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ABSTRACT

We develop a general method for analyzing the light curves of microlensed quasars and apply it to the OGLE
light curves of the four-image lens Q2237+0305. We simultaneously estimate the effective source velocity, the
average stellar mass, the stellar mass function, and the size and structure of the quasar accretion disk. The light
curves imply an effective source-plane velocity of 10; 200 km s�1P vehhM=M�i�1=2P39; 600 km s�1 (68%
confidence). Given an independent estimate for the source velocity, found by combining estimates for the peculiar
velocity of the lens galaxy with its measured stellar velocity dispersion, we obtain a mean stellar mass of
hMi ’ 0:037 h2 M� (0:0059 h2 M�P hMiP0:20 h2 M�). We were unable to distinguish a Salpeter mass func-
tion from one in which all stars had the same mass, but we do find a strong lower bound of ��=�k 0:5 on the
fraction of the surface mass density represented by the microlenses. Our models favor a standard thin accretion
disk model as the source structure over a simple Gaussian source. For a face-on, thin disk radiating as a blackbody
with temperature profile Ts / R�3=4, the radius rs where the temperature matches the filter pass band [2000 8 or
TsðrsÞ ’ 7 ; 104 K] is 1:4 ; 1015 h�1 cmP rsP 4:5 ; 1015 h�1 cm. The flux predicted by the disk model agrees
with the observed flux of the quasar, so nonthermal or optically thin emission processes are not required. From the
disk structure we estimate a black hole mass of MBH ’ 1:1þ1:4

�0:7 ; 10
9 h�3=2�1=2

0:1 ðL=LEÞ
�1=2

M�, consistent with
the mass estimated under the assumption that the quasar is radiating at the Eddington luminosity (L=LE ¼ 1).

Subject headings: accretion, accretion disks — dark matter — gravitational lensing —
quasars: individual (Q2237+0305) — stars: luminosity function, mass function

1. INTRODUCTION

The term ‘‘microlensing’’ describes the flux variations pro-
duced in a background source by foreground stars in two very
different regimes. Today, astronomers are most familiar with
the local (Galactic) phenomenon, in which a star or binary
produces a time variable magnification of a background star
(see the reviews by Paczyński 1996 or Mao 2001). Because the
physical distances are so short, the Galaxy is optically thin to
microlensing (� � 10�6). This leads to the disadvantage that
few background sources are lensed (one in ��1 stars) and the
advantage that the lens producing the variations is simple (one
or two isolated stars). In quasar microlensing, by contrast, the
existence of multiple quasar images requires a microlensing
optical depth near unity (� � 1) if the stars in the lens galaxy
are a significant fraction of the surface density (see the review
by Wambsganss 2001). This regime has the advantage that
all background sources are microlensed but the disadvantage
that the lens is intrinsically complex, since it consists of a star
field rather than a star.

In either experiment, the light curve of the background
source provides a time history of the changes in the magni-
fication created by the relative motions of the observer, the
source, and the lens. At its simplest, these variations deter-
mine a timescale, �t / M 1=2v�1

e x1=2ð1�xÞ1=2, set by the mass
M, the effective source velocity ve, and the fractional dis-
tance x of the lens from the source. These scalings are exact
for Galactic microlensing events, and the stellar mass can be
inferred only from the statistical properties of large samples
(e.g., Alcock et al. 2000) or from events where special cir-
cumstances allow an independent determination of ve or x
(e.g., parallax effects, Grieger, Kayser, & Refsdal 1986; Gould
1992). For quasar microlensing, these same factors determine

the typical time between ‘‘events’’ in which there is a sig-
nificant change in the magnification, with the advantage that
the fractional distance x is known from the redshifts, leaving
only a degeneracy between the mass and velocity scales. If the
fundamental physics probed by the two regimes is the same,
why has the astronomical community devoted far more ob-
servational resources to Galactic microlensing than to extra-
galactic microlensing?
The first problem is that the timescales for quasar micro-

lensing are roughly 10 times longer than for Galactic micro-
lensing, because the larger length scales of the extragalactic
regime are only partly balanced by the larger velocity scales.
As a result, ‘‘events’’ take 1–10 rather than 0.1–1 yr. This is
no longer a viable argument for ignoring quasar microlensing.
There are roughly 40 multiply-imaged quasars that could be
monitored, with a total of roughly 120 images, so that even if
the ‘‘event’’ rate is only one per image per decade, there are
10 quasar microlensing ‘‘events’’ occurring each year. Quasar
microlensing requires less intensive monitoring because of the
longer timescales (once per week rather than once per day), so
a total of roughly 2000 images yr�1 is needed to monitor the
available lens sample. Even with the addition of more inten-
sive monitoring during events, this represents a small fraction
of the effort in a large Galactic microlensing survey.
The second problem is that the quasar images are separated

by only arcseconds, making it difficult to obtain the indepen-
dent image fluxes. Fortunately, many telescopes routinely ob-
tain subarcsecond resolution images. When combined with
difference imaging (e.g., Alard 2000), to compensate for point-
spread function variations with epoch and to remove the non-
varying components of the lens, and accurate astrometry and
component parameters from Hubble Space Telescope images
(e.g., Lehar et al. 2000), it is now relatively easy to produce
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light curves. Arguably the best light curve available for quasar
microlensing was produced by the Optical Gravitational Lens
Experiment (OGLE) using the same observing procedures as
for their primary Galactic microlensing experiment, combined
with difference imaging to analyze the results (Wozniak et al.
2000a, 2000b).

The third problem is that we can never observe the
‘‘unlensed’’ source to get a baseline from which to determine
absolute magnifications. This problem is no worse than the
blending problem for Galactic microlenses, in which the flux
of the lensed star is contaminated by flux from a nearby star
(Di Stefano & Esin 1995) or many unresolved stars (pixel
lensing; Crotts 1992). It is certainly true that there is no means
of determining the absolute magnifications of the individual
images because this is degenerate with the unknown flux of
the quasar. However, by taking advantage of the spatial
structure of quasars, it is possible to determine the true mag-
nification ratios between the images in the absence of micro-
lensing. The emission-line, mid-infrared, and radio-emitting
regions of quasars should all be large enough to average
out the effects of microlensing to allow the determination of
the ‘‘intrinsic’’ flux ratios (e.g., Wyithe et al. 2002a for
Q2237+0305).

The fourth problem is that the quasar lenses have sources
that are time variable, making it necessary to separate in-
trinsic and microlensing variability. If the source is time
variable and contaminating the microlensing flux variations,
then the light curves can be used to determine the time delay
between the images and the effects of the intrinsic variability
are eliminated by comparing the light curves shifted by the
time delay. Moreover, the time-delay measurement provides a
direct estimate of the total surface density near the lensed
images (under the assumption that H0 is known; see Kochanek
2002), which can be compared with the estimates of the
total or stellar surface density derived from analyzing the
variability created by microlensing. If the source is not vari-
able, or the time delay is short compared with the micro-
lensing timescales, then it is unimportant for understanding
the microlensing.

