

2.1. Potential and Linear Force-free Magnetic Fields

If we set Q ¼ 0 for a poloidal field in the dipolar case, the
solution to equation (7)

Apot ¼ B0r
3
0

sin2�

r
; ð10Þ

satisfying the prescribed boundary conditions, describes a
potential dipole field in r > r0. This is the lowest energy state
of all possible magnetic fields, satisfying those boundary
conditions.

If we set Q ¼ k0A for some constant k0, equation (7) takes
the linear form

@ 2A

@r2
þ sin �

r2
@

@�

1

sin �

@A

@�

� �
þ k20A ¼ 0: ð11Þ

The solution to our boundary value problem for the dipolar
case is

Alin ¼ B0r
2
0 sin

2�
a0J3=2(k0r)þ b0J�3=2(k0r)

a0J3=2(k0r0)þ b0J�3=2(k0r0)

ffiffiffiffiffi
r

r0

r
: ð12Þ

Provided that k0 is not a root of

a0J3=2(k0r0)þ b0J�3=2(k0r0) ¼ 0; ð13Þ

the free constants a0 and b0 generate multiple solutions to our
boundary-value problems for each given k0. If k0 is a root of
equation (13), the boundary value problem has no solution.
These are well-known results in the Sturm-Liouville theory
(Courant & Hilbert 1963a). However, the above solutions are
physically not interesting because the total magnetic energy,

E ¼
Z
r>r0

B2

8�
dV ; ð14Þ

in each case is unbounded owing to a characteristically slow
decline of jBj to zero at r ! 1 (Berger 1985; Low 1996). On
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the other hand, the limit k0 ¼ 0 gives the potential field Apot

with a finite total energy E, as can be verified. In other words,
the potential field is a singular limit of k0 ! 0.

Since lines of force are lines along which A takes a constant
value, the roots r of

a0J3=2(k0r)þ b0J�3=2(k0r) ¼ 0 ð15Þ

for a given k0 define an infinite set of concentric spheres that
are flux surfaces. The linear force-free fields are each an in-
finite set of closed magnetic fluxes separated by these con-
centric spheres, a property relevant to x 2.2. It is clear that
force-free magnetic fields in the unbounded domain r > r0 of
finite total energy generally requires Q to be a nonlinear
function of A.

2.2. The Total Magnetic Energy

The virial theorem of Chandrasekhar (1961) shows that the
total magnetic energy of a force-free magnetic field in a do-
main V is uniquely given by the vector values of the field at
the boundary @V

Z
V

B2

8�
dV ¼

Z
@V

B2

8�
r =dSð Þ �

Z
@V

1

4�
B = rð Þ B =dSð Þ; ð16Þ

where r is the position vector in spherical coordinates and dS
is the surface area element directed out of V. In axisymmetry,
the energy of a force-free magnetic field in an interior domain
r < r0 of a rigid boundary r ¼ r0 is given by

E ¼ 1

4
r30

Z �

0

B2
� þ B2

’ � B2
r

� �
r¼r0

sin � d�: ð17Þ

For a fixed boundary flux Br at r ¼ r0, the more highly twisted
the force-free field is, the greater are the boundary values of
the tangential components B� and B’ at r ¼ r0. In particular,
solutions exist for Br ¼ 0 on r ¼ r0 for a magnetic field en-
tirely contained in r < r0. Examples of such fields are easy to
construct with linear force-free magnetic fields corresponding
to b0 ¼ 0 in equation (12), imposed to ensure regularity of the
field at the origin.

The force-free fields in the exterior r > r0 of the rigid
boundary r ¼ r0 is distinctly different, as revealed by its en-
ergy integral

E ¼ 1

4
r30

Z �

0

B2
r � B2

� � B2
’

� �
r¼r0

sin � d�; ð18Þ

where it is assumed that B declines to 0 at infinity sufficiently
rapidly to ensure that the total magnetic energy is finite. Here
we see that for a fixed normal field Br at r ¼ r0, one cannot
assume that a highly twisted field attributed with large pre-
scribed values of B’ at r ¼ r0 is allowed. For example, it is not
to be taken for granted that any prescribed Q(A) in equation (7)
can give a physical solution in r > r0 satisfying boundary
conditions (8).

Whereas in the case of the domain r < r0 a force-free field
may exist with Br ¼ 0 on r ¼ r0, no force-free field can exist
in r > r0 with Br ¼ 0 on r ¼ r0 (Low 2001). In the former, the
tangential magnetic field along the boundary r ¼ r0 exerts a
pressure force that is taken up by that rigid boundary to
confine the field within the finite volume. In the latter, the
absence of an outer boundary above r ¼ r0 means that any

field not threading across r ¼ r0 will expand to fill all space
and approach a state of diluted field indistinguishable from
vacuum. Only fields threading across r ¼ r0 may exist in a
force-free state, with the part of the field anchored to r ¼ r0
serving to transmit the self-confining magnetic tension force
on to the inner boundary.
The requirement of Br 6¼ 0 on r ¼ r0 is only a necessary

condition for a force-free field to exist in r > r0. By virtue of
the energy being positive, equation (18) sets an upper bound
on the form of Q(A) defining the force-free field in terms of the
given boundary flux,

Z �

0

B2
r � B2

’

� �
r¼r0

sin � d� > 0; ð19Þ

which translates into the condition on Q(A) for the boundary
value problem based on conditions (8) and (9)

Z �

0

q(A)2
� 	

r¼r0

d�

sin �
<

8

3
; ð20Þ

where we have written Q ¼ B0r0q(A) to put a bound on q as a
dimensionless quantity.

