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ABSTRACT

While the metallicity excess observed in the central stars of planetary systems is confirmed by all recent
observations, the reason for this excess is still a subject of debate: is it primordial, or the result of accretion, or
both? The basic argument against an accretion origin is related to the mass of the outer convective zones, which
varies by more than 1 order of magnitude among the considered stars, while the observed overabundances of
metals are similar. We show here that in previous discussions a fundamental process was forgotten: thermohaline
convection induced by the inverse �-gradient. ‘‘Metallic fingers’’ might be created that dilute the accreted matter
inside the star. Introducing this effect may reconcile the overabundances expected in cases of accretion with the
observations of stars of different masses.

Subject headings: accretion, accretion disks — convection — diffusion — planetary systems

1. INTRODUCTION

The metallicity distribution of the central stars of planetary
systems compared with other stars of the same spectral types
clearly shows a metallicity excess of a factor of 2 on average,
while the individual [Fe/H] values lie between �0.3 and +0.4
(Santos et al. 2003 and references therein). Although this
excess is generally discussed in terms of iron abundances only
(for most observers, [Fe/H] is synonymous with ‘‘metal-
licity’’), spectroscopic observations show that the abundances
of other heavy elements, beginning with carbon, are also en-
hanced (Santos, Israelian, & Mayor 2001).

The proposed possible explanations for this behavior are of
two kinds:

1. Accretion hypothesis: this assumes that the star had
normal abundances at its formation, but accreted metal-rich
matter during the phases of planetary formation (Gonzalez
1998).

2. Primordial hypothesis: this assumes that the stellar gas
out of which the planetary system formed was already metal
enhanced. A corollary in this case would be that such a metal
enrichment is necessary for planets to form around stars.

Other explanations have been proposed that mix the two
previous scenarios.

The strongest argument invoked against the accretion hy-
pothesis is related to the mass of the outer convective zone,
which varies by more than 1 order of magnitude for stars
between 1.0 and 1.4 M�, while the metallicity excess remains
the same. On the other hand, the primordial hypothesis has to
deal with the fact that some of the host stars have a subsolar
metallicity, which is an argument against the assumption that
metallicity excess is necessary for planetary formation.

Diffusion of accreted metals has been discussed by several
authors (Pinsonneault, DePoy, & Coffee 2001; Murray &
Chaboyer 2002). They show that gravitational settling is not
sufficiently rapid to produce a decrease of the metal abundances
and so lead to the observed values. They also discuss rotational
and other mixing processes in relation to the observed lithium
abundances. Since lithium is destroyed by thermonuclear
reactions at a relatively low temperature (3 ; 106 K) inside stars,

it is often used as a test for mixing processes. However, such a
comparison between the metal diffusion and the lithium de-
pletion is highly model dependent, since it assumes a specific
variation of the mixing effect with depth.
Here we show that the argument against accretion does not

hold once we take into account the convective instability in-
duced by inverse �-gradients, or thermohaline convection (also
called ‘‘double-diffusive convection’’). If freshly accreted
metals accumulate in a small convective zone on top of radi-
ative layers, they do not stay there but are diluted downward in
‘‘metallic fingers’’ similar to the ‘‘salt fingers’’ observed in the
ocean, so that their overabundance rapidly decreases with time.
We discuss how this process should take place, and reach the

conclusion that the final metallic abundances should not de-
pend on the depth of the standard convective zone, as is usually
assumed. However, the exact amount of metals that may re-
main in the stellar outer layers depends on parameters such as
the size and depth of the metallic fingers, which cannot be
precisely constrained in the framework of our present knowl-
edge. We only show that a final overabundance by a factor of 2,
as observed, can be obtained with plausible values of the un-
known parameters. There are two paths to explore in furthering
this study: numerical simulations of metallic fingers and
asteroseismology of overmetallic stars.