The fifth and most significant problem is the difficulty in
interpreting the quasar microlensing light curves. Even the
complex light curves produced by binary lenses (e.g., Mao &
Paczyński 1991) are far simpler than those produced by the
collective effects of many stars. The first observational studies
of quasar microlensing used semiquantitative analyses of the
temporal widths of light-curve peaks to estimate the size of the
accretion disk in the source quasar of Q2237+3035 (e.g.,
Webster et al. 1991; Wambsganss, Paczyński, & Schneider
1990; Rauch & Blandford 1991; Jaroszynski, Wambsganss, &
Paczyński 1992). More recent studies of the source structure
focused on detailed analyses of ‘‘high magnification events,’’
where the magnification pattern should have the generic as-
ymptotic properties of a fold or cusp caustic (e.g., Yonehara
2001; Shalyapin et al. 2002). General analyses of light curves
have focused on estimates of their statistical properties. In
particular, Seitz & Schneider (1994), Seitz, Wambsganss, &
Schneider (1994), and Lewis & Irwin (1996) considered the
autocorrelation functions of light curves, Wyithe, Webster, &
Turner (1999) considered the distributions of light-curve
derivatives, Wambsganss (1992a) and Lewis & Irwin (1995)
considered the probability distributions of the magnifications,
and Witt, Kayser, & Refsdal (1993; also Wyithe et al. 2000d,
2000f ) considered the distribution of high magnification
events. In all cases, the application of these statistical methods

has been to the four-image lens Q2237+0305 (Huchra et al.
1985) in order to estimate the average microlens mass (e.g.,
Refsdal & Stabell 1993; Seitz et al. 1994; Lewis & Irwin
1996; Wyithe et al. 2000g), the transverse velocity (Wyithe &
Turner 2001), and the source size and structure (e.g., Witt &
Mao 1994a; Wyithe et al. 2000c; Wyithe, Agol, & Fluke
2002a). While these are reasonable statistical estimators, they
are difficult to apply to irregularly sampled, sparse data (e.g.,
Wambsganss 1992a) and they lose information compared with
the raw light curves because the statistics of the light curves
are highly non-Gaussian. The biggest problem in using quasar
microlensing for astrophysics remains the problem of inter-
preting the data.

While many of the astrophysical applications of Galactic
and quasar microlensing analyses are similar, there is a fun-
damental difference in using the two methods to study the dark
matter problem. In quasar microlensing, the behavior of
the light curves depends on both the density of the stars and
the density of the smoothly distributed matter. Moreover, the
effects of the two density components can be distinguished
(e.g., Schechter & Wambsganss 2002). Simple studies of the
dependence of image flux ratios on image parities already
suggest that in most quasar lenses the stars must represent
only a modest fraction of the total density (see Schechter &
Wambsganss 2002; Kochanek & Dalal 2003). This is very
different from Galactic microlensing experiments which, even
with infinite resources, can only determine the density of the
halo in compact objects (stars, planets, etc.). The inference
that the rest of the halo must be composed of smoothly dis-
tributed (particle) dark matter comes only from comparing the
measured density to that inferred from dynamical studies of
the Galaxy. With quasar microlensing, no additional step is
required. The greater ability of quasar microlensing to address
the dark matter problem makes solving the problem of inter-
preting the data an important one.

In this paper we develop and demonstrate a method for
obtaining physical information from quasar microlensing
data of arbitrary complexity and apply it to Q2237+0305. We
will simultaneously estimate the source velocities, source size,
source structure, stellar mass function, and stellar surface
density fraction needed to obtain statistically acceptable
models of the Q2237+0305 light curves measured by OGLE
(Wozniak et al. 2000a, 2000b). In doing so, we also obtain
model light curves that are consistent with the observations.
We outline our approach in x 2, with additional details on
our method of computing microlensing magnification pat-
terns given in the Appendix. Since the distribution of stars
needed to reproduce the available data is not unique, we
introduce a Bayesian statistical method to estimate any
physical variables of interest. In x 3 we analyze the OGLE
light curves for Q2237+0305 to estimate the source velocity
and average stellar mass (x 3.1), the source structure (x 3.2),
the physical properties of the accretion disk and the mass of
the black hole (x 3.3), the surface density of the stars (x 3.4),
and the flux ratios of the images (x 3.5). In x 3.6 we survey
some of the best fits to the light curves. Finally, in x 4 we
summarize the results and outline the potential future of
quasar microlensing.

2. A NEW APPROACH TO ANALYZING QUASAR
MICROLENSING DATA

Just as in the analysis of Galactic microlensing light curves
(see Afonso et al. 2000 for a spectacular example), we will
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analyze quasar microlensing light curves by finding config-
urations of stars and source trajectories that reproduce the
observations. Because the stellar configurations are complex,
we search for good fits to the data by producing large numbers
of random realizations of the light curves. Then, using a
Bayesian analysis of the the goodness of fit statistics for these
model light curves, we estimate the values and uncertainties
for any physical variable of interest.

We generate source-plane magnification patterns using the
ray-shooting method (e.g., Kayser, Refsdal, & Stabell 1986;
Schneider & Weiss 1988; Schneider, Ehlers, & Falco 1992;
Wambsganss 1999). The technical details of our method,
which has a number of nonstandard features, are summarized
in the Appendix. For our study of Q2237+0305 we used fixed
values from lens models for the mean convergence � and
shear � at the location of each image but considered models
with a range of stellar mass fractions ��=� ¼ 1, 1

2
, 1
4
, and 1

8
,

where �� � � is the surface density of the stars. The stars are
distributed randomly in position and are drawn from a power-
law mass function dp=dM / M�x over a finite mass range
M1 < M < M2. We normalize our length scale by the Einstein
radius h�Ei corresponding to the average mass hMi and pa-
rameterize the mass function by the exponent x and the ratio
between the upper and lower masses r ¼ M2=M1. In the
present calculation we use either a Salpeter mass function
(x ¼ 2:35) with a mass ratio r ¼ 100 or a ‘‘monomass’’ mass
function in which all stars have the same mass (r ¼ 1). Our
standard magnification pattern was a square region spanning
40h�Ei stored in a 20482 array with a pixel scale of 0.02h�Ei.
These scales were chosen so that we could make large
numbers of statistically independent trial light curves from a
single magnification map.

In Galactic microlensing, stellar angular diameters are
much smaller than the lens Einstein radius, so the effects of
finite source size are seen only during caustic crossings (e.g.,
Witt & Mao 1994b, with examples such as Afonso et al.
2000 or An et al. 2002). For quasar microlensing there is less
separation of the two scales, making finite source sizes more
important (e.g., Kayser et al. 1986; Schneider & Weiss 1987).
For a given source model, we convolve the raw magnifica-
tion pattern with the surface brightness model of the source
before computing the light curves. The physical effects of
the source size are controlled by the ratio between the source
size and the average Einstein radius, rs=h�Ei / rs=hMi1=2, so
we assumed circular sources scaled by the average mass
of the stars. For length scale rs ¼ r̂shM=M�i1=2, we com-
puted light curves for scales from r̂s ¼ 1015 h�1 cm (slightly
below our pixel scale) to 1018 h�1 cm (somewhat above the
average Einstein radius) in steps of � log r̂s ¼ 0:25. We used
either a Gaussian or a thin-disk model for the surface
brightness profile I(R). The Gaussian model for the surface
brightness,