2.3. Power-Law Force-Free Magnetic Fields

The preceding analysis suggests that it would be interesting
to investigate the family of force-free fields generated for Q(A)
as a fixed function of A with a free constant amplitude to be
increased monotonically from zero until the limit for existence
of solutions is approached. The limit set by inequality (20) is
not the lowest upper limit. With no loss of generality, let us
use physical units such that r0 ¼ 1 and B0 ¼ 1. This paper is
centered on the study of

½Q(A)�2 ¼ 2�

nþ 1
Anþ1; ð21Þ

introducing the constant n and the constant amplitude �. The
governing equation is then

@2A

@r2
þ sin �

r2
@

@�

1

sin �

@A

@�

� �
þ �An ¼ 0: ð22Þ

For a given n, we wish to generate the solutions in r > 1
subject to the boundary conditions (8) and (9) as the value of �
is increased monotonically from 0. Nonlinear elliptic partial
differential equations present formidable questions of exis-
tence and uniqueness of solutions (e.g., Courant & Hilbert
1963b; Lazer & McKenna 1980; Esteban 1991). The power-
law for Q(A) is mathematically the simplest form to adopt. In
many physical applications, the flux function A decays to zero
in the far reaches of the domain. The power law provides an
instructive case of how Q might decay as a monomial in A
across the flux surfaces of constant A with its implications for
the field’s self-confinement. We take a numerical approach to
equation (22) in our study.
Constant values of the magnetic stream function A define

magnetic flux surfaces. Equation (21) thus prescribes a load-
ing of B�, which exerts a magnetic pressure across these flux
surfaces, declining with a power law in A. We study the im-
plication of the rate of decline on global equilibrium, taking n
to be even integers, which ensures that the right hand side of
equation (21) is positive definite independent of the sign of A.
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When � ¼ 0, we have the potential dipole field given by the
flux function (10). For � small, we expect a solution in small
departure from the potential field in the domain. Taking the far
field in r > 1 to be the potential dipole field in the leading term,
it can be shown that the nonlinear source term in equation (22)
evaluated with that leading term does not produce a mean-
ingful first order correction if n � 3. This suggests that solu-
tions in the neighborhood of the potential dipole field, subject
to boundary conditions (8), require n > 3 (Low 1986).
Therefore, we chose the cases of n ¼ 5, 7, and 9 for treatment.
Inequality (20) sets the following upper bound on � above
which no solution to the boundary value problem can exist

� <
2(nþ 1)(2nþ 1)!!

3(2n)!!
ð23Þ

for each value of n, where (2nþ 1)!! ¼ (2nþ 1)(2n� 1) : : :
(3)(1) and (2n)!! ¼ (2n)(2n� 2) : : : (4)(2).

2.4. The Aly Magnetic Energy

It useful for our purpose to introduce the Aly magnetic
energy (Aly 1984, 1991; see also Sturrock 1991; Wolfson
1993). The axisymmetric magnetic fields in r > 1 may be
classified into the class of fields each with all lines of force
anchored at the two ends on the boundary r ¼ 1, and the
complement class of fields containing an azimuthal rope of
flux located entirely in r>1 running around the axis of
symmetry. This flux rope has lines of force projected into
closed curves of constant A located entirely in r>1 in the
r-� plane. We call the former fully anchored fields, or just
anchored fields for short, and the latter flux-rope fields.

Two energy bounds are interesting. The first is that any
force-free magnetic field satisfying boundary conditions (8)
and (9) has an energy in excess of Epot of the potential mag-
netic field given by equation (10). The second bound is due to
Aly energy. Consider all magnetic fields, not necessarily in
equilibrium, with one end of each line of force anchored to
r ¼ 1 and the other out to infinity, satisfying boundary con-
ditions (8) and (9). Among these fields, the one with the
lowest energy is potential everywhere except for a current
sheet in the equator, where the bipolar field reverses sign
abruptly. Denote the total energy of this minimum-energy
state by EAly. For the dipolar field EAly ¼ 1:66Epot (Low &
Smith 1993). We accept Aly’s conjecture that for any fully
closed, anchored force-free field satisfying boundary con-
ditions (8) and (9), its total energy Ef f f satisfies the inequality

Epot < Ef f f < EAly: ð24Þ

This inequality implies that none of the closed anchored force-
free magnetic fields with the same boundary flux at r ¼ 1 may
have enough stored magnetic energy to drive an outflow that
opens up every line of force to infinity.

Inequality (24) does not apply to flux-rope fields (Aly 1991).
It is therefore interesting to seek examples in which the Aly
limit on anchored fields might be exceeded by flux-rope fields.
Recently, Wolfson (2003) produced a numerical example of a
flux-rope force-free field demonstrating such an energy excess
of the order of only a few percent, an excess not to be accepted
conclusively, as the author had cautioned, in view of the nu-
merical uncertainty of the method of solution employed.
Hu, Li, & Xing (2003) also reported a possible excess of en-
ergy, of less than 10%, of a low-� flux-rope equilibrium field
over the Aly energy produced by a time-dependent relaxation

to a static state. The excess over the Aly energy may not be large
because the first term in the integrand of equation (18) is an
absolute upper bound on the energy. Denoting this absolute
upper bound by Eabs, we have for all force-free fields, both
anchored and with flux ropes,

Eabs ¼
1

4

Z �

0

B2
r


 �
r¼1

sin � d� > Ef f f : ð25Þ

For the dipolar boundary conditions (8) and (9), Eabs ¼ 2Epot.
Moreover, Eabs is not the least upper bound. Hence, an excess
above the Aly limit in a flux-rope magnetic field is moderate,
Eabs ¼ 2Epot > Ef f f > EAly ¼ 1:66Epot, with Ef f f expected to
be closer to EAly than Eabs, since a purely radial field at the
boundary, in order to attain the high value of Eabs, is not likely
to be force-free.