2. THERMOHALINE CONVECTION

2.1. The Salted-Water Case

Thermohaline convection is a well-known process in
oceanography: warm salted layers on the top of cool unsalted
layers rapidly diffuse downward, even in the presence of
stabilizing temperature gradients. When a ‘‘blob’’ of salted
water is displaced downward, it is pulled farther down because
it is heavier than its surroundings, but at the same time its
greater temperature opposes this tendency. When the salt
gradient is large compared to the thermal gradient, salted
water normally mixes down until the two effects compensate.
Then thermohaline convection begins. While the medium is
marginally stable, salted blobs fall down like fingers; unsalted
matter rises around these. This process is commonly known as
‘‘salt fingers’’ (Stern 1960; Kato 1966; Veronis 1965; Turner
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1973; Turner & Veronis 2000; Gargett & Ruddick 2003). The
continued instability of the medium is due to the different dif-
fusivities of heat and salt. A warm salted blob falling down in
cool fresh water experiences a decrease in temperature before
the salt has time to diffuse out; the blob continues falling
because of its weight until it mixes with the surroundings.

The salt-finger instability can occur with any two compo-
nents that have different diffusivities if there is an unstable
gradient of the slower diffusive component and a stable gra-
dient of the faster diffusive component. For this reason, it is
also referred to as ‘‘double-diffusive convection.’’ In ocean-
ography, the fastest diffusive component is conventionally
referred to as T, while the slowest one is S, even when the
components are different. Indeed, the effect is generally
studied in the laboratory using water mixed with salt and
sugar. In this case, sugar is the slowest component since it
diffuses ~3 times slower than salt. The results can be well
visualized, pictured, and studied (e.g., Wells 2001). The fin-
gers have also been studied using two-dimensional and three-
dimensional numerical simulations (e.g., Piacsek & Toomre
1980; Shen & Veronis 1997; Yoshida & Nagashima 2003).

The conditions necessary for the salt fingers to develop are
related to the density variations induced by temperature and
salinity perturbations. Two important characteristic numbers
are defined as (1) the density anomaly ratio

R� ¼ �9T=�9S; ð1Þ

where � ¼ � ��1 @�=@Tð ÞS;P, � ¼ ��1@�=@Sð ÞT ;P, and 9T
and 9S are the average temperature and salinity gradients in
the considered zone, respectively; and (2) the so-called Lewis
number

� ¼ �S=�T ¼ �T=�S ; ð2Þ

where �S and �T are the saline and thermal diffusivities, re-
spectively, and �S and �T are the saline- and thermal-diffusion
timescales, respectively.

The density gradient is unstable and overturns into dynami-
cal convection for R� < 1, while the salt fingers grow for
R� � 1. On the other hand, they cannot form if R� is larger
than the ratio of the thermal to the saline diffusivities ��1, as
in this case the salinity difference between the blobs and the
surroundings is not large enough to overcome buoyancy
(Huppert & Manins 1973; Gough & Toomre 1982; Kunze
2003).

Salt fingers can grow if the condition

1 � R� � ��1 ð3Þ

is satisfied. In the ocean, � is typically 0.01, while it is 1/3 for
a salt-sugar mixture. We see below that in solar-type stars
where T is the temperature and S is the mean molecular
weight, this ratio is ~10�10 if �S is the molecular (or ‘‘mi-
croscopic’’) diffusion coefficient, but it can increase by many
orders of magnitude when the shear flow instabilities that
induce mixing between the edges of the fingers and the sur-
roundings are taken into account.

2.2. The Stellar Case

Thermohaline convection may occur in stellar radiative
zones when a layer with a larger mean molecular weight sits
on top of layers with smaller ones (Kato 1966; Spiegel 1969;

Ulrich 1972; Kippenhahn, Ruschenplatt, & Thomas 1980,
hereafter KRT80). In this case, 9� ¼ d ln �=d ln P plays the
role of the salinity gradient, and the difference 9ad �9
(where 9ad and 9 are the usual adiabatic and local [radiative]
gradients d ln T=d ln P, respectively) plays the role of the tem-
perature gradient. When 9ad is smaller than 9, the temperature
gradient is unstable against convection (Schwarszchild crite-
rion), which corresponds to warm water below cool water in
oceanography. In the opposite case, the temperature gradient is
stable but the medium can become convectively unstable if
(Ledoux criterion)

9crit ¼
�

�
9� þ9ad �9 < 0; ð4Þ

where � ¼ ð@ ln �=@ ln �Þ and � ¼ ð@ ln �=@ ln TÞ. When this
situation occurs, convection first takes place on a dynamical
timescale and the �-enriched matter mixes down with the
surroundings until 9crit vanishes. Then marginal stability is
achieved and thermohaline convection may begin as a ‘‘sec-
ular process,’’ namely on a thermal timescale (which is short
compared to a stellar lifetime!).

