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ABSTRACT

Recent observations by the Solar and Heliospheric Observatory (SOHO) and the Transition Region and
Coronal Explorer (TRACE ) have confirmed previous theoretical predictions that coronal loops may oscillate.
These oscillations and their damping are of fundamental importance, because they can provide diagnostics of the
coronal plasma. In the present paper, we perform numerical hydrodynamic calculations of a one-dimensional
loop model to investigate the effects of stratification on damping of longitudinal waves in the hot coronal loops
observed by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) on board the SOHO satellite. In
particular, we study the dissipation by thermal conduction and by compressive viscosity of standing slow
magnetosonic disturbances in loops of semicircular shape. For the parameter regime that characterizes the
SUMER hot loops, we find that stratification results in a �10%–20% reduction of the wave-damping time
compared to the nonstratified loop models because of increased dissipation by compressive viscosity due to
gravity. We show that temperature oscillations are more strongly dissipated by thermal conduction, while density
and velocity waves are mostly damped by compressive viscosity. However, the decay time of the oscillations is
always governed by the thermal conduction timescale. The scalings of the decay time with wave period,
temperature, and loop length all point toward higher dissipation rates in the stratified, hotter loops because of the
increased effects of thermal conduction and compressive viscosity.

Subject headings: hydrodynamics — methods: numerical — Sun: activity — Sun: atmosphere —
Sun: corona — waves

1. INTRODUCTION

Recent EUV observations of low-� regions in the upper
solar atmosphere (i.e., the transition region and corona) by
the space missions Solar and Heliospheric Observatory
(SOHO) and Transition Region andCoronal Explorer (TRACE )
(e.g., Domingo, Fleck, & Poland 1995; Handy et al. 1999;
Aschwanden, Schrijver, & Alexander 2001) have revealed the
presence of magnetic loop structures, often configured in the
form of arches or spikes, with a wealth of sizes and timescales.
Significant dynamic activity has also been discovered in these
loops; their physical structure is characterized by transient
brightenings and sustained flow of plasma material along the
arched magnetic field lines, which describe the shape and
geometry of the loops. Since the dynamics of the plasma in the
solar transition region and corona is dominated by magnetic
fields, the apparent turbulent state in which physical processes
at different scales are related in the upper solar atmosphere
may well be of magnetohydrodynamic (MHD) origin.

A major question in solar physics concerns the heating of the
coronal plasma. Although considerable theoretical and obser-

vational effort has gone into trying to answer it, the problem
still remains. Out of the several mechanisms that have been
proposed for explaining the heating of coronal loops, MHD
turbulence has recently been suggested as a highly viable one
(Chae, Poland, & Aschwanden 2002). In this picture, pertur-
bations that are produced by photospheric shuffling motions
near the loop footpoints propagate along the loop length,
making the magnetic field and plasma velocity fluctuate. Tur-
bulent motion ultimately arises as the amplitudes of these
oscillations grow and develop nonlinearly. The magnetic and
kinetic energy carried by the fluctuations are then conveyed
from the largest to the smallest eddies until they are converted
into heat by ohmic and viscous dissipation. On the other hand,
the damping of coronal loop oscillations has also recently re-
ceived great interest, since it may be associated with dissi-
pating wave motions, which could represent a possible source
of coronal heating. Such waves may be used as true diagnostic
tools to infer the physical parameters of the coronal plasma
(Roberts, Edwin, & Benz 1984; Nakariakov & Ofman 2001).

Observations using the white-light channel of the Ultraviolet
Coronagraph Spectrometer (UVCS) on SOHO that reveal the
presence of periodic density fluctuations in coronal plumes
high above the solar limb have been reported by Ofman et al.
(1997). They interpreted these variations as being due to
compressional waves propagating in the polar coronal holes. In
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addition, the presence of wave trains traveling through polar
plumes with periods of 10–15 minutes has also been detected
from SOHO EUV Imaging Telescope (EIT) data by DeForest
& Gurman (1998), who identified such perturbations as sonic
or slow-mode magnetosonic waves. Similarly, using EIT and
TRACE, respectively, Berghmans & Clette (1999) and De
Moortel, Ireland, & Walsh (2000) reported evidence for highly
resolved longitudinal waves in coronal loops. Transverse-
mode oscillations excited by flares in coronal loops were
also observed in EUV radiation by TRACE (see Aschwanden
et al. 1999; Nakariakov et al. 1999). More recently, Schrijver,
Aschwanden, & Title (2002) presented an extensive overview
of TRACE observations of transverse coronal loop oscillations,
while Aschwanden et al. (2002) provided a detailed discussion
of the periods, amplitudes, and other parameters obtained from
these observations. These studies suggest that transverse loop
oscillations may be the result of the evolution of impulsively
generated MHD waves and that their rapid decay could be
related to photospheric leakage of wave energy at the loop
footpoints. Recently, the Solar Ultraviolet Measurements of
Emitted Radiation (SUMER) spectrometer on board the SOHO
satellite detected large Doppler-shift velocities with strong
oscillatory damping in hot (T > 6 MK) coronal loops (Kliem
et al. 2002; Wang et al. 2002a, 2002b, 2002c). These oscil-
lations were interpreted as signatures of standing, slow or kink
magnetosonic waves excited impulsively in the loops (Ofman
& Wang 2002). Moreover, Sakurai et al. (2002) presented a
time sequence over 80 minutes of coronal green-line spectra
obtained with a ground-based coronagraph at the Norikura
Solar Observatory. They also detected Doppler-shift oscil-
lations and interpreted them as being due to propagating, rather
than standing, slow-mode MHD waves. Strong observational
evidence for standing slow-mode waves in hot postflare loops
has only recently been recorded by Wang et al. (2003b), and an
extensive survey of Doppler-shift oscillations in hot coronal
loops obtained with SUMER by Wang et al. (2003a) has
revealed that they have periods from about 7.1 to 31.1 minutes
and decay times in the range of 5.7–36.8 minutes. It is believed
that slow-mode waves are excited by disturbances having
large turbulent velocities associated with the ejection of hot
plasma from one footpoint of a coronal loop. This may explain
the observed concurrence of initial strong Doppler shifts and
line broadenings (Wang et al. 2003a). It is also possible that
line broadening may be due to the overlapping of several loops
in the line of sight, all of them oscillating with different phases.
However, in this case we would expect the line broadening to
be nearly constant or to exhibit a rather chaotic behavior in
contrast with its periodic character, as inferred by Wang et al.
(2002c, 2003a).