2.5. Self-similar Fields

The power-law force-free fields were studied by Low &
Lou (1990). They found separable solutions of the form

A ¼ Hm(�)

rk
; ð26Þ

where k þ 2 ¼ kn and Hm is the solution to a nonlinear
eigenvalue problem for each fixed n, associated with the integer
m to label the parameter � as an eigenvalue. These solutions
are self-similar by virtue of its invariance to a scaling of the
radial coordinate. These self-similar solutions have been
studied in the context of astrophysical accretion disks, in-
cluding the fitting of these self-similar solutions to paramet-
rically varied boundary conditions at the accretion disks
(Uzdensky 2002; Lynden-Bell & Boily 1994; Wolfson 1995).

Now the self-similar force-free fields are solutions to bound-
ary conditions (8) for the flux, with r0 ¼ 1 for F(�) given by

F ¼ Hm(�): ð27Þ

In the theory of Barenblatt & Zel’dovich (1972), self-similar
solutions may be of greater general interest than might have
been implied by their rather particular forms. The self-similar
solutions are associated with the absence of an intrinsic scale
so that the solutions are each invariant to a scale transforma-
tion. Then, in the idea of the intermediate asymptotics of
Barenblatt & Zel’dovich, self-similar solutions may be the
leading order approximation of solutions to a boundary value
problem in a locality of the domain far from the boundary of
the domain. In such a locality, scales deriving from the far
boundary conditions become mathematically irrelevant. For
example, such scales may be lodged not in the leading-order
term but in the higher order terms of the local expansion. As
we set out in the next section to generate families of nonlinear
force-free fields, we watch out for the existence of such in-
termediate asymptotic localities where the self-similar force-
free fields of Low & Lou may be found.

3. THE NUMERICAL BOUNDARY VALUE PROBLEM

There are several challenges associated with the numerical
solution of the boundary value problem posed by equa-
tions (22), (8), and (9)

Infinite domain.—This needs to be truncated to a finite
computational domain with an appropriate radiation boundary
condition to simulate its infinite extent and incorporate the far-
field asymptotic knowledge.

MAGNETIC FIELD CONFINEMENT 1213No. 2, 2004



Nonlinear equations.—The iteration method to be used
must converge rapidly, independent of whether or not the un-
derlying physical problem is time-stable. Newton’s method is a
natural choice (Fornberg 1988).

High-order accuracy is needed for derivative approxima-
tions.—The cost of Newton’s method, our method of choice,
increases very rapidly with the number of grid points, which
therefore needs to be kept as low as possible.

Solution branches must be followed past turning points
in �.—For each value of the parameter �, multiple solutions or
possibly infinitely many solutions may exist, requiring special
care in linking the different branches of solutions.

The numerical procedure, coded in MATLAB, used in this
work was designed to resolve these difficulties. We describe
this procedure in the Appendix, with a discussion of its im-
portant mathematical features: (1) Transforming the truncated
computational domain (1 < r < r1; 0 < � < �=2), for some
sufficiently large r1, into the logarithmically stretched rect-
angular domain s ¼ log r, � ¼ �=2� �. This will transform
equation (22) into

@2A

@s2
� @A

@s
� @ 2A

@�2
þ tan �

@A

@�
þ �e2sAn ¼ 0:

(2) Use of Chebyshev-spaced grid points in the s-direction.
(3) Approximation of derivatives by pseudospectral methods
(Fornberg 1996); (4) use of either the Dirichlet or radiative
boundary conditions at the outer boundary; and, (5) use of
pseudo-arc length continuation for following solution branches
through their turning points (Keller 1987; Allgower & Georg
1992).

Here we present the solutions we have obtained for the
contrasting cases of n ¼ 5, 7, and 9.

3.1. The n ¼ 5 Sequence

Figure 1 shows the general character of the sequence of
solutions to the boundary value problem for n ¼ 5. With use

of the pseudo-arc length continuation scheme described in the
Appendix, it becomes irrelevant from a numerical perspective
that the solution sequence features turning points in �. A
straightforward implementation of the Newton’s iteration
method with � as a free parameter would fail in the vicinity of
the turning points. Therefore, we do not describe the behaviors
of the solution A in terms of � values, but in terms of positions
on the solution curve. We have displayed five samples from
the continuous solution curve.
The first column displays representative solutions in the

sequence in terms of the nonlinear term � exp (2s)A5 in the
transformed computational domain (s; �). The second column
displays the corresponding solutions as a function of s along
the line � ¼ 0, which corresponds to the equatorial plane
� ¼ �=2 of the unit sphere. Figure 2 displays the total mag-
netic energy (in units of potential energy) and flux along the
continuous solution curve with the marked points (a)–(e)
corresponding to the solutions (a)–(e) displayed in Figure 1.
The graph of the total magnetic energy versus � clearly shows
that solutions are found by our numerical methods only for
� � 2:32, a more stringent bound on � than that set by in-
equality (23) for n ¼ 5,

� < 10:82; ð28Þ

for the existence of a solution. The bound in inequality (28) is
not the least upper bound on � for the existence of a solution.
On the other hand, we cannot rule out the possibility that other
solutions, not found by our numerical procedure, may exist
such that 2:32 < � < 10:82.
A physical interest of our mathematical study is to discover

a local maximum in A in the domain for some value of �. Such
a maximum would represent a magnetic flux rope with its field
line projections on the physical r-� plane in the form of closed
curves of constant A (Chen 1989; Low 1996; Zhang & Low
2003, 2004). No maximum of A was found in our n ¼ 5 se-
quence of solutions. The solution given in row 1 in Figure 1
suggests a hint of a maximum forming in � exp (2s)A5. Careful
examination of the neighborhood of this solution in terms of
A showed that no maximum actually formed. At most an

Fig. 1.—Samples of solutions along the continuous solution branch to
eq. (22) for n ¼ 5. Left column: A(s; �) in the computational s-� plane at the
marked locations in Fig. 2 with s�½0; 15� and ��½��=2; �=2�. Right column:
corresponding radial decay rate of the field along � ¼ 0 (� ¼ �=2). The dotted
line is a decay rate of exp (�3s), characteristic of the potential dipole decay
rate [note: exp (2s) exp (�s)5 ¼ exp (�3s)]. The dashed line is a decay rate
of exp �1

2
s


 �
, characteristic of a self-similar solution with a dipolar topology

[note: exp (2s) exp �1
2
s


 �5¼ exp �1
2
s


 �
].