IðRÞ / exp �R2=2r 2s
� �

; ð1Þ

is the model usually used in microlensing studies. For a
comparison, we used a standard model for an optically thick,
pressure-supported, absorption opacity–dominated, thin ac-
cretion disk in which energy is released locally with a
blackbody spectrum (e.g., Shapiro & Teukolsky 1983). For a
black hole of mass MBH and accretion rate Ṁ , the energy
dissipation rate per unit area of the disk, 3GMBHṀ=8�R3,
must equal the radiation losses of �T 4

s , so the disk surface

temperature Ts / R�3=4. We will not include the correction
factor of 1� (3RBH=R)

1=2 to the dissipation rate near the last
stable orbit of the black hole so as to avoid additional
parameters. For reasonably narrow filters (�k=k � 15% for
the V band) the surface brightness of the disk,

IðRÞ / exp ðR=rsÞ3=4
� �

� 1
h i�1

; ð2Þ

simply tracks the blackbody spectrum. The scale length rs is
the radius at which the disk surface temperature matches the
effective wavelength of the filter: for V-band observations of
Q2237+0305 (2000 8 in the rest frame), the temperature at
radius rs is TsðrsÞ ’ 70; 000 K. The thin-disk model can be
used to make self-consistent predictions for the wavelength
dependence of the microlensing effects because the radius
scales with photon wavelength as rs / k4=3.
The light curves produced by the two models weight the

magnification pattern very differently. On small scales, R < rs,
the Gaussian model has nearly constant surface brightness
while the blackbody model is a centrally peaked power law,
IðRÞ � R�3=4. On large scales, R > rs, the Gaussian model
cuts off much more sharply than the blackbody model. We will
consider only circular (face-on) disks to avoid introducing two
additional parameters for the inclination and orientation of the
disk. This means that estimates of the scale length will tend to
be underestimates. Crudely, microlensing measures the area of
the source rather than the radius, so for circular scale length
rs;circ the true scale length rs;true of a disk with axis ratio q is
roughly rs;true ’ rs;circ=(1� q)1=2.
Once we have the convolved magnification pattern, we

can choose an initial point u0 and an effective velocity ve ¼
ve cos�; sin�ð Þ for the trajectory to compute the magnifica-
tion as a function of time. We make two simplifications in gen-
erating the light curves. First, we neglect the internal motions
of the stars in the lens galaxy and use fixed magnification
patterns. Studies of the effects of moving stars (e.g., Kundic &
Wambsganss 1993; Schramm et al. 1993; Wyithe, Webster &
Turner 2000a) generally found that their effects were difficult
to statistically distinguish from a simple, static magnification
pattern. Second, we regard the trajectory directions (�) as
independent, uniformly distributed random variables for each
image. We experimented with the effects using the same � for
all images and found that it had little effect on the results.
Moreover, the neglected internal motions of the stars ‘‘ran-
domize’’ the trajectories, making perfectly locked trajectories
unphysical without the inclusion of the stellar motions. For
each trajectory we compute the change in magnitudes, �	
 (t),
produced by microlensing image 
 , relative to the mean
magnification for the image.

2.1. Fitting the Data

The data consist of a series of magnitude measurements m

i

for image 
 at epoch i with uncertainties �
; i. These magni-
tudes are a combination of the source magnitude at that epoch
Si, the local mean magnification for the image 	
 (as a mag-
nitude), any offsets in the magnitude due to extinction, sub-
structure, or other systematic effects on the image fluxes
�	
, and the time-varying change in the magnification due
to microlensing �	


i relative to the local mean,

m

i ¼ Si þ 	
 þ�	
 þ �	


i ¼ Si þ 	

tot;i: ð3Þ
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We measure the goodness of fit with a �2 statistic,

�2 ¼
X



X
i

m

i � Si � 	


tot;i

�
;i

� �2

: ð4Þ

In addition to the microlensing magnification curves, �	

i , for

each image, the model parameters are the source flux Si and
the offsets �	
 from the mean magnification. If there is a
significant time delay between the images, then we would
need to include the appropriate temporal offsets between the
light curves.

The source magnitude must be determined for each indi-
vidual model since it is not a direct observable. We can do so
either by estimating it from the data for each epoch or by
assuming a parameterized model for its variation with time. If
we estimate it from the data for each epoch, which we will call
a ‘‘nonparametric’’ model, we solve @�2=@Si ¼ 0 to find that

Si ¼
X



m

i � 	


tot;i

�2

 ;i

 ! X



1

�2

 ;i

 !�1

: ð5Þ

The �2 statistic then reduces to a sum over the N (N � 1)=2
possible difference light curves of the N images,

�2 ¼
X



X
�<


X
i

m

i � 	


tot;i

� �
� m

�
i � 	�

tot;i

� �
�
�;i

2
4

3
5
2

: ð6Þ

The errors 1=�2

�;i are the product of the N � 2 errors

excluding images 
 and � divided by the sum of all the ex-
clusive permutations of N � 1 errors. For example, if we have
four images labeled A–D, the weighting for the A/B differ-
ence light curve is

1

�2
AB;i

¼
�2
C;i�

2
D;i

�2
A;i�

2
B;i�

2
C;i þ �2

A;i�
2
B;i�

2
D;i þ �2

A;i�
2
C;i�

2
D;i þ �2

B;i�
2
C;i�

2
D;i

:

ð7Þ

While statistically optimal, the actual source behavior can be
unphysical if we are confident that the intrinsic variability and
microlensing effects have different timescales. For example,
suppose image A is crossing a caustic and has a peak, while
image B has more or less constant flux. If we have a poor
model for the microlensing light curves with a peak at neither
A nor B, then the source will be given a peak that is half the
amplitude of the observed peak. If we are confident that the
source should be varying slowly, then the a priori probability
of the source conspiring to mimic part of the microlensing
peak is low. We can force the source to show little correlation
with shorter timescale microlensing variability by using a
parametric model for the source. For example, a source de-
scribed by a polynomial Si ¼ p0 þ p1ti þ p2t

2
i : : : function of

the epoch ti leads to simple linear equations @�2=@pi ¼ 0 for
the source parameters. Parameterized source models also al-
low us to fit the light curves of one image at a time. In par-
ticular, if we assume that the source has a nearly constant
magnitude S0 with random magnitude fluctuations of �0, then
we can fit the light curve of a single image as

�2

 ¼

X
i

m

i � S0 � �	


i

� �2
�2

 ;i þ �2

0

: ð8Þ

Analyzing a single image allows for far more rapid calcu-
lations than joint analyses of four images because it avoids the
combinatoric explosion we discuss in x 2.2. We will call these
‘‘parametric’’ models.

Although there is no theoretical problem with including
measurements (e.g., extinction estimates) or constraints (e.g.,
the relative macromagnifications must be correct to some ac-
curacy) on the magnitude offsets, we decided that for our
present study we would use only the time variability of the
images to constrain the models. This means that we solve for
the optimal value of the offsets, �	
, for every trial light
curve. If our time series is sufficiently long, so that it averages
over many Einstein radii of the microlensing pattern, then
these estimates of the offsets from fitting the light curves
should converge to their true value. Otherwise, they will
show significant scatter depending on whether the light curve
lies in a region of higher or lower than average microlensing
magnification.