Compared to the hot loops, the oscillations detected in cool
coronal loops by TRACE (see, e.g., Aschwanden et al. 2002)
are characterized by much shorter periods and smaller ampli-
tudes, implying that they may correspond to transverse (kink-
mode) waves propagating with a comparatively higher phase
speed than the Doppler-shift oscillations in the SUMER hot
loops. The identification of different modes of oscillation in
hot and cool loops is important, because different dissipation
mechanisms may act, depending on the wave mode. For in-
stance, slow magnetosonic waves are more easily dissipated
by thermal conduction or compressive viscosity, while fast
transverse waves dissipate by resistivity or shear viscosity. In
particular, Ofman & Wang (2002) found that thermal con-
duction is the primary dissipation mechanism of slow waves in
hot coronal loops. A theoretical description of the damping of

slow MHD waves has recently been given by De Moortel &
Hood (2003). They also concluded, from a linear analysis of
the damping of slow-mode waves in nonstratified, isothermal
plasma loop models, that thermal conduction is the dominant
dissipation mechanism of slow waves in coronal loops and that
the contribution of compressive viscosity is less significant. In
contrast with these previous findings, here we show that in hot
(T > 6:0 MK) loops, disturbances in the density and velocity
are more easily dissipated by compressive viscosity, while
temperature oscillations are more strongly damped by thermal
conduction. The occurrence of larger velocity gradients under
gravity enhances the dissipative effects of compressive vis-
cosity in stratified loops. However, the concurrence of both
mechanisms is necessary to reproduce the observed periods
and decay times.
Numerical simulations of the damping of slow MHD waves

by viscosity were performed by Ofman, Nakariakov, & Sehgal
(2000) in one- and two-space dimensions. The effects of ther-
mal conduction, viscosity, and gravity on slow-wave damping
in a one-dimensional coronal loop model were considered by
Nakariakov et al. (2000) in the limit of small dissipation and
excluding self-consistent heating. The damping of slow mag-
netosonic waves by thermal conduction in the cool loops ob-
served with TRACE was studied by De Moortel et al. (2002).
Finally, Ofman & Wang (2002) performed one-dimensional
calculations of the damping of moderately nonlinear slow
MHD waves in a hot coronal loop model with typically ob-
served solar parameters, including large dissipation by thermal
conduction, viscosity, and self-consistent heating. Here, by
‘‘large dissipation’’ we mean that the damping timescale is
comparable to the oscillation period. In the present work, we
extend the model calculations of Ofman & Wang (2002) to
include the effects of stratification on the damping of standing
slow magnetosonic oscillations in hot coronal loops. In x 2 we
present the basic equations to be solved, along with a brief
description of the loop model and the numerical methods
employed. The results of the calculations are described in x 3,
while x 4 contains the conclusions.

2. BASIC EQUATIONS AND LOOP MODELS

The thermodynamical evolution of the solar coronal plasma
is constrained by the geometry of the magnetic field such that
both the mass flow and heat conduction in coronal loops occurs
primarily along the field lines. In addition, for most loops the
structure of the magnetic field does not change appreciably
during the plasma evolution, because the Alfvén travel time
is usually much shorter than the evolution time. Hence, to a
good approximation we may assume a one-dimensional coro-
nal loop model, in which all quantities vary along the field
lines, and solve the conservative form of the hydrodynamic
equations in a Cartesian frame of reference. Including the
effects of solar gravity, thermal conduction, and viscosity, these
equations are
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where t is time, s denotes the position along a loop of constant
cross-sectional area, � is the (mass) density, v is the fluid
velocity, T is the plasma temperature, p is the gas pressure,
g(s) is the component of solar gravity along the field line, � is
the mean molecular weight, Rg is the gas constant, �( ¼ 5=3) is
the ratio of specific heats, and � ¼ 1:0 ; 10�6T5=2 ergs cm�1

s�1 K�1 is the coefficient of thermal conductivity parallel to
the magnetic field (Braginskii 1965). In equations (2) and (3),
F� and E� denote the viscous force and the viscous heating
terms, given by

F� ¼
4

3

@
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; ð4Þ
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respectively, where � is the coefficient of compressive vis-
cosity defined (Braginskii 1965) as

� ¼
0:72 mpk

5
B

� �1=2
�1=2e4 ln k

T5=2 ¼ �0T
5=2: ð6Þ

Here, mp is the proton mass, kB is the Boltzmann constant, e is
the electron charge, and ln k � 23 is the Coulomb logarithm.
Note that relation (6) is the same used by Ofman & Wang
(2002). The gravity term on the right-hand side of equation (2)
is assumed to depend only on position along the loop and is
given by

g(s) ¼ �g� cos
�s

L

� �
; ð7Þ

where g� � 2:74 ; 104 cm s�2 is the solar surface gravity and
L is the total length of the loop. As shown in Figure 1,
equation (7) specifies the component of gravity along a
magnetic field line of semicircular shape only. In the present
model, the entire semicircle is represented by the calculations.
Equations (1)–(3) are solved in closed form by assuming the
pressure relation p ¼ Rg�T=�.