Fig. 2.—Energy (in units of potential energy) and magnetic flux vs. � along
the solution curve for n ¼ 5. The five samples in Fig. 1 are correspondingly
labeled at points (a)–(e).
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inflection point might have formed and then disappeared as we
move along the solution curve.

The solutions do display an interesting property in its decay
to zero in the far reaches of the atmosphere. In the second
column of Figure 1, the graph of � exp (2s)A5 along the
equator � ¼ �=2 is plotted against two different decay rates,
one at the rate of exp (�3s) (dotted line), characteristic of the
potential dipole field, and the more gradually decaying
exp �1

2
s


 �
(dashed line), characteristic of a self-similar solu-

tion with a dipolar topology. As we go down the column from
the top we see solutions with a dipolar potential decay evolve
parametrically to those with the self-similar decay. The solu-
tion curve in Figure 2 curls into a limiting point not resolved at
the level of numerical resolution we employed. The evolution
in the decay rate of the solution is discernible upon crossing
the turning point at � ¼ 2:32 and the self-similar decay takes
over completely in the far region as the limiting solution is
reached at � ¼ 1:93. Our solution sequence shows that, as we
proceed along the solution curve, the far field solution
becomes less sensitive to the form of the Dirichlet boundary
condition at r ¼ 1 and assumes a self-similar form as its lead
approximation, in the manner described by Barenblatt &
Zel’dovich (1972).

The computational domain we employed is radially suffi-
ciently extended so that the outer boundary conditions,
whether based on the potential dipole decay rate or the self-
similar decay rate, produced the same solution because the two
exponential decay rates are sufficiently severe to have their
values at this outer boundary falling below machine accuracy.

3.2. The Total Azimuthal Magnetic Flux

To provide a physically more intuitive interpretation of the
n ¼ 5 solution curve, we calculate the total magnetic flux in
the ’-direction in the atmosphere

F’ ¼
Z
r>1

B’r dr d�; ð29Þ

along the solution curve, displayed in Figure 2 alongside the
graph for the total magnetic energy. The spiraling part of the
graph for the total energy shows that the limiting point is
approached with an oscillation of the total energy above and
below that of the limiting point. In contrast, the total azimuthal
flux F’ is monotonically increasing along the solution curve.

Physically, we are looking at a sequence of force-free fields
characterized with a monotonically increasing total azimuthal
flux F’. The solution curve may be parameterized mathe-
matically more conveniently by F’ instead of �. The former is
one-to-one whereas the latter involves different branches with
the same value of � associated with more than one solution
on the curve. Note that, despite the monotonic increase of
F’ along the solution curve, the magnetic energy is not a
monotonic function of F’, a point we have more to say in the
conclusion of the paper.

In each force-free field, its azimuthal flux is held in equi-
librium by the part of its dipolar poloidal field anchored to
r ¼ 1. The amount of anchored dipolar flux is independent of
F’, fixed by boundary conditions (8) and (9). The azimuthal
field B’ produces two forces, a magnetic pressure force and a
magnetic tension force, the latter directed at the axis of
symmetry. These forces are to be balanced by the magnetic
pressure and tension forces contributed by the poloidal field
generated by A. The force balance equation written in the form

of equation (5) has conveniently reduced the effect of B’ to
just the force due to an isotropic formal pressure Q2=2 in the
r-� plane. The increase of F’ is effected with the profile of
Q(A) kept in an invariant form—the assumed power law in A.
The increase in F’ is complicated by the dependence of A on
space changing from one solution to another. Thus, F’ is a
global or integral function of Q(A), and not a simple linear
function of �. Consequently, the physics in terms of F’ is
easier to interpret than in terms of �.

With a monotonically larger total azimuthal flux to be
confined by a fixed amount of anchored poloidal flux, along
the solution curve, the field progressively expands radially
outward to relieve the magnetic pressure Q2=2. In so doing,
the poloidal flux is also stretched radially outward. Equilib-
rium in this situation then depends critically on whether the
reduced strength in the stretched poloidal field is sufficient to
confine the reduced magnetic pressure of the stretched azi-
muthal flux. The self-similar solution of Low & Lou for a
fixed index n may be characterized by its property that the
radial decay of B’ as represented by Q is precisely the same
as the decay of the poloidal field as represented by A=r, as
functions of r. The identical decay is the basic reason that
both poloidal and azimuthal fields are scale-invariant. The
evolution of the decay in Figure 1 along the solution curve
may be understood in terms of how the increasingly large
azimuthal flux F’ is confined with this scale-independent
distribution expanding to ever larger extent radially outward.
The limiting point indicates in Figure 2 that there is a maxi-
mum value of about 1.7, in the units used, for F’ to be ac-
commodated in this particular mechanical mode. Exceeding
this maximum value must require a change in the nature of
confinement or a loss of confinement.

The former may correspond to a smooth continuation into a
new sequence of equilibria such as one with a different func-
tional form of Q(A). The loss of confinement is more inter-
esting. It could be produced by a dynamical transition in which
a part of the poloidal flux, upon failing to confine the excessive
azimuthal flux, is pushed open to allow the azimuthal flux to
propagate out as nonlinear shear Alfvén waves (Low 1986;
Wolfson & Low 1992; Aly 1995; Uzdensky et al. 2002). With

Fig. 3.—Samples of solutions along the continuous solution branch to
eq. (22) for n ¼ 7. Left column: A(s; �) in the computational s-� plane at the
marked locations in Fig. 5 with s�½0; 8� and ��½��=2; �=2�. Right column:
corresponding radial decay rate of the field along � ¼ 0(� ¼ �=2).
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a loss of azimuthal flux via such an opening-up process, the
anchored poloidal flux will eventually dominate again to re-
close by magnetic reconnection, producing a new equilibrium
with a reduced F’. In this transition, the end state is likely to be
an equilibrium with Q(A) taking some form determined by
the details of the dynamical transition. The n ¼ 5 sequence
in Figures 1 and 2 suggests a general conclusion that with a
fixed poloidal flux anchored to r ¼ 1, only a limited amount of
azimuthal flux may be confined by it. There may be a maxi-
mum azimuthal flux associated with a given profile of A on
r ¼ 1, independent of the form of Q(A). We can not be sure that
the maximum is 1.7 as obtained by the power-law case of

n ¼ 5, but we suggest that this value characterizes its order of
magnitude for the dipolar case given by equations (8) and (9).