2.2. Dealing with the Combinatoric Explosion

The probability of a randomly drawn microlensing magni-
fication curve leading to a reasonable fit to the OGLE light
curves is small, and we cannot try every possible trajectory
for a broad range of physical parameters. For this study we
used magnification patterns with an outer scale of 40h�Ei and
dimensions of 2048 ; 2048 pixels, leading to an inner, pixel
scale of 0.02h�Ei. For a compact source and a light curve with
a caustic crossing feature, testing all possible trial light curves
for a single pattern, source size, and effective velocity would
require of order 1014 trials.1 If we want to study more than one
image over a broad range of effective velocities, source sizes,
and physically different magnification patterns, then we are
forced to use Monte Carlo methods to search a random sam-
pling of the trajectories. In practice we find that for fitting a
single image of Q2237+0305 assuming a constant source with
random intrinsic fluctuations of �0 ¼ 0:05 mag that approxi-
mately one in every N ’ 100 trial realizations will produce a
fit with �2=Ndof P 3, where Ndof is the number of degrees of
freedom. Obviously a much smaller fraction produce fits with
�2=Ndof ’ 1.

The problem explodes when we try to fit more than one
light curve simultaneously. Crudely, if we fit 2, 3, or 4 light
curves simultaneously we would expect that it would take
N 2 ’ 104, N3 ’ 106 or N 4 ’ 108 trials to produce equally
good fits to all the images simultaneously. At least when using
the nonparametric method, the scaling is less extreme because
there are so many degrees of freedom in the source. In prac-
tice, finding a fit for two images using the nonparametric
method is not much harder than finding a fit for one image
with the simpler parametric method. It is possible to find

1 We note, however, that there is a trick using Fourier transforms to
efficiently check all possible starting points even for very large numbers of
data Ndat. For a fixed source velocity and angle, the data points imply a spatial
filter consisting of delta functions �ðu�uiÞ located at spatial positions from the
first point that are determined by the effective source velocity ve;i and the
elapsed time, ui ¼ ve;i�ti. The �2 for all possible ray starting points is then
formed from the convolution of this ‘‘beam’’ with the magnification pattern
and its square. For magnification patterns with Npix pixels, this approach
requires of order OðNpix ln NpixÞ operations rather than the order OðNpixNdatÞ
operations that a direct search would need. Unfortunately, the convolutions
must be repeated for each trial velocity. For very large data sets, this technique
could be used to prefilter the magnification patterns at low resolution to locate
regions deserving higher resolution searches.
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reasonable four-image solutions in N ’ 106 trials. We speed
the process of finding good realizations in two ways.

First, we set a threshold, �2
max, on the value of the �2 sta-

tistic, and assume that any light curve exceeding this value
(and any local perturbations to it) should have zero statistical
weight in our analysis. We then note that as we add data points
to the determination of a �2 statistic, the statistic can only
increase in absolute value. We take advantage of this by
computing the �2 using the data points in a random temporal
order and stopping the calculation as soon as �2 > �2

max. If we
set �2

max ¼ 3Ndof (for the parametric models, 5Ndof for the
nonparametric models), then the vast majority of trials light
curves are disposed of based on a small fraction of the data
points. Because nearby points of both the light curves and the
magnification patterns tend to be similar, while well-separated
points tend to be dissimilar, random ordering of the data al-
lows much faster rejection of a trial light curve than sequential
ordering.

Second, for trial light curves which have �2 < �2
max, we

locally optimize the parameters (the starting points u0 and the
directions at fixed effective velocity �) of the curves to min-
imize the �2. This step helps considerably in finding good
solutions given our inability to try every possible set of initial
conditions in our magnification pattern. We get a fair random
sampling of the global initial conditions but allow for a local
optimization since we cannot perform the fine sampling
needed to try every initial condition. The optimization step
means that we need to keep our threshold �2

max sufficiently
high so that typical optimizations of cases above the threshold
would not reduce the �2 to the point where the trials become
statistically significant.

There is some risk that these modifications can create biases
in the results. For example, in regions with complex caustic
structures, the source trajectory requires better alignment with
the magnification pattern in order to fit the data than in regions
with less complex structures. Hence, the combination of an
initial threshold followed by local optimization could bias our
results against finding solutions in the complex regions. While
it was not computationally feasible to conduct our complete
model survey without a threshold, we did test specific cases
and found no evidence for the procedures introducing a bias.

2.3. Parameter Estimation

We use Bayesian methods for parameter estimation based
on comparing large numbers of trial light curves to the ob-
served data. The statistical properties of the light curves
expected for each image depend on the local magnification
tensor (� and �), the local properties of the stars (��, hMi, x,
and r), the structure of the source (Gaussian or thin disk, rs),
and the effective velocity of the source ve ¼ ve cos�; sin�ð Þ.
We will collectively refer to these physical parameters as 
p.
For any given set of physical parameters we generate large
numbers of source trajectories described by their starting
points (u0) and directions (�). We regard these trajectory
parameters, which we will collectively refer to as 
t, as
nuisance parameters that we will project of the likelihoods.

For each trial light curve we obtain a goodness of fit defined
by the �2 statistics introduced in x 2.1. Our next step is to
define the relative likelihoods of the light curves given the �2

values. Using a standard maximum likelihood estimator, such
as PðDj
p; 
tÞ ¼ exp ð��2=2Þ, works poorly because we are
comparing the probabilities of completely different light
curves rather than models related to each other by continuous

changes of parameters. We would expect even ‘‘perfect’’
model light curves to have h�2i ’ Ndof � ð2Ndof Þ1=2, so only
�2 differences of order (2Ndof)

1/2 indicate whether one light
curve is superior to another. For this reason we base our
likelihoods on the probability of obtaining a given value of �2

for data with Ndof degrees of freedom,

Pð�2jNdof Þ ¼
dP

d�2
/ �Ndof�2 exp ��2=2

� �
: ð9Þ

The second problem is that we are fitting data with a large
number of degrees of freedom (Ndof ¼ 290 for the simulta-
neous fits to all four images of Q2237+0305 discussed in x 3),
so our �2 estimates are very sensitive to small errors in the
magnitude uncertainties of the light curves. It takes only a 4%
shift in the magnitude uncertainties to produce a ð2Ndof Þ1=2
change in �2 when Ndof ¼ 290.
We control this problem by allowing for uncertainties in the

magnitude errors �
;i. If we scale the magnitude errors by the
factor f, then the value of �2 changes to �2

f ¼ �2=f 2 with
distribution Pð�2

f jNdof Þ ¼ Pð�2=f 2jNdof Þ=f 2. By averaging
over f, weighted by some prior Pð f Þ for our level of uncer-
tainty in the errors, we can obtain estimates for the relative
probabilities of the models that are insensitive to errors in the
magnitude uncertainties. We set the magnitude errors to be the
quadrature sum of the OGLE uncertainties and 0.05 mag and
found that our best-fit models had �2 ’ 200 for Ndof ¼ 290.
This suggests that we overestimated the magnitude errors by
at least 20% and that we can assume 0 � f � 1. Since the data
contains real measurement errors, Pð f Þ must approach zero as
f ! 0. For simplicity we adopt Pð f Þ / f for 0 � f � f0 ¼ 1,
in which case the weighted average of Pð�2

f jNdof Þ over f
becomes

Pð�2Þ / �
Ndof � 2

2
;
�2

2f 20

� �
; ð10Þ

where �½a; b� is an incomplete Gamma function.2 This ex-
pression has the ‘‘correct’’ properties for estimating the rela-
tive probabilities of light-curve realizations. First, like the �2

distribution, light-curve realizations must have �2 differences
comparable to (2Ndof)