Such an effect has previously been studied for stars with a
helium-rich accreted layer (KRT80). It was also invoked for
helium-rich stars, in which helium is supposed to accumulate
because of diffusion in a stellar wind (as proposed by Vauclair
1975), and for rapidly oscillating Ap (roAp) stars in cases in
which some helium accumulation occurs (Vauclair, Dolez, &
Gough 1991). Similar computations have been done in the
case of accretion of matter on white dwarfs, in relation to
novae explosions (e.g., Marks & Sarna 1998).

As shown below, if hydrogen-poor matter is accreted on the
top of a main-sequence type star with normal abundances, it
creates an inverse �-gradient that can lead to thermohaline
convection. Comparing the stellar case with the water case, we
can guess that metallic fingers will form if the condition

1 � �ð9ad �9Þ
�ð9�Þ

����
���� � ��1 ð5Þ

is verified, with � ¼ D�=DT ¼ �T=��, where DT and D� are
the thermal and molecular diffusion coefficients, respectively,
and �T and �� are the corresponding timescales. This condition
is similar to condition (3) for the stellar case. In the following,
we neglect the deviations from perfect gas law, so that
� ¼ � ¼ 1.

In the following section, we show computations of the
timescales and orders of magnitude of this process.

3. THE FATE OF ACCRETED METALS IN
SOLAR-TYPE STARS

We study the case of main-sequence solar-type stars that
would have accreted hydrogen-poor material at the beginning
of their lifetime. We assume, for simplicity, that the accretion
occurred in a very short timescale compared to stellar evolu-
tion. We then study the fate of the accreted metals and choose
1.1 and 1.3 M� stars as examples.

As the chemical composition of the accreted matter is not
known, we assume that all elements are accreted with solar
relative abundances except hydrogen and helium, which are
assumed completely absent. We see that our general conclu-
sion is unchanged if the relative abundances are modified;
only the timescales are slightly different.
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After accretion, the metal dilution occurs in two phases. In
phase one, rapid convection takes place in a dynamical time-
scale until it reaches the marginal equilibrium obtained when
9crit vanishes (eq. [4]). In phase two, thermohaline mixing
begins and dilutes the metal excess until condition (5) is no
longer satisfied.

In the following, we first discuss the �-gradients induced by
the original metal excess in the convective zone. We compute
the situation at the end of phase one, according to the value
of the accreted mass. We discuss the case of the same accre-
tion occurring for the two different stellar masses. Finally, we
study the timescales of thermohaline mixing and the remain-
ing overabundances in the convective zone.

3.1. Dynamical Convection and Marginal Equilibrium

The main parameters of the two stellar models we have used
as examples are given in Table 1. They correspond to 1.1 and
1.3 M�, both at an age of ~1.5 Gyr. We can see that the
convective zone is 7 times more massive for the 1.1 M� model
than for the 1.3 M� model, which does not change sensitively
during main-sequence evolution. We thus expect that metal
accretion leads to an original overabundance 7 times larger in
the 1.3 M� model than in the 1.1 M� model.