3.3. The n ¼ 7 Sequence

The n ¼ 7 sequence is presented in Figures 3, 4, and 5, in a
format that shows directly the formation of a magnetic flux
rope in the atmosphere. On the left column of Figure 3 are the
two-dimensional plots of the flux function A(s; �) at different
points on the continuous solution curve. A local maximum in A
is clearly discernible in the second and third plots from the top.
The runs of A along the equator � ¼ �=2, displayed as a
function of s along � ¼ 0, show the formation of the maximum

Fig. 4.—Corresponding contour plots of the A field in the physical r-� plane for n ¼ 7 at the marked location in Fig. 5

Fig. 4bFig. 4a

Fig. 4c Fig. 4d
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more clearly. The dotted curves and the broken curves are
the decay profiles for the dipolar potential flux function
[exp (�s)] and the n ¼ 7 self-similar decay [exp (�s=3)]. We
see that solution A starts along the solution curve with a po-
tential decay rate and spreads its azimuthal flux radially out-
ward and evolving toward a self-similar profile as we progress
along the solution curve.

Figure 4 displays the four flux functions shown in the left
column of Figure 3, as lines of force of the magnetic field in the
physical r-� plane. The sequence shows first the formation of a
flux rope of closed A-lines near the base r ¼ 1, which pro-
gresses out into the atmosphere. This rope reduces in size
parametrically as it separates from the bipolar field underneath
the rope by an X-type magnetic neutral point. Eventually the
rope disappears and the field relaxes toward the n ¼ 7 self-
similar profile for the far field everywhere, as the solution
terminates in the limiting point of the energy curve in Figure 5.

In contrast to the n ¼ 5 sequence, the energy curve for the
n ¼ 7 sequence has a more pronounced spiral to the limit
point. As in the case of the n ¼ 5 sequence, the n ¼ 7 se-
quence has a monotonically increasing total azimuthal flux F’

along the solution curve. Note that the maximum value of F’

is again of the order of 1.7, despite the difference in the power
indices of Q(A) as a power-law dependence on A. In both
cases, the azimuthal flux F’ is confined by the same amount of
poloidal flux defined by boundary conditions (8) and (9). This
result lends support to our suggestion that the given poloidal
flux anchored to r ¼ 1 is capable of confining a total azi-
muthal flux of that maximum magnitude.

The maximum value of � for which solutions exist is about 4
in the case of n ¼ 7, larger than the case of n ¼ 5. This means
that the former may have solutions with a larger maximum
value in the azimuthal field component B’, located at a max-
imum value of A than the case of n ¼ 5. The n ¼ 7 flux rope is
tightly wound and confined near r ¼ 1. This local property is
controlled by the index n, although the maximum total amount
of azimuthal flux to be confined by the fixed amount of
poloidal flux appears not to be sensitive to the index n.

The Aly energy EAly becomes an interesting quantity to
consider since it is not, in principle, a bound of the total
energy of a force-free field with a flux rope. The total mag-
netic energies, given in units of potential energy, for the four

examples in the left column in Figure 3 and Figures 4a–4d are
1:09, 1.57, 1.45, and 1.45, respectively. Figure 5 shows that
the maximum total energy attained in the sequence is a flux-
rope solution with a total energy of 1.598. For the boundary
flux fixed by boundary conditions (8) and (9), EAly ¼ 1:66 in
the same units. Thus, the maximum energy of 1:598 of the
sequence is about 4% short of the Aly energy. Since all units
are given in potential energy Epot ¼ 1, implying a threshold of
EAly � Epot ¼ :66 as the energy required to stretch all the
anchored poloidal field to open up to infinity. The maximum
energy of the sequence has exceeded Epot by the amount 0.598
of the order of 90% of the threshold. The trend suggested
by the n ¼ 5 and 7 sequences points to the possibility that
n ¼ 9 might have a maximum energy that does exceed the Aly
energy.

3.4. The n ¼ 9 Sequence

Figures 6, 7, and 8 display the n ¼ 9 sequence of force-free
fields, in the same format of representation as Figures 3–5
for the n ¼ 7 sequence. As expected, a maximum in A, rep-
resenting a flux rope, emerges in the sequence of states
associated with a monotonically increasing azimuthal total
magnetic flux; see the example in rows (b) and (c) in Figure 6
and the corresponding plots of the poloidal lines of force in the
r-� plane shown in Figure 7. Of particular note is the large
magnetic flux rope located above an X-type magnetic neutral
point in Figure 7c. The spiraling solution curve in the energy
versus � plot is not only more tightly wound than the lower n
cases, it also intersects itself at multiple points. At each such
intersection, the two magnetic fields are not the same, but they
share the same total energy and value of �. The tightly wound
spiral curve represents a parametric oscillation of the total
energy in the solution curve characterized by a monotonically
increasing total azimuthal flux, shown on the right in Figure 8.

The limit point in Figure 8 correspond to a field that has a
n ¼ 9 self-similar form extending out to infinity. This state is
the state of maximum total azimuthal flux in the sequence.
This maximum value is once again about 1.7 in the dimen-
sionless unit used, an additional piece of numerical evidence
that the fixed amount of poloidal flux, anchored to r ¼ 1, may
confine only a maximum amount of azimuthal flux of that
order of magnitude.