In common with Ofman & Wang (2002), we neglect the
effects of radiative losses on the right-hand side of equation (3)
under the assumption that they occur on a timescale longer than
the observed wave-damping time. In the stratified models, the

initial density profile is calculated from the condition of hy-
drostatic equilibrium, which is obtained from equation (2) by
setting the velocity to zero, while in the nonstratified cases, the
density profile is assumed to be uniform. In both cases, the
initial temperature is assumed to be uniform along the loop,
and the initial velocity is given an oscillatory dependence on
position of the form v ¼ v0 sin (2�sk=L), where v0 is the am-
plitude of the wave at t ¼ 0 and k is the wavenumber taken to
be unity. Appropriate boundary conditions at the footpoints are
specified by setting the velocity there to zero and enforcing
continuity conditions (i.e., zeroth-order extrapolation) for the
density and temperature. Test calculations using a slightly dif-
ferent treatment of the boundary conditions, in which both the
density and temperature are evolved hydrodynamically at the
footpoints, yielded essentially the same results.

Equations (1)–(3) are solved numerically using a one-
dimensional, finite-difference (FD) hydrodynamics code based
on a temporally and spatially second-order accurate Lagrangian
remap technique (Sigalotti & Mendoza-Briceño 2003). The
code employs a nonstaggered linear Cartesian mesh in which
all variables are assigned to the zone centers si. The equations
are first rewritten in Lagrangian form, and their discretized
representations are solved in a predictor-corrector fashion to
update the density, velocity, and temperature. Both the predic-
tor and corrector steps rely on a multistep solution procedure
in which the source contributions on the right-hand sides of
equations (2) and (3) are evaluated separately. After completion
of the Lagrangian step, the solution is mapped back onto an
Eulerian grid, which can be either fixed or moving, by assum-
ing piecewise-linear representations of the fundamental vari-
ables to preserve the second-order accuracy of the Lagrangian
solver. The discretized remap equations for the density, mo-
mentum, and internal energy are constructed from the laws
of mass, momentum, and energy conservation, respectively. A
full description of the multistep Lagrangian procedure and
Eulerian remap, including a detailed account of the gravity,
thermal conduction, and cooling and heating solvers, is found
in Sigalotti & Mendoza-Briceño (2003). For the sake of com-
pleteness here we briefly describe how the viscous force F�

and heating E� are incorporated into the code. These effects
are quantified by solving the ‘‘substep’’ integral equations
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where the spatial integration is over the size �s of a given grid
zone.

In particular, equation (8) is solved implicitly for the ve-
locity, after partial updates of the Lagrangian positions si and
velocities vi due to gravity and pressure forces are obtained.
The implicit solution is accomplished by direct integration of
equation (8) into the FD form

vnþ1
i � vni
�t

¼ 2

3

�i þ �iþ1

�i�si
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viþ1 � vi
siþ1 � si

� �

� 2

3

�i þ �i�1

�i�si

� �
vi � vi�1

si � si�1

� �
; ð10Þ

Fig. 1.—Geometry of the one-dimensional loop model. Here L is the total
length of the loop, and s is the position on the loop increasing in a clockwise
sense. The distance l0 from the left footpoint marks the location on the loop
where the time evolution of the hydrodynamic quantities is displayed.
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where the superscripts denote the time level (i.e., t nþ1 ¼ t nþ
�t) and the subscripts are used to label zone-centered quan-
tities. Here the superscript n on the left-hand side of equa-
tion (10) refers to quantities at the end of the fluid-acceleration
substep due to gravity and pressure forces, while the terms on
the right-hand side are meant to be time-centered, that is,
evaluated at the intermediate time t nþ1=2 ¼ (t n þ t nþ1)=2.
Substitution of the time-centered values in equation (10) leads
to a set of linear algebraic equations of the form

��
nþ1=2
i vnþ1

iþ1 þ �
nþ1=2
i vnþ1

i � �
nþ1=2
i vnþ1

i�1 ¼ 	
nþ1=2
i ; ð11Þ

which can be solved for the updated velocities by means of a
tridiagonal matrix algorithm. Note that these final updates
contain the contribution effects of all forces entering the right-
hand side of equation (2). Final new Lagrangian positions then
follow from

snþ1
i ¼ sni þ

1

2
�t vni þ vnþ1

i

� �
; ð12Þ

where the superscript n now refers to old quantities at the
beginning of the Lagrangian step.

An implicit solver is also enforced for equation (9), which is
integrated only after the thermal conduction substep is com-
pleted. A rapidly convergent fifth-order Newton-Raphson it-
eration scheme is implemented to solve it implicitly. The
updated temperatures from this substep are then used to per-
form compressional work on the gas, after which final updates
for the temperature and specific internal energy follow. The
calculations in this paper were carried out using 257 initially
uniformly spaced zones along the semicircular loop. Tests
with lower (101 zones) and higher (up to 501 zones) initial
resolution converged essentially to the same results. Since the
Eulerian mesh is allowed to closely follow the Lagrangian
motion, the present method is adaptive in nature.