For completely ionized hydrogen and helium, the mean
molecular weight can be obtained with the expression

� ¼ 1þ 4 He=Hð Þ þ AðM=HÞ
2þ 3ðHe=HÞ þ xðM=HÞ : ð6Þ

Here, A represents an average mass of metals, M=Hð Þ a rela-
tive abundance with respect to hydrogen, and x an averaged
number of particles (ion and electrons) associated with the
metals. In the following, we take ðHe=HÞ ¼ 0:1 and ðM=HÞ0 ¼
1:4 ; 10�3 for the original abundances of helium and metals
(Grevesse & Sauval 1998). We treat the metals as an average
element to which we attribute the mass A ¼ 20. We assume
hydrogen and helium to be completely ionized and we neglect
the term xðM=HÞ. In these conditions, we obtain �0 ¼ 0:6 for
the value of the mean molecular weight before accretion. If
metals are added, � is modified by

�� ’ 9�
M

H

� �
: ð7Þ

Let us now write

M

H

� �
¼ �

M

H

� �
0

ð8Þ

and define � i as the initial value of � , obtained just after the
accretion process concludes (the accretion process is assumed
to be rapid compared to the other timescales).
The variations of M=Hð Þ and � are then related by

�� ¼ 9ð� � 1Þ M

H

� �
0

: ð9Þ

We have computed, as a function of the initial overabun-
dance ratio � i, the depth at which metal-enriched material has
been diluted when it reaches the marginal-equilibrium phase,
and the actual overabundance ratio � in the convective zone.
This has been obtained by integrating in all cases the mass of
metals diluted by this process.
Suppose, for example, that the metal-excess ratio in a

1.1 M� star is � ¼ 2 after dilution by dynamical convection.
This corresponds to an original overabundance factor of 2.05.
The same accretion mass would lead to an original metal-
excess ratio � i ¼ 14:3 in a 1.3 M� star. Our computations
show that such an original metal excess is diluted in a
‘‘transition zone’’ down to rTZ ¼ 7:5 ; 1010 cm, leading to an
overabundance after dilution � ¼ 8:5. Figure 1 displays the
abundance profiles obtained in this case in the 1.3 M� star.
The parameters at the bottom of the transition zones as we
have defined above are shown in Table 1 for the two models.
Figures 2 and 3 display, for the two models, the values of � i

and the corresponding � as a function of the width of the
transition zone.
Thermohaline mixing begins after this dilution process.

3.2. Thermohaline Mixing, Metallic Fingers, and Timescales

The study of thermohaline mixing in stars is far from trivial.
Detailed comparisons of numerical simulations and laboratory
experiments in the water case have recently been published
(Gargett & Ruddick 2003), but the stellar case may differ,
since mixing occurs in a compressible stratified fluid.
In the following, we use the formalism proposed by KRT80,

who discussed the timescale of thermohaline mixing in stars

TABLE 1

Model Data

Model r r=R� �Mr Tr �r Pr �r

�th
(yr)

CZ

1:1 M�...... 5:2E10 0:75 3:7E31 2:0E6 0.128 3:5E13 . . . . . .

1:3 M�...... 8:0E10 0:84 5:1E30 9:0E5 0.007 1:2E12 . . . . . .

TZ

1:1 M�...... 4:9E10 0:71 4:6E31 2:3E6 0.195 6:2E13 15.8 4200

1:3 M�...... 7:5E10 0:79 8:2E30 1:2E6 0.013 2:2E12 12.6 800

Note.—The values are given at the bottom of the convective zone (CZ) and at the bottom of the ‘‘transition zone’’
(TZ), defined as the region of metal dilution after dynamical convection, for the example discussed in the text (metal
excess � ¼ 2 in the 1.1 M� model); the metal abundances decrease with depth inside this region until reaching a
normal value at rTZ (see Fig. 1).
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in a simplified way and applied it to the case of helium-rich
layers standing on the top of hydrogen-rich ones.

In first approximation, they treated thermohaline mixing as
a diffusion theory. The whole picture can be described as
follows: blobs of metal-enriched matter begin to fall down
from the convective zone and exchange heat and heavy ele-
ments with their surroundings; chemicals diffuse more slowly
than heat, so the blobs continue falling until they are com-
pletely disrupted, thereby creating finger shapes. The most
efficient processes for element diffusion out of the blobs are
the shear flow instabilities at the edge of the fingers: as the
falling matter undergoes friction with rising matter, turbulence
occurs and mixes part of the fingers with their surroundings,
on a horizontal length scale that is a fraction 	 of the horizontal
length L of the blobs. The blobs disappear when they have

traveled down a distance W long enough for this mixing to
disrupt them completely.