Fig. 6.—Samples of solutions along the continuous solution branch to
eq. (22) for n ¼ 9. Left column: A(s; �) in the computational s-� plane at the
marked locations in Fig. 8 with s�½0; 6� and ��½��=2; �=2�. Right column:
corresponding radial decay rate of the field along � ¼ 0 (� ¼ �=2).

Fig. 5.—Energy (in units of potential energy) and magnetic flux vs. � along
the solution curve for n ¼ 7. The four samples in Figs. 3 and 4 are corre-
spondingly labeled at points (a)–(d ).
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More interesting is the largest total magnetic energy real-
ized along the solution curve. Figure 8 shows that this max-
imum is a little below 1.73 but has exceeded the Aly energy
by about 3.5% of the Aly energy. Figure 9 shows the mono-
tonically increasing trend in the respective maximum mag-
netic energies of the sequences n ¼ 5, 7, and 9, displayed
against the energy levels corresponding to Epot, EAly, and Eabs.
The maximum total energy of the n ¼ 9 sequence is obtained
in the neighborhood of the state displayed in Figure 7b. Note
in the insert figure of this state that the flux rope is confined
low in atmosphere, with a deformation of the neighboring
lines of force outside the flux rope toward normal incidence at
r ¼ 1. Examination of the virial formula for the total energy,

equation (18) shows that the total energy is rendered large for
those fields with small root mean squared B� and B’ on r ¼ 1,
with Br at r ¼ 1 fixed by the boundary conditions of the prob-
lem. These two conditions are met in the state in Figure 7b.
Near normal incidence of the poloidal field at r ¼ 1, as shown,
gives a small rms B� at r ¼ 1. The relatively high value of
n ¼ 9 implies a steep decline of Q as we leave the maximum
of A by virtue of the power-law dependence of Q or, more
physically, B’. This implies that the rms B’ at r ¼ 1 is
also minimal.
The steepness of the gradients of Q as a power-law function

of A in the case n ¼ 9 requires extremely high spatial reso-
lutions for their numerical computation. The redeeming factor,

Fig. 7.—Corresponding contour plots of the A field in the physical r-� plane for n ¼ 9 at the marked location in Fig. 8

Fig. 7b

Fig. 7c

Fig. 7a

Fig. 7d
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however, is that as the power-law index increases, the decay
rate of the nonlinear term in equation (A1) goes as
exp (�nþ 2)s½ �. The computation was done on two separate
grids to verify that the maximum energy had exceeded the Aly
energy by 3.5% with numerical confidence. Since there is little
change in the azimuthal direction between cases, the grid
needed to be refined in the radial direction. The first grid was a
coarser grid of 127 points (radial) and 31 points (azimuthal)
on a domain from 0 to 8 and ��=2 to �=2. Taking advantage
of the exponentially rapid decline of A with s, we reduce the
radial size of the domain from ½0; 8� to ½0; 6�, achieving a grid
refinement in the radial direction with 81 points (radial) and
31 points (azimuthal) on a domain from 0 to 6 and ��=2 to
�=2. In the first case the maximum energy exceeded the Aly
limit by 3.4% and in the second case by 3.6%. The insensi-
tivity of the calculation to the grid size gives numerical con-
fidence in the estimate.

4. SUMMARY AND CONCLUSION

The solar expulsion of a large-scale magnetic structure
known as a CME motivates this mathematical study of non-
linear force-free magnetic fields in the unbounded domain
representing an open atmosphere. Nonlinear boundary value
problems are notoriously intractable, in general, and little is
known about force-free fields in the unbounded domain with
their confinement properties. The different sequences of
power-law, axisymmetric, force-free fields constructed with
the numerical solver described in the Appendix provide ex-
plicit solutions to illustrate these confinement properties.

These axisymmetric fields attain equilibrium by confining a
given amount of azimuthal flux within a poloidal field an-
chored at both ends of the lines of force to the inner boundary
r ¼ 1. Each sequence is characterized by a fixed amount of the
confining poloidal flux but an increasing amount of azimuthal
flux. The intensity of the poloidal field is controlled by its
spatial expansion to fill the unbounded domain under the di-
vergence-free condition (2) and subject to a fixed amount of
that flux being anchored to the inner boundary. This dictates
how much poloidal flux may expand outward to confine a
given amount of azimuthal flux without becoming so weak as
to fail confinement.

The power-law index n controls how rapidly the azimuthal
field B’ ¼ Q(A)=r sin � varies across the poloidal flux surfaces
of constant A. With A declining to zero in the far region, the
greater n is, the more rapidlyQ declines across the flux surfaces
to the far region. In the outer far region the poloidal field,
constrained by the requirement of a global equilibrium, may
decay radially more rapidly than the azimuthal field does.
When this happens, confinement must fail. We have not di-
rectly demonstrated the failure of confinement. Such a dem-
onstration is mathematically difficult and outside the scope of
the present paper. What we have demonstrated with these
sequences of solutions is that the self-similar solutions of Low
& Lou (1990) appear to be a preferred means by which a
power-law force-free field achieve the equilibrium between the
poloidal and azimuthal fields. This scale-invariant balance of
force spreads parametrically to fill all space as a means for the
field to accommodate an increasing amount of total azimuthal
flux. It is interesting that this total azimuthal flux may not be
increased unbounded, with the maximum allowable attained
when the self-similar force-balance has extended all the way
out to infinity.

For large enough n, the localization of Q as a power of A
allows for the equilibrium to embed an azimuthal rope of
twisted flux. This occurs in the neighborhood of n � 7 if the
amplitude of Q is within a certain range. It is interesting that
taking n ¼ 9 allows for such a flux rope field to have a total
energy in excess of the Aly energy. This excess is moderate, on
the order of a few percent of the Aly energy in the n ¼ 9 case.
This result corroborates similar results by Hu et al. (2003) and
Wolfson (2003), treating distinctly different models.