3. RESULTS AND DISCUSSION

The aim of the present model calculations is to quantify
the effects of stratification on damping of the Doppler-shift
oscillations observed by SUMER in hot (T > 6 MK) coronal
loops. To do so, we start from the same loop parameters used
by Ofman & Wang (2002), who performed similar calcu-
lations of the damping of slow MHD waves in hot loops, by
neglecting the effects of solar gravity. In particular, we choose
a one-dimensional loop configuration of semicircular shape,
constant cross-sectional area, and total length L ¼ 400 Mm
(�0.575 R�), with an initial uniform temperature (T ¼ 6:3 or
8.0 MK) distribution. For the nonstratified models, an initial
uniform density (¼ 5:0 ; 108 cm�3) distribution is used. As
outlined by Ofman & Wang (2002), these initial parameters
are motivated by SUMER and Yohkoh Soft X-Ray Telescope
(SXT) observations of hot loops in the upper solar atmo-
sphere. With this choice, the coefficient of compressive vis-
cosity given by equation (6) takes values of � � 9:58 g cm�1

s�1 for T ¼ 6:3 MK and � 17:40 g cm�1 s�1 for T ¼ 8:0 MK,
while the coefficient of thermal conductivity is � � 9:96 ;
1010 ergs cm�1 s�1 K�1 for T ¼ 6:3MK and� 1:81 ; 1011 ergs
cm�1 s�1 K�1 for T ¼ 8:0 MK. Note that these latter values
are slightly higher than those quoted by Ofman & Wang
(2002). Thus, in the absence of gravity, our models differ
from theirs, only in slightly enhancing the effects of thermal
conduction.

3.1. Damping of Standing Slow-Mode Waves

Loop oscillations in the form of standing slow magneto-
sonic waves are introduced by allowing the initial velocity to
oscillate with position along the loop, with a prescribed con-
stant amplitude v0. In order to check the ability of the code to
reproduce the results obtained by Ofman & Wang (2002), we
consider initial wave-velocity amplitudes of 20 and 87 km s�1

in a nonstratified loop model and then compare the results
for the same parameters to those obtained in the stratified case.
In Figure 2, we display the resulting time evolution of the
wave velocity (Fig. 2a), density (Fig. 2b), and temperature
(Fig. 2c) at a fixed distance l0 ¼ 0:35L (�0.20 R�) from
the left footpoint at s ¼ 0 (see Fig. 1) for the particular case
in which T ¼ 8:0 MK and v0 ¼ 87 km s�1. The solid line in
Figures 2a–2c depicts the wave evolution in the stratified loop
(i.e., with gravity included), while the dashed line shows the
same evolution with no stratification (i.e., with no gravity). The
fits of the exponential decay of the amplitude v0 exp (�t=td),
where td is the dissipation time, are also shown in Figure 2a
with the dot-dashed line (no stratification) and triple-dot–
dashed line (stratification) curves. In the stratified case, the
wave velocity has a period of �1163 s (�19.4 minutes) and a
decay time of about 1231 s (�20.5 minutes). For comparison,
the wave in the nonstratified loop has a slightly shorter period
(�1153 s [�19.2 minutes]) and a longer decay time (�1396 s
[�23.3 minutes]). In both cases, the wave velocity almost
completely dissipates after about 4000 s (�66.7 minutes),
with the wave in the stratified loop reaching smaller ampli-
tudes (v � 2:72 km s�1, by 3601 s) faster than in the non-
stratified (v � 4:10 km s�1, by 3553 s) case.
The above results point to a reduction of the decay time by

about 12% when gravity is included. With our choice of
standard hot coronal plasma parameters and the loop-aligned
form of gravity given by equation (7), the pressure scale height

kp ¼ � 1

p

dp

ds

� ��1

¼ � p

�g(s)
ð13Þ

is found to vary from �0.80L (T ¼ 6:3 MK) and �1.01L
(T ¼ 8:0 MK) at the footpoint (s ¼ 0), to infinity at the summit
(s ¼ L=2), where g(s) exactly vanishes. At the observation
point (s ¼ l0 ¼ 0:35L), the pressure scale height becomes ap-
proximately twice the loop length (L ¼ 400 Mm) with kp �
1:75L for T ¼ 6:3 MK and � 2:23L for T ¼ 8:0 MK. These
values clearly indicate that gravity contributes more to en-
hancing wave dissipation near the footpoint, where kpPL,
than toward the summit, where kp ! 1. The presence of
gravity causes the plasma to be more strongly accelerated away
from the summit, producing larger velocity gradients along
the loop and hence increased viscous dissipation (see x 3.2).
The temporal evolution of the density and temperature per-

turbations calculated as 	
=
 ¼ ½
(s ¼ l0; t)� 
i�=
i, where

i denotes the initial (t ¼ 0) value of either � or T at s ¼ l0,
are shown in Figures 2b and 2c, respectively. As in Ofman &
Wang (2002), we see that the temperature oscillates with
amplitudes that are much smaller than those of the density,
with both waves exhibiting about a quarter-period phase dif-
ference compared to the velocity. This latter result supports
the observational evidence that for standing slow-mode waves
in hot loops, the intensity fluctuations lag the Doppler shifts
by a quarter period (Wang et al. 2003a). From Figure 2 we also
see that all three waves dissipate on essentially the same
timescale, independently of whether gravity is included or
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excluded. In the cooler (T ¼ 6:3 MK) loops, both the period
and the decay time of the slow waves are longer compared
to those in the hotter (T ¼ 8:0 MK) models. In addition, the
predicted ratio of decay time to period is �1.6 for both the
stratified and nonstratified T ¼ 6:3 MK loops, whereas td=P �
1:1 and 1.2 for the stratified and nonstratified T ¼ 8:0 MK
models, respectively. These ratios are within the range of
values (0.3–2.1) inferred observationally by Wang et al.
(2003a) on the basis of data of 54 Doppler-shift oscillations
associated with 27 flux-enhancement events of hot plasma. As
we see below, the result that the decay time becomes shorter at
higher temperatures is consistent with both thermal conduc-
tion and compressive viscosity being the dominant mecha-
nisms for the damping of coronal loop oscillations.