1/2 before they have significantly dif-
ferent relative probabilities. Second, when �2 is larger than
Ndof, it simply becomes a �2 distribution set by the maximum
plausible error f0 and with an unimportant reduction in the
number of degrees of freedom. Third, when the �2 is
smaller than Ndof, the likelihood of the models rises, with
Pð0Þ=PðNdof Þ ’ 2, rather than falling as it does for the true �2

distribution (eq. [9]). When we find models with �2 < Ndof ,
it is probably because we have overestimated the magnitude
errors rather than because we have overfitted the data. In
summary, the advantage of this likelihood estimator is that it
benignly handles the problem of systematic uncertainties in
the �2 estimators even when Ndof is large. Our approach is
conservative because it will overestimate the uncertainties in

2 We experimented with other plausible choices and found they had no
significant effects on our results. For example, using a range from f1 � f � f0
gives the difference of two Gamma functions, �½ðNdof � 2Þ=2; �2=2 f 20 ��
�½ðNdof � 2Þ=2; �2=2 f 21 �. This function gives a �2=f 21 distribution for
�2=f 21 < Ndof , a �2=f 20 distribution for �2=f 20 > Ndof , and a plateau in the
intermediate region where distinguishing models depend more on the uncer-
tainty in the errors used to construct the �2 statistics than on the any differ-
ences between the light-curve realizations.
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any results provided the true errors correspond to the region
with f � f0 ¼ 1.

Using Bayes’ theorem, the probability of the parameters
given the data is

Pð
p; 
tjDÞ / PðDj
p; 
tÞPð
pÞPð
tÞ; ð11Þ

where Pð
pÞ and Pð
tÞ describe the prior probability estimates
for the physical and trajectory variables, respectively, and
PðDj
p; 
tÞ ¼ Pð�2Þ as defined in eq. (10). All Bayesian pa-
rameter estimates are normalized by the requirement that the
total probability is unity,

R
d
pd
tPð
p; 
tjDÞ ¼ 1. We assume

that the trajectory starting points and directions are uniformly
distributed and that they are nuisance variables. We obtain the
probability distributions for the more interesting statistical
parameters by marginalizing over the trajectory variables

Pð
pjDÞ /
Z

Pð
p; 
tjDÞd
t: ð12Þ

In practice we sum the probabilities for our random sampling
of trajectories, which is equivalent to using Monte Carlo in-
tegration methods to compute the integral over the space of all
possible trajectories. The sum over the random trajectories
will converge to the true integral provided we make enough
trials.

For our present study we assumed that the values of � and �
are known exactly from lens models. We studied a range of
values for the fraction of the surface density composed of stars
with a logarithmic prior Pð��Þ / 1=��. We considered discrete
trials of the different mass function parameters (x and r) and
the two source structures with all the cases given equal prior
likelihoods. We used a logarithmic prior Pðr̂sÞ / 1=r̂s for the
scaled source size where rs ¼ r̂shM=M�i1=2. We also use the
source velocity scaled by the average mass of the lenses v̂e,
where ve ¼ v̂ehM=M�i1=2, as our computational variable. We
used a logarithmic prior Pðv̂eÞ / 1=v̂e for the scaled source
velocity, which corresponds to a logarithmic prior for the
average stellar mass hMi combined with any prior for the
distribution of physical velocities.

Ultimately we would like to obtain an estimate of the av-
erage microlens mass, hMi, which can be done by combining
the likelihood function Pðv̂ejDÞ for values of v̂e that we obtain
from fitting the light curves with a prior probability estimate
PðveÞ for the true effective source velocity ve, such that

PðhM=M�ijDÞ /
Z

dvePðveÞP v̂e ¼ vehM=M�i�1=2jD
� �

:

ð13Þ

The effective source velocity, ve, defined to be the change in
the (proper) source position per unit of time measured by the
observer, is a distance-weighted combination of the (physical)
transverse velocities of the observer, vO, lens, vL, and source,
vS , respectively, is

ve ¼
vo

1þ zl

DLS

DOL

� vl
1þ zl

DOS

DOL

þ vs
1þ zs

ð14Þ

(e.g., Kayser et al. 1986). DOL, DOS and DLS are the angular
diameter distances between the observer, lens, and source
redshifts. The transverse velocity of the observer is simply the

projection of the heliocentric CMB dipole velocity vCMB onto
the lens plane,

v0 ¼ vCMB � ðvCMB = ẑÞ ẑ; ð15Þ

where ẑ is a unit vector in the direction of the lens. With an
amplitude of vCMB ¼ 387 km s�1 (e.g., Kogut et al. 1993), the
observer’s motion will be important for some lenses and un-
important for others, depending on the location of the lens.
The motions of the lens and source galaxies are assumed to
match that expected from theoretical estimates of peculiar
velocities. We model the (one-dimensional) peculiar velocity
dispersion as �pec=ð1þ zÞ1=2f ð�0;�0; zÞ=f ð�0;�0; 0Þ and use
the approximations for the growth factor f from Eisenstein &
Hu (1999). K. Nagamine, L. Hernquist, & V. Springel (2003,
private communication) find that �pec ’ 235 km s�1 for a
standard concordance cosmology. The final contribution to
the effective source motion is the velocity dispersion of the
stars in the lens galaxy, �

*
. Because we use fixed magnifica-

tion patterns, we cannot treat this component exactly. How-
ever, experiments by Wyithe, Webster, & Turner (2000a)
found that for the statistics of light-curve derivatives they
could model the effects of the stellar velocity dispersion as a
bulk velocity scaled by an efficiency factor 0:8P �P 1:3 that
depended on the local values of � and �.

In order to define the probability distribution of source
effective velocities, PðveÞ, we divide the various terms into
Gaussian and fixed components. We treat the unknown pe-
culiar velocities of the lens and the source as Gaussian dis-
tributed variables summing them in quadrature to give a total
one-dimensional source-plane velocity dispersion of

�2
e ¼

�pecðzlÞ
1þ zl

DOS

DOL

� �2
þ �pecðzsÞ

1þ zs

� �2
: ð16Þ

We treat the fixed projection of the CMB velocity onto the
source plane and the stellar velocity dispersion as constant
velocities, summing the two contributions in quadrature to
give an average velocity of

v̄2e ¼
vCMB

1þ zl

DLS

DOL

� �2

þ2
���

1þ zl

DOS

DOL

� �2

: ð17Þ

We will assume � ¼ 1 as it has only modest effects on our
estimates of the average microlens mass hM i. We treat the
stellar dispersion as a fixed velocity component rather than as
a Gaussian variable because it is meant to model the collec-
tive, average effect arising from the random motions of many
stars. If we then average over the angle between the random
Gaussian components and the fixed component, the proba-
bility distribution for the magnitude of the effective source-
plane velocity becomes

PðveÞ ¼
ve
�2
e

I0
vev̄e
�2

� �
exp � v2e þ v̄2e

2�2

� �
; ð18Þ

where I0ðxÞ is a modified Bessel function. The rms source
velocity, hv2ei

1=2 ¼ ð�2
e þ v̄2eÞ

1=2
, is the same as would be

obtained treating all the velocities as Gaussian distributed
variables, but the Gaussian model would have broader wings.
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3. INTERPRETING Q2237+0305

We will use only the OGLE monitoring data for
Q2237+0305 (Wozniak et al. 2000a, 2000b; see Fig. 1) be-
cause it covers a relatively long period (3 yr) with relatively
dense coverage (222 usable points). Other data sets cover
longer time periods with lower sampling rates (e.g., Corrigan
et al. 1991; Ostensen et al. 1996) or shorter periods with
higher sampling rates (e.g., Alcalde et al. 2002). We will not
make use of the information on the true flux ratios in the
absence of microlensing derived from monitoring the C iii]
emission line (Racine 1992; Saust 1994; Lewis et al. 1998),
radio observations (Falco et al. 1996), or mid-infrared obser-
vations (Agol, Jones, & Blaes 2000; Wyithe et al. 2002a).
While adding this additional information poses no theoretical
problems, we want to avoid any complications associated with
differences in filters, zero points, or extinction in this first
analysis. Q2237+0305 has the added advantage that the time
delays between the images are so short (<1 day) that they can
be ignored.