Two important physical implications should be mentioned
in relation to the CME phenomenon. Our solutions make the
following basic point about magnetic fields in the force-free
state in an unbounded space. Such a field counts on the an-
choring of a certain amount of flux at the inner boundary to
hold the field in equilibrium. Detached fields have a general
tendency to expand. Confinement is possible whenever the
anchoring effect of the field dominates. This naturally suggests
that if the amount of anchored flux is fixed, the amount of
unanchored flux must not exceed a certain threshold if it is to
be trapped in a force-free state in the anchored flux. The ter-
mination of our solution curves at about the same amount of
maximum total azimuthal flux, not sensitive to n; suggests that

Fig. 8.—Energy (in units of potential energy) and magnetic flux vs. � along
the solution curve for n ¼ 9. The four samples in Figs. 6 and 7 are corre-
spondingly labeled at points (a)–(d ).

Fig. 9.—Energy vs. power-law index, n
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this is a plausible physical result. This result may not even be
sensitive to the form of Q(A), but its order of magnitude may
be fixed largely by the poloidal flux anchored and distributed
in a particular way at r ¼ 1 in our axisymmetric model.
Proving this result is an interesting problem in mathematical
hydromagnetics.

In realistic three-dimensional geometry, there is no need for
a detached flux, that is, a flux completely detached from the
boundary, to result in a loss of self-confinement. A given
amount of flux anchored to the inner surface may be highly
twisted without a detached flux rope. If the twist is too large,
such as measured by the total relative helicity of such a field
(Berger & Field 1984; Zhang & Low 2003), the field may fail
confinement by its inability to keep the twist within the field
in equilibrium. Then, the field would expand outward driven
by the nonlinear Alfven waves carrying the twist to the far
reaches of the atmosphere (Roussev et al. 2003).

The second implication is that to fully open an axisymmetric
field by the field’s stored energy, there is little excess in the
stored energy over the Aly energy. The greater the azimuthal
flux given to the poloidal field of a fixed amount, the greater the
stored energy. But, there is a limit to how much azimuthal flux
one could put into the field within the capability of magnetic

self-confinement. This limit is problematical for the explana-
tion of the energetics of CMEs requiring more energy for each
CME than can be found in the Aly energy (Low & Smith
1993). The matter is radically different if there are additional
nonmagnetic forces available to allow an even greater stressing
of the field (Zhang & Low 2004). In other words, if there is a
nonmagnetic agent to confine the magnetic field, then a greater
amount of energy may be stored. Observations suggest that the
weight of plasmas trapped in the field in the form of prom-
inences and coronal helmet structures may provide this addi-
tional means of field confinement (Low 2001; Fong, Low, &
Fan 2002; Low, Fong, & Fan 2003; Zhang 2003). This pos-
sibility will be examined in the follow-up paper.
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APPENDIX A

THE DESIGN OF THE NUMERICAL SOLVER

As a first step toward addressing the four challenges given in x 3, equation (22) is rewritten in the form

@2A

@s2
� @A

@s
þ @2A

@�2
þ tan �

@A

@�
þ �e2sA1þ2=p ¼ 0; ðA1Þ

under the coordinate transformation s ¼ ln r, � ¼ �=2� �. The sequence p ¼ 1; 1
2
; 1

3
; 1

4
; : : : corresponds to n ¼ 1þ 2=p ¼

3; 5; 7; 9; : : : . The transformed computational domain��=2 � � � �=2, 0 � s � 1 is then truncated at s ¼ s1, a constant, which
is equivalent to es solar radii. Thus, the outer boundary can be placed sufficiently far to serve as an approximation to the unbounded
domain of the original problem. The domain is then discretized on aM ; N grid, withM equispaced points in the � -direction and N
Chebyshev-spaced points in the s-direction, i.e., sk ¼ 1� cos �(k � 1)= N � 1ð Þ½ �f gs1=2; k ¼ 1; 2; : : : ; N . All derivatives were
then approximated by standard pseudospectral (PS) methods (Fornberg 1996), utilizing the periodicity in the �-direction. These
approximations are most conveniently viewed as global finite difference formulas, with weights provided, e.g., by the algorithms
given in Weideman & Reddy (2000). At all boundaries (apart from s ¼ s1, which will be discussed below), the boundary conditions
can be implemented immediately. Considering the A-values at all the grid points as unknowns, we have thus obtainedMN equations
forMN unknowns. This nonlinear system of equations is then solved by Newton’s method (see e.g., Fornberg1988 for a discussion of
a similar implementation in the case of a steady flow problem).

We describe next the code in three parts: (1) code for the case in which the parameter � is fixed, and the outer boundary condition
is A ¼ 0 at s ¼ s1, (2) radiation boundary conditions at s ¼ s1, and (3) pseudo–arc length continuation for following solution
branches through their turning points.

A1. PARAMETER � FIXED; OUTER BOUNDARY CONDITION A ¼ 0 AT s ¼ s1

The unknown A-values are defined on an M ; N grid. We reorder them by columns, from left to right, into a single vector of
length MN. We then order the governing equations associated with each grid point correspondingly. This nonlinear system has a
Jacobian matrix, structured as shown in Figure 10. In the N ; N block structure (shown in case of N ¼ 10), the blocks are of size
M ; M . The matrix entries are the partial derivatives of the different equations with respect to the unknowns (A-values), evaluated
based on the current approximate solution.

The right-hand side contains the negative of the residual when the current approximate solution is substituted into the governing
equations, and the solution vector then gives the updates to the unknowns. With � fixed, Newton’s method converges quadratically
whenever the initial guess for the solution is sufficiently close to a (nonmultiple) solution. Until we approach a turning point (at
which � changes direction when we follow the solution branch), the very crude initialization A � 0 turns out to suffice. However,
using the solution from a previous �-case is usually more effective.