In particular, in the stratified case when T ¼ 6:3 MK, the
wave velocity has a period of �1306 s (�21.8 minutes) and a
decay time of �2062 s (�34.4 minutes) for an initial wave
amplitude of 87 km s�1. These results compare favorably with
the period (�16.8 minutes) and decay time (�36.8 minutes)
measured by Wang et al. (2003b) for one Doppler-shift os-
cillation produced by an M-class flare and recorded in an
Fe xix line by SUMER, in a loop with T ¼ 6:3 MK and length
L ¼ 191 Mm. By �4016 s, the velocity at s ¼ l0 is �5.75 km
s�1, corresponding to approximately 8% of its value at t ¼ 0.

As expected, this amplitude is higher than the 4% value found
for the T ¼ 8:0 MK loop model at a comparable evolution
time. While the above predicted periods and decay times are
toward the intermediate (T ¼ 8 MK) and upper (T ¼ 6:3 MK)
parts of the range of values observed by SOHO in hot coronal
loops, we find that the main effect of stratification is to reduce
the dissipation time of slow-mode waves by �10%–20%
compared to the nonstratified models. With the same initial
parameters and spatial resolution, the results displayed in
Figure 2 for the nonstratified loop case are qualitatively sim-
ilar to those obtained by Ofman & Wang (2002, Fig. 2). The
small quantitative differences in the values of the wave period
and decay time as well as the amplitude of the temperature
oscillations (Fig. 2c) can be attributed to differences in the
numerical methods employed.

The scaling of the decay time with wave period for all of the
previous models is shown in Figure 3. The linear scaling is
well reproduced with td � 0:48P1:171 (T ¼ 6:3 MK; open
circles) and td � 0:66P1:086 (T ¼ 8:0 MK; filled circles) for
the nonstratified loops. Stratification is found to slightly lower
the power of the scaling to td � 0:47P1:168 for T ¼ 6:3 MK
( plus signs) and �0:63P1:073 for T ¼ 8:0 MK (asterisks).
These theoretical predictions fall well within the observational
band of scalings, td ¼ 0:68þ0:46

�0:17P
1:06�0:18, derived by Wang

Fig. 2.—Time evolution of the (a) wave velocity, (b) density, and (c) temperature at s ¼ l0 ¼ 0:35L for a loop model with T ¼ 8:0 MK and L ¼ 400 Mm. In all
panels, the time evolution of the waves in a stratified loop (solid line) is compared with that in a nonstratified medium (dashed line) for an initial wave-velocity
amplitude of 84 km s�1. The fits of the exponential wave damping are shown in (a) with the dot-dashed and triple-dot–dashed curves for the nonstratified and
stratified loop, respectively.
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et al. (2003a) from a sample of 49 out of 54 Doppler-shift
oscillations in hot (T > 6:0 MK) loops observed by SUMER.
Note that the power of the scalings for the T ¼ 6:3 and 8.0 MK
loop models points toward higher dissipation rates for the
same wave period in the hotter (T ¼ 8:0 MK) cases, consistent
with the increased efficiency of thermal conduction and com-
pressive viscosity at high temperatures. In addition, for the
same temperature and wave period, the dissipation rates are
higher in the stratified loops compared to the nonstratified
ones. As expected, this latter feature becomes more evident
for the hotter loops, because both the increased temperature
and the larger velocity gradients induced by gravity lead to
increased viscous dissipation (see x 3.2). For comparison,
Ofman & Wang (2002) obtained powers of the scaling of 1.17
for T ¼ 6:3 MK and 1.01 for T ¼ 8:0 MK in loop models with
no stratification.

3.2. Effects of Thermal Conduction and Compressive Viscosity

In order to evaluate the dissipative effects of thermal con-
duction and viscosity on wave damping, we have performed
separate runs by setting either � ¼ 0 or � ¼ 0 in equations (1)–
(3) for both the T ¼ 6:3 and 8.0 MK cases when v0 ¼ 87 km
s�1. For simplicity, we first center the discussion on the results
for the nonstratified models and then compare the results
with those obtained for the stratified loops. The importance of
viscosity and thermal conduction can be quantified in terms
of dimensionless parameters (De Moortel & Hood 2003),
namely,

� ¼ 1

Re
¼ �

�Lcs
; ð14Þ

d ¼ (� � 1)��Tcs
�2p2L

¼ 1

�

�s
�cond

; ð15Þ

respectively, where Re is the Reynolds number, c2s ¼ �p=� is
the adiabatic sound speed, �s ¼ L=cs is the sound travel time,

and �cond ¼ L2p=(��1)�T is the thermal conduction time-
scale. For reference, the viscous timescale is �visc ¼ 3L2�=4�.
For the nonstratified models, where the density and tempera-
ture are initially uniform, we obtain � � 0:0075 and d �
0:23 for T ¼ 6:3 MK, and � � 0:012 and d � 0:36 for T ¼
8:0 MK. These values closely correspond to those quoted by
De Moortel & Hood (2003) in their linear analysis of the
damping of standing waves observed by SUMER. With this
choice of parameters, �visc � 37:5�cond, where �cond � 46:5
minutes for T ¼ 6:3 MK and �cond � 25:6 minutes for T ¼
8:0 MK. For comparison, �s � 17:5 minutes (for T ¼ 6:3 MK)
and �s � 15:5 minutes (for T ¼ 8:0 MK). The conductive
times are comparable to the decay times obtained for the models
of x 3.1 when both thermal conduction and viscosity are in-
cluded. Evidently, the decay time of the amplitude of slow-
mode oscillations in hot coronal loops is determined by the
conduction timescale.
We may gain some insight on the dissipational effects of

thermal conduction and compressive viscosity using linear
analysis. This is justified for our standing-wave initial con-
ditions (v0 ¼ 20 and 87 km s�1), because the resulting wave
amplitudes (P0.1L ) are always much less than the pressure
scale height (kL ), implying that nonlinear effects should be
rather small. In the absence of gravity, linearization of equa-
tions (1)–(3) leads to the same forms given by equations (9)–
(12) of De Moortel & Hood (2003) for the velocity (v), density
(�), temperature (T ), and pressure ( p) perturbations. In par-
ticular, when d ¼ 0 (i.e., no thermal conduction), these linear-
ized equations can be combined to yield the wave-velocity
equation