KRT80 define a diffusion coefficient Dth as the product of
the blobs’ vertical velocity v� and their size L. They evaluate
v� as

v� ¼ Hp

ð9ad �9Þ��KH
D�

�

� �
; ð10Þ

where D� represents the � difference between the inside and
the outside of the blobs. The diffusion coefficient Dth is then
obtained as

Dth ¼
Hp

j9ad �9j
L2

��KH

d ln �

dr

����
����; ð11Þ

where Hp is the pressure scale height and ��KH the local thermal
timescale given by

��KH ¼ Cp��
2L2

16acT 3
; ð12Þ

where the parameters have their usual meanings. We can see
that L2 vanishes in this diffusion coefficient, which does not
depend on the size of the blobs.

In this simple picture, Dth is not exactly the local mixing
coefficient, since it involves the whole blobs while local
mixing involves only the edges of the blobs. The local mixing
coefficient becomes correctly represented by Dth only at the
bottom of the fingers, where the blobs disappear. For this
reason, KRT80 define the thermohaline diffusion timescale as
�th ¼ W 2=Dth, where W is the depth of the fingers (it also
represents the size of the transition zone in which � varies by
��, between its two extreme values). This diffusion timescale
can be written

�th ¼
�

��

Cp��
2W 3

4acT3

9ad �9

Hp

: ð13Þ

Note that if the mixing scale at the finger edges increases
linearly while the blobs fall down, the coefficient 	 is nothing
other than the ratio of the horizontal and vertical length scales
of the fingers, namely L=W.

Fig. 3.—Same as Fig. 2, but for the 1.3 M� modelFig. 1.—Profiles of the metallic overabundance factors in the 1.3 M� model
before (� i) and after (� ) dilution by dynamical convection for the example
discussed in the text, as a function of the fractional radius inside the star.
Thermohaline convection begins after this phase.

Fig. 2.—Initial metallic excess � i ¼ ðM=HÞi=ðM=HÞ0 and the metallic
excess � obtained after dilution by dynamical convection, as a function of the
depth ðrCZ � rÞ at which they are diluted, for the 1.1 M� model. The � curve
is obtained with 9crit ¼ 0 (eq. [4]). For example, an original overabundance of
30 is diluted inside a transition region of thickness 1:05 ; 1010 cm, below the
standard convective zone. An overabundance of 15 remains after this process.
Then thermohaline convection goes on reducing this value. The curves close
to the origin are displayed in the inset.
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In Table 1 we provide the thermohaline diffusion timescales
corresponding to the example given in the previous section,
with a metallic excess of a factor of 2 in 1.1 M�. Computa-
tions done with a metal excess of 1.5 instead of 2 give similar
results for the thermohaline diffusion timescales. They are
always very short compared to the stellar lifetime. If nothing
prevented these metallic fingers from growing, the convective
zone would be emptied of its metallic matter a short time after
it is accreted.

We must now take into account the second condition for the
formation of the fingers (eq. [5]), namely

9ad �9

9�

����
���� � DT

D�
: ð14Þ

At the end of the dynamical convection phase, the 9ad�ðj
9Þ=9�j ratio is 1. Then, during thermohaline convection, the
local �-gradient decreases so that the 9ad �9ð Þ=9�

�� �� ratio
increases. Thermohaline convection should stop when this ratio
reaches the value of the DT=D� ratio. The remaining over-
abundances in the stellar outer layers strongly depend on the
efficiency of the turbulent mixing at the edge of the fingers,
which is nonlinear and not well understood. Here we can only
give a tentative discussion of this process.

The thermal diffusion coefficient DT can be evaluated as the
square of a relevant length scale (e.g., the size of the falling
blobs) divided by the local thermal timescale ��KH, so

DT ¼ L2

��KH
¼ 16acT3

Cp��2
: ð15Þ

Below the convective zone in the 1.1 M� , DT is typically
3:0 ; 108 cm2 s�1, while it is 8 ; 109 cm2 s�1 in the 1.3 M�
model. Meanwhile, the microscopic element diffusion coeffi-
cient is of the order of 1 cm2 s�1: if no turbulence occurred,
the metallic fingers would extend far down and deplete the
overmetallic material until an extremely small �-gradient
would be reached; in this case, no metallic excess would be
left in the convective zone.