On short timescales the light-curve variations are smooth, so
for faster calculation we averaged data spanning less than
4 hr into a single point, leaving 103 data points. Figure 1 shows
the resulting light curves of the four images. From the scatter
between adjacent points in the raw light curve, we estimated
that our averaged light curves have larger uncertainties than
their formal errors. Modeled as a term to be added in quad-
rature with the formal errors, we found additional scatter of
0.02, 0.03, 0.04, and 0.05 mag for the A, B, C, and D images,
respectively. To compensate for these and any other system-
atic effects, we added �0 ¼ 0:05 mag additional error in
quadrature to the uncertainties used to define the �2 statistics.
As discussed in x 2.3 (eq. [10]), we then define the proba-
bilities to allow for this being an overestimate. We fixed the
parameters of the macromodel to those for a standard model
consisting of a singular isothermal ellipsoid (SIE) in an ex-
ternal shear field with no weight assigned to reproducing the
image flux ratios. This gave (�, �) of (0.394, 0.395), (0.375,
0.390), (0.743, 0.733), and (0.635, 0.623), for images A, B,
C, and D, respectively. These values are similar to those used
in earlier studies (see the summary in Wyithe et al. 2002b).

For an �0 ¼ 0:3 flat cosmological model with H0 ¼
100 h�1 km s�1 Mpc�1, the angular diameter distances are
DOL ¼ 113 h�1 Mpc, DOS ¼ 1223 h�1 Mpc, and DLS ¼
1180 h�1 Mpc given the lens and source redshifts of zl ¼
0:0394 and zs ¼ 1:695 (Huchra et al. 1985). The source-plane
Einstein radius of a star with the average mass, hMi, is

h�Ei¼DOS

4GhMi
c2DOL

DLS

DOS

� �1=2
¼ 1:54 ; 1017
� � hMi

M�

� �1=2
h�1 cm;

ð19Þ

and an effective source-plane velocity of approximately 5 ;
104h�1ðhMi=M�Þ1=2 km s�1 is needed to cross the Einstein
radius in 1 yr. As first noted by Kayser & Refsdal (1989), the
effective source velocity is dominated by the motion of the
lens and its stars. The projection of the CMB dipole, vCMB ’
ð�52;�23Þ km s�1 east and north, respectively, is quite small
for Q2237+0305, so its contribution to the effective source-
plane velocity of ve;CMB ¼ ð�530;�230Þ km s�1 can be ig-
nored despite the large boost from the distance ratios. The
peculiar velocity of the source is unimportant because even if
it were the same magnitude as that of the lens galaxy, it does

not get any boost from the distance ratios. The measured
stellar velocity dispersion of the bulge is �� ¼ 215 km s�1

(Foltz et al. 1992), roughly equal to the rms peculiar velocity
of the lens galaxy. As a result, the mean velocity of v̄e ¼
2460 km s�1 and the mean velocity dispersion of �e ¼ 2250 km
s�1 are nearly identical and the total rms velocity is hv2ei

1=2 ¼
3330 km s�1 (see eqs. [17] and [16]). Changes in the
efficiency factor for the effects of the stellar velocity dispersion
from � ¼ 1 produce small changes in the estimated velocities.
The typical Einstein radius crossing time is approximately
15h�1hM=M�i1=2 yr.
We analyzed the data using both parametric and nonpara-

metric treatments for the variability of the source. For the
parametric models we assumed a constant source with �0 ¼
0:05 mag of additional variability, separately modeling the
individual images (eq. [8]). For each set of physical parame-
ters 
p we tested 3 ; 106, 5 ; 105, 108, and 3 ; 106 trajecto-
ries for images A, B, C, and D, respectively. The number of
trials was set so that of order 104 trial trajectories would pass
a threshold of �2< 3Ndof for cases with reasonable physical
parameters. The number of trials was highest (lowest) for
image C (B) because it has the most (least) complex light
curve (see Fig. 1). For the nonparametric models we fitted all
four images simultaneously (eqs. [5] and [6]) using 108 trial
light curves for each set of physical parameters. The threshold
of �2

max ¼ 5Ndof was set to get approximately 103 trial tra-
jectories past the threshold for each set of physical parameters.
As in any Bayesian approach, only the relative probabilities of
the physical parameters are estimated, so the absolute numbers
of trials and the differences in the number of trials for the
images has no effect on the results. We performed all the
calculations on two independent realizations of the magnifi-
cation patterns for each image and stellar mass fraction to
check that the 40h�Ei regions were large enough to provide a
fair sample of light curves and that the probability estimates

Fig. 1.—OGLE V-band light curves for images A (top) to D (bottom) of
Q2237+0305. Points separated by less than 4 hr have been combined. The
vertical scale of each panel is fixed to 1.5 mag. The scatter between adjacent
points suggests that the formal error bars shown here should be enlarged by
0.02, 0.03, 0.04, and 0.05 mag for the A–D images, respectively.
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had converged. We found no significant differences between
the results for the independent realizations and discuss only
the combined results. We focus on the results for the non-
parametric models because they avoid the assumptions about
source variability required by the parametric models. In gen-
eral, however, the two approaches give consistent results for
all physical variables given their uncertainties.

3.1. The Effective Source Velocity and the Average Stellar Mass

The effective source velocity v̂e determines the timescale for
observing microlensing events and can be used to estimate the
average mass hM i of the microlenses given a prior probability
distribution for the true source velocity ve (eq. [13]). Figure 2
shows our estimate of the effective source velocity v̂e after
marginalizing over all other variables based on the parametric
and nonparametric analysis methods. The parametric model
gives a median velocity estimate of v̂e ¼ 39; 000 km s�1

with a 68% confidence region of 21; 600 km s�1P v̂eP
71; 200 km s�1, while the nonparametric model gives a
median of v̂e ¼ 19; 800 km s�1 with a 68% confidence region
of 10; 200 km s�1P v̂eP 39; 600 km s�1. While the two
estimates are statistically consistent, the differences have
significant implications for estimates of hMi / v̂�2

e . The non-
parametric models generally find intrinsic fluctuations in the
source that have significant, slow temporal variations that
will not be well modeled by the assumed constant source
(plus �0 ¼ 0:05 mag fluctuations) used in the parametric
models (see x 3.6). Thus, a likely hypothesis for the origin of
the differences in the velocity estimates is that the parametric
models are forced to create some of the variability which is
actually intrinsic to the source using microlensing, and this is
most easily done by increasing the effective velocity and the
source size.