@2v

@t2
¼ @2v

@s2
þ 4

3
�
@

@t

@2v

@s2

� �
; ð16Þ

coupled with the forms

@�

@t
¼ � @v

@s
; ð17Þ

@T

@t
¼ �(��1)

@v

@s
ð18Þ

for the temporal evolution of the density and temperature
fluctuations. Note that viscous heating contributes with second-
order terms, and therefore it does not appear in equation (18).
From the above equations, we can see that the velocity oscil-
lations are always dissipated by compressive viscosity, while
the density and temperature oscillations damp out mainly by
hydrodynamic coupling via the velocity gradients. In order
to provide direct comparison with the models of Figure 2, we
show in Figure 4 the resulting time evolution of the wave
velocity (Fig. 4a), density (Fig. 4b), and temperature (Fig. 4c)
at s ¼ l0 ¼ 0:35L when � ¼ 0, for the specific case in which
T ¼ 8:0 MK and v0 ¼ 87 km s�1. The solid line shows the
wave evolution in the stratified loop, and the dashed line shows
the same evolution in the absence of gravity (no stratification).
Compared to the T ¼ 6:3 MK case, the results show a much
stronger damping for all three waves in the hotter loop (see
Fig. 4), in accordance with the fact that viscous dissipation is
enhanced at higher temperatures (i.e., � / T 5=2). As a conse-
quence, the presence of higher harmonics due to nonlinearity
and viscous heating is also much less evident in the hotter loop
than in the cooler one. Increased temperature also results

Fig. 3.—Predicted scaling of the decay time with wave period for the
stratified and nonstratified loop model calculations with T ¼ 6:3 and 8.0 MK.
The data set plotted corresponds to models with an initial wave-velocity
amplitude of v0 ¼ 87 km s�1. The open circles give the scaling for T ¼ 6:3 MK
with no stratification, the plus signs for T ¼ 6:3 MK with stratification, the
filled circles for T ¼ 8:0 MK with no stratification, and the asterisks for
T ¼ 8:0 MK with stratification.
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in shorter wave periods, with P � 15:5 and �15.6 minutes for
the nonstratified and stratified (T ¼ 8:0 MK) models, respec-
tively. For comparison, the waves in the cooler (T ¼ 6:3 MK)
loop have periods of �17.2 minutes (nonstratified case) and
�17.4 minutes (stratified case). From the values of �s quoted
above, we can see that these periods are determined by the
sound travel time, as expected in cases in which compressive
viscosity is the dominant dissipation mechanism. In the non-
stratified loops, the decay times are factors from �8 (T ¼
6:3 MK) to �2 (T ¼ 8:0 MK) times longer than the ones
obtained when both thermal conduction and compressive vis-
cosity are allowed (see x 3.1), in agreement with previous
findings by Ofman & Wang (2002). When stratification is
accounted for, these factors decrease to �4 (T ¼ 6:3 MK)
and �1.4 (T ¼ 8:0 MK), respectively, implying increased
dissipation under the effects of gravity. This is a consequence
of the larger velocity gradients achieved in the presence of
stratification, which then lead to enhanced viscous dissipation.

On the other hand, when � ¼ 0 (i.e., no viscosity) the lin-
earized equations of De Moortel & Hood (2003) can be
combined into the wave equations

�
@2T

@t2
¼ (��1)

@2p

@s2
þ �2d

@

@t

@2T

@s2

� �
; ð19Þ

�
@2v

@t2
¼ @2v

@s2
� @

@t

@T

@s

� �
; ð20Þ

�
@2�

@t2
¼ @2�

@s2
þ @2T

@s2
ð21Þ

for the time evolution of the temperature, velocity, and density
oscillations. Now we can see that dissipation by thermal con-
duction affects primarily the temperature, while the velocity
and density waves are dissipated through hydrodynamic cou-
pling with the temperature gradients. In Figure 5 we display the
time evolution of all three waves in the absence of viscosity
(� ¼ 0) for T ¼ 8:0 MK and v0 ¼ 87 km s�1. As in Figures 2
and 4, the solid and dashed lines describe, respectively, the
evolution in the presence and absence of stratification. As the
thermal ratio increases from d � 0:23 (for T ¼ 6:3 MK) to
� 0:36 (see Fig. 5 for T ¼ 8:0 MK), the amplitudes of the
temperature wave lower by a factor of �2 during the first
period, while those of the density and velocity waves are
not significantly affected. Further evolution proceeds, with
the temperature wave being more strongly dissipated when
T ¼ 8:0 MK (Fig. 5c). However, the converse occurs for the
velocity (Fig. 5a) and density (Fig. 5b) oscillations, which
exhibit stronger damping of their amplitudes when T ¼
6:3 MK. This happens essentially because larger gradients of