If we take into account the shear flow instabilities that result
from the motion of the blobs, D� has to be replaced by the
local turbulent diffusion coefficient, which is not exactly Dth

but 	2Dth, where 	 represents the L=W ratio. Using equation
(11) for Dth, we find from condition (14) that the fingers
disappear when W is of the same order as L, which makes
sense but is not helpful in evaluating the amount of heavy
elements that remain in the outer layers at the end of the whole
process; the KRT80 approximations are too rough to be useful
in this respect.

Another approach consists of estimating the value of D�

that would be needed to account for the observations. Our aim
is that a metallicity excess of the order of 2 remains in the
convective zone after these processes occur. From equation (9),
we find that it corresponds to �� ’ 0:0126 or, with
� ¼ 0:6 as computed in these stellar layers, ��=� ’ 0:02. If
we suppose that the mixing region extends over 1 pressure
scale height (which is by no means proved!), we find that the
DT=D� ratio should be of the order of 10, which seems rea-
sonable compared to the water case. Such a value would be
obtained with a turbulent diffusion coefficient D� at the edge
of the fingers of the order of 107–109 cm2 s�1.

More computations are needed for a better understanding of
the shear flow turbulence induced by the fingers. Furthermore,
the growing of the metallic fingers may depend on the other
processes at work in the star: rotation-induced turbulence,
internal waves, etc. (compare with similar problems in salted
water in Gargett & Ruddick 2003).
In any case, the computations presented here show that the

metallic matter accreted onto a star does not stay inside the
standard convective zone: it first turns over because of dy-
namical convection and then continues diffusing because of
thermohaline convection. The observed overabundances in the
host stars of planetary systems can be obtained with realistic
values of the unknown parameters.

4. CONCLUSION AND FUTURE PROSPECTS

The important conclusion of this paper is that the strongest
argument against accretion as an explanation of the metallic
excess observed in planetary systems’ host stars has to be
revised: if hydrogen-poor matter is accreted in the early phases
of stellar evolution, during planet formation, the metal excess
in the convective zone leads to a destabilizing �-gradient that
induces metal dilution, first by dynamical convection, then by
thermohaline mixing, on a timescale much shorter than the
stellar lifetime (typically 1000 yr). The remaining over-
abundances in the convective zones depend on the physical
conditions inside the star. We do not expect, in the case of
accretion, to end up with metallic overabundances increasing
with decreasing convective mass, as obtained in the standard
models. Furthermore, the region mixed by the thermohaline
process is localized below the convective zones and should
not go down to the lithium-destruction layers.
In the present study, we have supposed that the accreted

material had a relative solar abundance, except for hydrogen
and helium, which were assumed completely absent. Changing
these relative abundances would modify the relation between
the �-value and the metallicity (eq. [9]). The general con-
clusions would still hold, only the numerical values and
timescales would be changed accordingly.
We did not discuss the amount of matter needed to explain

the observed abundances by accretion and how this accretion
could have proceed. In the example of x 3.1, a metal excess of
2.05 in a 1.1 M� star would be obtained with 145 Mo of all
metals included, corresponding to ~11 Mo of iron, which is a
large value. A metal excess of 1.5 would be obtained with
5 Mo of iron or 66 Mo of all metals. The difficulty of
explaining such a large accretion from protoplanetary disks
represents a second argument against the accretion hypothesis,
which we do not discuss here: this is a different subject, out of
the scope of the present paper.
Detailed spectroscopic observations and precise abundance

determinations will be of great interest in testing the accretion
processes against the primordial scenario for exoplanets’ hosts
stars. Asteroseismic studies of these stars will also help derive
whether they are overmetallic down to the center or only in
their outer layers and give an important hint for a better un-
derstanding of the formation of planetary systems.

We thank the referee N. Murray, who gave very useful
comments and criticism on the first version of this paper and
helped improve the discussion.
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