The parametric model, where the light curves of each image
were evaluated separately, also gives probability distributions
for the velocity for the individual images, as also shown in

Figure 2. While the four images give mutually consistent
estimates of the effective velocity, the two images with strong
features in the light curve (A and C; see Fig. 1) dominate the
results. Image B, whose light curve is dominated by a slow
drift, favors slower velocities as this makes it more likely to
avoid having features. Image D has a bimodal velocity dis-
tribution produced by two different regimes for the size of the
source. When the source is small, the light curves can be
reproduced using velocities similar to images A and C.
However, there is a higher likelihood region where the source
size is large and the effective velocity is very high. This so-
lution branch is similar to that proposed by Refsdal & Stabell
(1993), where a heavily smoothed magnification pattern
makes it easy to reproduce the broad, low-amplitude peaks in
the D light curve but requires a very high effective velocity
because the smoothing also increases the scale length of the
variations in the magnification pattern.

Our estimate of hv2ei
1=2 ¼ 3300 km s�1 for the typical

source velocity is significantly lower than the effective ve-
locity v̂e estimated from fitting the light curves. This means
that the average mass of the microlenses must be significantly
less than solar. Figure 3 shows the estimate of hMi found by
convolving the two velocity estimates as a function of the
mass (eq. [13]). The parametric models, because of their very
high estimates of v̂e, give very low mass estimates. The me-
dian estimate of the mass is hMi ¼ 0:016 h2 M� with a 68%
(90%) confidence range of 0:0015 h2 M� < hMi < 0:16 h2

M� (0:00032 h2 M� < hMi < 0:88 h2 M�). The nonpara-
metric models, because of their lower estimates of v̂e, give
higher mass estimates. The median estimate of the mass is
hMi ¼ 0:037 h2 M� with a 68% (90%) confidence range of
0:0059 h2 M� < hMi < 0:20 h2 M� (0:0015 h2 M� < hMi <
0:56 h2 M�). There are roughly equal contributions to the
uncertainties from the estimate of the effective source velocity
in our fits and the estimate of the true source velocity.
Unfortunately, the mass scale depends on the square of the

Fig. 2.—Probability distributions for the effective source-plane velocity v̂e using the parametric (left) or nonparametric (right) source models. The heavy solid
curve normalized to a peak of unity shows the joint estimate from all four images. The light solid line shows our estimated probability distribution PðveÞ for the true
source-plane velocity ve. The offset of the two curves allows us to estimate the average mass hM i. For the parametric model, the dashed lines normalized to a peak
probability of one-half show the independent estimates from the A–D images.
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velocity, so the errors on the estimate of the mass scale are
substantial. We may also have inadvertently biased the mass
scales downward by restricting our analysis to the OGLE
light curves. The variability of the quasar during this period
was significantly greater than during the preceding decade
(see Corrigan et al. 1991; Ostensen et al. 1996;Wozniak et al.
2000a, 2000b), so expanding our analysis to the earlier data
would probably lower the estimate of the effective velocity.

3.2. The Scaled Source Size

The source structure and the scaled source size r̂s control
the smoothing of the magnification pattern, and the amount of
smoothing has a powerful effect on the effective velocity.
Figure 4 shows likelihood contours for r̂s and v̂e for both
source structures in the nonparametric models. There is a
strong, essentially linear correlation between the two variables
in the sense that larger sources require higher velocities, with
log ðr̂s=h�1 cmÞ ’ 15:8þ log ðv̂e=104 km s�1Þ. While the
main ridge in the likelihood is similar for both analysis
methods, the parametric models have a more extended tail of
high-velocity solutions as discussed in x 3.1. The region of
acceptable solutions extends to regions with more compact
sources than can be resolved by our standard magnification
maps, so our lower limits on r̂s are unreliable. This was a
consequence of the trade-off between high-resolution magni-
fication maps and magnification maps containing large num-
bers of statistically differing regions.

When we marginalize the likelihoods over the velocity, we
find the estimates of the source size and structure shown in
Figure 5. The thin-disk model is favored over the Gaussian
model in both analysis methods, with the probability of the
thin-disk model being 96% for the parametric analysis and
76% for the nonparametric analysis. While the probability dis-
tributions for the source size are statistically consistent, the
parametric models favor larger sources than the nonparametric

models. For the Gaussian source we find 68% confidence
regions of 8:0 ; 1015 h�1 cmP r̂sP 3:6 ; 1016 h�1 cm and
3:5 ; 1015 h�1 cmP r̂sP 2:4 ; 1016 h�1 cm for the paramet-
ric and nonparametric methods. For the thin-disk models we
find 68% confidence regions of 1:1 ; 1016 h�1 cmP r̂sP 5:7 ;
1016 h�1 cm and 4:1 ; 1015 h�1 cmP r̂sP 2:6 ; 1016 h�1 cm
for the parametric and nonparametric methods. The shifts in
the distributions for r̂s simply match the shifts in the estimates
of v̂e because of the strong correlation of these two variables
(Fig. 4). The peaks of the probability distributions correspond
to scales that are well resolved in our magnification maps
(log r̂s ¼ 16 corresponds to 3.3 pixels, so the source averages
the magnification pattern over roughly �r̂ 2s ¼ 35 pixels). The
distributions decrease significantly before reaching the pixel
scale, but it is clear that there are significant tails to the dis-
tribution that we have not fully resolved.
We also explored the consequences of imposing a prior of

0:2 h2 M� < hMi < 2 h2 M�. on the mass of the microlenses.
Forcing a higher mass with a fixed source velocity ve rules out
solutions with high effective velocities v̂e and large source
sizes r̂s (see Fig. 5). The 68% confidence regions for the
Gaussian source become 4:2 ; 1015 h�1 cmP r̂sP 1:4 ;
1016 h�1 cm and 1:9 ; 1015 h�1 cmP r̂sP 1:1 ; 1016 h�1 cm
for the parametric and nonparametric methods, and they be-
come 3:7 ; 1015 h�1 cmP r̂sP8:9 ; 1015 h�1 cm and 2:1 ;
1015 h�1 cmP r̂sP8:0 ; 1015 h�1 cm for the thin-disk model
and the parametric and nonparametric methods. The lower
limits in this case are significantly affected by the pixel scale
of the magnification maps.

3.3. The Structure of the Accretion Disk and the
Mass of the Black Hole

We can measure the physical source size of the disk, rs,
more accurately than the scaled source size, r̂s, because of the

Fig. 3.—Probability distributions for the average mass hM i using the
parametric (dashed curve) and non-parametric (solid curve) source models.
The uncertainties are broad because hMi / v�2

e . The shift in the mass scale
between the parametric and nonparametric results is a consequence of the shift
between their effective velocity distributions in Fig. 2.