Fig. 4.—Time evolution of the (a) wave velocity, (b) density, and (c) temperature at s ¼ l0 ¼ 0:35L for the same model as in Fig. 2 but with no thermal
conduction (i.e., � ¼ 0). In all panels, the time evolution of the waves in a stratified loop (solid line) is compared with that in a nonstratified medium (dashed line)
for an initial wave-velocity amplitude of 84 km s�1.
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T are generated at higher temperatures, which then contribute
to increased dissipation of the thermal wave at T ¼ 8:0 MK.
However, the temporal and spatial variations of these gradients
are smaller in the hotter loops compared to the cooler ones,
thereby causing less dissipation of the density and velocity
waves at higher temperatures. A straightforward comparison
of Figures 4 and 5 clearly shows that density and velocity
waves are more strongly dissipated by compressive viscosity,
while temperature waves are mostly damped by thermal con-
duction. In addition, note that the suppression of viscosity
allows for increased nonlinearity, as evidenced by the presence
of high-order harmonics in the waves of Figure 5. In the non-
stratified loops, the periods and decay times are, respectively,
�21.3 and �97.6 minutes for T ¼ 6:3 MK, and �19.4 and
�100.6 minutes for T ¼ 8:0 MK. For comparison, the waves
in the stratified loops have periods of�21.8 (T ¼ 6:3 MK) and
�19.7 minutes (T ¼ 8:0 MK) and have much longer decay
times (�189.7 minutes for T ¼ 6:3 MK and �141.3 minutes
for T ¼ 8:0 MK). Thus, the decay times due to thermal con-
duction alone are factors of �3–7 times longer than the ob-
served ones. In addition, the wave amplitudes are larger in
the stratified cases, as opposed to when only viscous dissipa-
tion is allowed (Fig. 4). This occurs because of the larger ve-
locity gradients induced by gravity, which in the absence of
compressive viscosity contributes to wave amplification. This

simple analysis shows that the concurrence of both thermal
conduction and compressive viscosity is necessary in order to
match the observations.

3.3. Dependence of the Decay Time on
Physical Loop Parameters

We now study the variation of the decay time of standing
slow-mode waves with temperature, total loop length, and
wave-velocity amplitude in stratified hot loop models. In par-
ticular, the damping time as a function of the temperature is
shown in Figure 6 for v0 ¼ 20 (dashed line) and 87 km s�1

(solid line), as obtained for two separate sequences of model
calculations with fixed loop length (400 Mm) and temperatures
varying from T ¼ 6:3 to 8.0 MK. We see that the decay time
always decreases with temperature in hot loops because of the
increasing dissipative effects of thermal conduction and com-
pressive viscosity at such high temperatures. For v0 ¼ 87 km
s�1, the wave amplitude at s ¼ l0 ¼ 0:35L is �0.10L, while for
v0 ¼ 20 km s�1 it is only �0.02L, implying that, for a given
temperature, standing waves of lower amplitudes decay in a
shorter time. In particular when T ¼ 6:3MK, the damping time
for v0 ¼ 87 km s�1 is about 300 s longer than when v0 ¼ 20 km
s�1. However, this difference reduces to about 60 s when the
loop temperature is increased to T ¼ 8:0 MK. Since the
pressure scale height at s ¼ l0 is much larger (�1.75L for

Fig. 5.—Time evolution of the (a) wave velocity, (b) density, and (c) temperature at s ¼ l0 ¼ 0:35L for the same model as in Fig. 2 but with no viscosity (i.e.,
� ¼ 0). In all panels, the time evolution of the waves in a stratified loop (solid line) is compared with that in a nonstratified medium (dashed line) for an initial wave-
velocity amplitude of 84 km s�1.
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T ¼ 6:3 MK and �2.23L for T ¼ 8:0 MK) than the wave
amplitudes, we expect nonlinear effects to be rather small. This
explains the almost linear decrease of the decay time with
temperature for v0 ¼ 87 km s�1 (solid line), which obeys the
approximate scaling td / T�2:16. For the lower amplitude case
(v0 ¼ 20 km s�1; dashed line), the linear scaling makes a
transition from td / T�1:29 (slower decrease) at lower tem-
peratures to td / T�2:05 (more rapid decrease) at higher tem-
peratures. This change of slope at �7.0 MK is a signature of
the increasing dissipative effects of thermal conduction and
viscosity at higher temperatures. We may then expect that in
hotter loops (T k8:0 MK), slow MHD waves of differing
amplitudes may dissipate on roughly the same timescale.

The dependence of the decay time on loop length is plotted
in Figure 7 for four separate sequences of model calculations
with varying length from 100 to 400 Mm and fixed temper-
ature and wave-velocity amplitude. In general, as the loop
length is increased, the decay time of slow magnetosonic

waves also increases. This result is consistent with dissipation
by thermal conduction and viscosity being more efficient in the
shortest loops. The increase of the decay time with length is
seen to occur at a comparatively faster rate when T ¼ 6:3 MK
and v0 ¼ 87 km s�1 (dot-dashed line). When T ¼ 8:0 MK
(solid and dotted lines), the decay time becomes fairly inde-
pendent of the wave amplitude for all lengths considered. Note
that for T ¼ 6:3 MK, the same is true for loops with lengths
P200 Mm, which again confirms the previous finding that the
size of the wave amplitude does not affect the decay time,
provided that dissipation occurs efficiently. We also note that
for all sequences, the increase of td with length becomes al-
most linear for Lk 200 Mm, in accordance with the relation
P � 2L=cs (Roberts et al. 1984). This approximate linear de-
pendence of the period on loop length has also been found to
match the observed periods rather well (Wang et al. 2003a,
2003b). In particular, the linear behavior is found to obey the
approximate scalings td / L1:76 (for T ¼ 8:0 MK and v0 ¼
87 km s�1), td / L1:70 (for T ¼ 8:0 MK and v0 ¼ 20 km s�1),
td / L1:48 (for T ¼ 6:3 MK and v0 ¼ 87 km s�1), and td /
L1:35 (for T ¼ 6:3 MK and v0 ¼ 20 km s�1). The fact that, for
a given length, the decay time of oscillations is shorter for the
T ¼ 8:0 MK loops is again indicative of dissipation operating
more efficiently at higher temperatures. Moreover, the result
that for all sequences, the shortest decay times occur in the
smallest loops (of lengths 100–200 Mm) also argues in favor
of thermal conduction and compressive viscosity as the pri-
mary mechanisms for slow-mode wave dissipation.