If we had used second-order finite differences (FD2; instead of PS) to approximate the space derivatives, the matrix shown in
Figure 10 would instead be block-tridiagonal, with the central blocks internally tridiagonal, and the remaining ones diagonal. The
change from FD2 to PS in the �-direction only fills in entries within that band structure, and does therefore not noticeably affect the
computational cost. For the same accuracy, a far lower value of M can be used. Since the cost with respect to changes inM scales as
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O(M3); the benefits in using PS in the �-direction are critical in permitting solutions with the needed accuracy. In the s-direction,
the situation is a bit more complex, since going from FD2 to PS changes the matrix structure from banded to full. With respect to N,
the solution costs in the two cases are O(N ) versus O(N3), respectively. The truncation errors are O(1=N 2) versus O(e�cN ) (for
some constant c > 0). Hence, to reach an accuracy level of ", the costs incurred will scale like O 1=

ffiffiffi
"

p
ð Þ and O ln1"


 �3
, respectively.

When " ! 0, the PS approach is therefore again the clear winner. We implemented both the FD2 and PS approaches, and actual
timings confirmed that the costs for the FD2 approach was prohibitive on standard workstations.

A2. RADIATION BOUNDARY CONDITION AT s ¼ s1

Although we are not solving a problem with physical radiation, the phrase ‘‘radiation boundary condition’’ is here used to denote
a boundary condition that incorporates far-field asymptotic information in a nontrivial way, in order to permit a relatively small
computational domain (a situation that is often encountered when solving problems involving physical radiation). We encounter
two different kinds of far field behaviors for solutions to (A1). Their analytic character and the appropriate far-field radiation
conditions for them are discussed next.

A2.1. Dipole Far Field

We drop the nonlinear term in equation (A1) and look for separated solutions of the form A(s; �) ¼ S(s)H(�): This leads to

1

S

d2S

ds2
� dS

ds

� �
þ 1

H

d2H

d�2
þ tan �

dH

d�

� �
¼ 0; ðA2Þ

requiring that H(�) satisfies H�� þ tan � H� ¼ �kH : Together with the boundary conditions H(��=2) ¼ 0; this equation has the
eigenvalues kk ¼ k(k þ 1); k ¼ 1; 2; 3; : : : ; and corresponding eigenfunctions H1(�) ¼ � cos2�; H2(�) ¼ � sin � cos2�; etc. In
the s-direction, the decay rates become e�ks; k ¼ 1; 2; 3; : : : Since we are only interested in solutions that are symmetric around
� ¼ 0; we need only consider k odd. For s large, the first mode therefore strongly dominates the far field. This is numerically
implemented by letting the bottom right block in the Jacobian contain I (the identity matrix) and the block to the left of it
� exp � sn � sn�1ð Þ½ �I :

A2.2. Similarity Solution Far Field

Without dropping the nonlinear term, we can still find a particular separated solution to (A1) A(s; �) ¼ e�psH(�); where H(�) will
now satisfy

d2H

d�2
þ tan �

dH

d�
þ p( pþ 1)H þ �H1þ2=p ¼ 0; ðA3Þ

recalling p ¼ 1; 1
2
; 1

3
; 1

4
; : : : . This equation, with the same boundary conditions H(��=2) ¼ 0 as before, can be viewed as a

nonlinear eigenvalue problem. For any values of � and p, it has infinitely many solutions H(�): Their decay rates are given by e�p s,

Fig. 10.—Block Structure of the linear system to be solved using Newton’s method in the case of � fixed and a Dirichlet far field boundary condition. The central
(hatched) blocks are full matrices and the others are each diagonal matrices indicated by a diagonal line. Zero matrices are represented by empty blocks along the top
and bottom rows.
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and the radiation boundary condition can therefore be implemented by letting the matrix block to the left of the bottom right block
instead be � exp �p sn � sn�1ð Þ½ �I :

A3. PSEUDO-ARC LENGTH CONTINUATION

With the procedure described above, we can compute the A-fields for a sequence of �-values, as long as the sequence is
monotonically increasing or decreasing. However, at turning points, the Jacobian matrix becomes singular, and continuing in �
fails. Instead of using � as an independent variable and computing A(�), we introduce a function of A; such as the energy E(A); and
consider the curve E(A) versus �: Along this curve, we can introduce the arc length 	 as a new independent variable. Working with
A(	) and �(	) converts turning points to regular points. The modifications this requires in the Newton scheme have been described
numerous times in the literature, (e.g., Keller 1987; Allgower & Georg 1992), and they lead to what are known as arc length
(or pseudo–arc length) continuations. Treating � also as a dependent variable means that the structure of the Jacobian matrix in
Figure 10 gets altered by the inclusion of an additional column. The difficulty lies in where to find an additional governing equation
(since attempting to directly specifying an increment in 	 leads to a singular Jacobian). In the procedure that we implemented, the
(now rectangular) Jacobian matrix is first decomposed as RQ, where R is upper triangular and Q is orthogonal. It can then be shown
that adding a row [0, 0, . . . , 0, 1] to the bottom of the R-matrix achieves the goal. Very heuristically, this works because it
corresponds to advancing the solution according to the last row of the orthogonal matrix Q, i.e., in the only direction that the
governing equations do not specify. This therefore has to be in the direction along the arc. Since a QR (or RQ) decomposition has
twice the operation count of Gaussian elimination, the computational cost becomes twice as large as in the case in which � is given.
The complete code amounts to about 60 lines of MATLAB and runs in a matter of seconds (or up to a few minutes) per iteration on
a standard PC for the grid sizes that were used in the present work. Thanks to the Newton method’s quadratic convergence, four
iterations are typically needed to obtain convergence to machine precision for our discrete nonlinear systems (note, however, that
the discrete solutions differ from the continuous ones because of truncation errors. These errors are typically much larger and
depend on the numerical step sizes in the two spatial directions and on how close the outer boundary is placed).
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