Finally, Figure 8 depicts the variation of the decay time with
the initial wave-velocity amplitude v0, as obtained from two
independent sequences of model calculations with varying
amplitudes from v0 ¼ 20 to 200 km s�1 and fixed temperature
(T ¼ 6:3 [solid line] and 8.0 MK [dotted line]) and loop length
(L ¼ 400 Mm). For both sequences, the decay time first
increases with increasing initial wave amplitude until a maxi-
mum is reached around v0 � 120 km s�1 for T ¼ 6:3 MK and
�100 km s�1 for the T ¼ 8:0 MK sequence. For initial wave-
velocity amplitudes higher than these values, the damping
time is seen to decrease. The presence of a maximum in both
sequences may be due to nonlinear effects. In fact, after the first
period of oscillation, the wave amplitudes at the observation

Fig. 6.—Dependence of the decay time td on loop temperature T, as
obtained from two independent sequences of calculations with fixed loop
length (400 Mm) and temperatures varying from T ¼ 6:3 to 8.0 MK. The solid
and dashed lines correspond to v0 ¼ 87 and 20 km s�1, respectively.

Fig. 7.—Dependence of the decay time td on loop length L, as obtained
from four independent sequences of calculations having a fixed temperature
(T ¼ 6:3 or 8.0 MK), fixed initial wave-velocity amplitude (v0 ¼ 20 or 87 km
s�1), and loop lengths varying from L ¼ 100 to 400 Mm. The solid (v0 ¼
87 km s�1) and dotted (v0 ¼ 20 km s�1) curves correspond to model
sequences with T ¼ 8:0 MK, while the dashed (v0 ¼ 20 km s�1) and dot-
dashed (v0 ¼ 87 km s�1) curves correspond to sequences with T ¼ 6:3 MK.

Fig. 8.—Dependence of the decay time td on the initial wave-velocity
amplitude v0, as obtained for two separate sequences of calculations with fixed
loop temperature and length (400 Mm). Models with initial wave amplitudes
between 20 and 200 km s�1 are considered. The solid and dotted curves
correspond to T ¼ 6:3 and 8.0 MK, respectively.
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point s ¼ l0 ¼ 0:35L becomek0.10L when v0 � 100 km s�1 in
the T ¼ 8:0 MK sequence and k0.17L when v0 � 120 km s�1

in the T ¼ 6:3 MK loops, implying that nonlinear effects come
out as the wave amplitude becomes a nonnegligible fraction
of the pressure scale height. It is evident from Figure 8 that
the predicted decay times are in the range 29–35 minutes
for T ¼ 6:3 MK and 19–21 minutes for T ¼ 8:0 MK. These
values are all within the inferred range of exponential decay
times (5.7–36.8 minutes) of detected Doppler-shift oscillations
observed with SUMER. We see from Figure 7 that a better
spread of the decay times, covering the full observational data
set, can be obtained by decreasing the total loop length in
the model calculation sequences of Figure 8.

4. CONCLUSIONS

We have performed exploratory hydrodynamic calculations
of the damping of slow magnetosonic waves in hot (T >
6:0 MK) coronal loops, starting with loop parameters moti-
vated by SUMER and Yohkoh SXT observations and including
the effects of solar gravity, self-consistent heating, and large
dissipation by heat conduction and compressive viscosity. In
contrast to previous use of the model by Ofman & Wang
(2002), here we investigate the effects of stratification on wave
damping in hot coronal loops.

We find that stratification contributes a �10%–20% reduc-
tion of the decay time of slow MHD waves compared to the
nonstratified loop models. In contrast to previous analyses and
calculations, we also find that density and velocity oscillations
are more efficiently dissipated by compressive viscosity, while
temperature fluctuations are more strongly damped by thermal
conduction. However, the concurrence of both mechanisms is
necessary to match the observed periods and decay times of
Doppler-shift oscillations. The predicted decay times are al-
ways determined by the thermal conduction timescale. Higher
dissipation rates are observed in stratified loops as a result of
the larger velocity gradients induced by gravity, which in turn
lead to enhanced viscous dissipation. The predicted periods
and decay times are all within the range of values inferred for
the Doppler-shift oscillations observed by SUMER in hot
coronal loops. For the range of temperatures (6–10 MK)
characterizing hot coronal loops, the decay time of oscillations
decreases linearly with temperature in stratified loops, with
the rate of decrease being more sensitive to the size of the

oscillation amplitudes at lower temperatures. In hot (T >
7:0 MK) loops, the decay time becomes almost independent
of the size of the wave amplitude, because of the overwhelming
dissipative effects of thermal conduction and compressive
viscosity at high temperatures. The results also indicate that
the decay time of oscillations increases almost linearly with
the loop length, in agreement with recent observations. In
particular, the longest wave-damping times are obtained for the
case of relatively high initial wave-velocity amplitudes (v0P
120 km s�1) in loops with T ¼ 6:3 MK. In hotter (T ¼
8:0 MK) loops, the decay time shortens, and its linear varia-
tion with loop length becomes almost independent of the size
of the oscillation amplitude. This latter result is also indicative
of the increased effects of thermal conduction and compressive
viscosity on wave dissipation at such high temperatures.
The present model calculations apply to damping of slow

MHD waves in one-dimensional loops of semicircular shape
and constant cross-sectional area. In these simplified models,
we have neglected the coupling of the loop with the chro-
mosphere and the radiative losses. However, in a first ap-
proximation, for the long-period oscillations observed by
SUMER, these effects may be of secondary importance, so we
expect that our results will not be considerably affected by
these assumptions. On the other hand, the effects of radiative
losses may become important in loop configurations starting
with nonuniform temperature profiles. Further work in this
direction will focus on studying the damping of slow-mode
waves in stratified hot loop models in which the temperature
distribution is nonuniform.
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