Fig. 4.—Likelihood contours for the effective source velocity, v̂e, and the
scaled source size, r̂s, in the nonparametric models. The solid (dashed) con-
tours are for the Gaussian (thin-disk) source model. Contours are drawn at
intervals of � log ðL=LmaxÞ ¼ 1. The horizontal lines show the scales for r̂s
corresponding to the Einstein radius h�Ei of the average-mass star and the
pixel scale of the magnification maps. The vertical line shows our estimate of
hv2ei

1=2 ¼ 3300 km s�1 for the rms source-plane velocity.
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nearly linear correlation between v̂e and r̂s (r̂s / v̂ xe with x ’ 1;
x 3.2, Fig. 4). Since rs ¼ r̂shMi1=2 and hMi / ðve=v̂eÞ2, the
physical size of the source rs / vev̂

x�1
e ’ ve depends on our

estimate of the physical velocity ve but avoids the degenera-
cies between hMi, v̂e and r̂s. This is illustrated in Figure 6,
where we see that the estimates of rs are unaffected by the
addition of the prior on hMi. They are also independent of the
statistical method even though the scaled source radii are
larger in the parametric models. Adopting the nonparametric

source without a prior to be the fiducial case, we find that the
median estimate for the Gaussian source size is rs ¼ 3:6 ;
1015 h�1 cm (1:6 ; 1015 h�1 cmP rsP 6:9 ; 1015 h�1 cm at
68% confidence) and that the median estimate for the thin-
disk source size is rs ¼ 2:9 ; 1015 h�1 cm (1:6 ; 1015 h�1

cmP rsP 7:6 ; 1015 h�1 cm at 68% confidence).
Because the thin-disk model is a self-consistent, physical

model for the accretion disk, we can compute the disk lumi-
nosity from our estimate of the scale length rs. Integrating over

Fig. 5.—Probability distributions for the scaled source size r̂s in the nonparametric models and either the Gaussian (left) or the thin-disk (right) model for the disk
surface brightness profile. The heavy dashed line shows the estimate for r̂s with a prior of 0:2 h2 M� < hMi < 2 h2 M� on the mass of the stars. The two vertical
lines show the Einstein radius h�Ei corresponding to a star with the average mass hM i and the pixel scale of the magnification maps.

Fig. 6.—Probability distributions for the physical source size rs in the nonparametric models for the Gaussian (left) and thin-disk (right) models for the disk
surface brightness. The dashed curve shows the estimate for rs with a prior of 0:2 h2 M� < hMi < 2 h2 M� on the mass of the stars. The vertical line shows the
Schwarzschild radius RBH of a 109 M� black hole. The last stable orbit lies at 3RBH. The results from the parametric models are identical.
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the surface brightness profile, we find that the effective iso-
tropic rest-frame luminosity of the (face-on) disk is

LV ;model ¼
16�2CBBr

2
s hPc

2�k

k5

¼ ð2 ; 1045Þ h�2 rs

1015 h�1 cm

� �2
ergs s�1;

ð20Þ

where CBB ¼ 2:58 ¼
R1
0

xdx exp ð�x3=4Þ � 1
	 
�1

, �k ¼
827 8=ð1þ zsÞ ’ 300 8 is the redshifted width of the V-band
filter, k ¼ 5505 8=ð1þ zsÞ ’ 2000 8 is the redshifted center
of the V-band filter, and hP is Planck’s constant. We can
compare this estimate to the observed luminosity of the source
after correcting for magnification. If the intrinsic source
magnitude is V0, then the observed luminosity is

LV ;obs ¼ ð6:2 ; 1045Þ h�2100:4ðV0�19Þ ergs s�1: ð21Þ

For V0 ¼ 19 � 0:5 mag, we need rs ’ ð1:7 � 0:4Þ ; 1015 h�1

cm, which is consistent with our direct estimate of the source
size. At least at this wavelength, an optically thick, thermally
emitting disk structure is consistent with the data. Although
the C iii] emission line lies in the V band, its equivalent width
is too small compared with the total width of the bandpass to
significantly modify these conclusions.

We can also use the thin-disk model to infer the mass of
the black hole given that the temperature at radius rs is
TsðrsÞ ’ 70; 000 K. If all the viscous energy released is radi-
ated locally, and we are well outside the Schwarzschild radius,
then �T4

s ¼ 3GMBHṀ=8�r 3s , and the black hole mass is

MBH ’ 2:6 ; 108�1=20:1

rs

1015 cm

� �3=2 L

LE

� ��1=2

ð22Þ

where � ¼ 0:1�0:1 is the overall efficiency of the accretion and
L/LE is the total luminosity in units of the Eddington luminosity.
Given our estimate of rs, this implies MBH ’ 1:1 ; 109 h�3=2

M��
1=2
0:1 ðL=LEÞ

�1=2
(0:43 ; 109 M� P MBH P 2:5 ; 109 M�),

that the Schwarzschild radius is RBH ’ 3:1 ; 1014 h�3=2 cm,
and that rs is approximately 8 h1/2 Schwarzschild radii. For
comparison, if we estimate the mass from the V-band lumi-
nosity, we findM ’ ð5� 3Þ ; 109 M� h�2ð0:01=f ÞðL=LEÞ�1=2

,
where f � 0:01 is the fraction of the radiation emitted in the
V band. Thus, our derived structure for the accretion disk
is roughly consistent with the theory from which it is
derived and the observed luminosity. There, are however,
some limitations. First, we neglected the corrections to the
temperature profile near the last stable orbit (see x 2). Second,
our thin-disk model assumes a disk dominated by gas
pressure and absorption opacity, both of which have probably
broken down on these scales and should be replaced by
radiation pressure and scattering opacity. Third, we assumed
a face-on disk, thereby neglecting inclination effects. For an
inclined disk of axis ratio r � 1, the true disk scale length
should be larger than our estimate by 1=

ffiffi
r

p
, with an average

correction of
ffiffiffi
2

p
that is smaller than our statistical uncertain-

ties. Nonetheless, the self-consistency of the results is
reassuring.

3.4. The Surface Density of Stars

We find that the present data cannot distinguish between our
two models for the stellar mass functions as the relative

probabilities of the Salpeter (x ¼ 2:35, r ¼ 100) and mono-
mass (r ¼ 1) mass functions are almost exactly equal. This
matches the general conclusion from previous studies that it is
difficult to recognize the differences in the microlensing
effects created by changing the mass function (see Paczyński
1986; Wyithe et al. 2000b). However, we do obtain estimates
for the stellar mass fraction, as shown in Figure 7. For the
parametric (nonparametric) models the one-sided 68% confi-
dence limit is ��=� > 0:28 (0.52). The difference is again due
to the shift in the permitted range for v̂e between the two
analysis methods. With fewer stars the source must have a
higher velocity to keep a fixed level of photometric variability,
so the lower stellar fraction models are more viable in the
parametric models. Imposing the 0:2 h2 M� < hMi < 2:0 h2

M� prior on the mass of the microlenses leads to much stronger
bounds on the stellar surface density of ��=� > 0:40 (0.73) for
the same reason—the mass prior forces a lower effective ve-
locity that favors higher stellar mass fractions. Given that
the images pass through the central regions of the bulge of a
nearby spiral galaxy, we would expect the surface density to be
dominated by the stars.
We did not consider changes in the total surface density of

the lens, but we can estimate the consequences of changes in
the macromodel by using the generalized versions of the mass
sheet degeneracy (Paczyński 1986 for the case of micro-
lensing) discussed in the the Appendix. We used models with
fixed total surface density � ¼ �s þ �� and a range for the
fraction ��=� composed of stars. Each of these models is
equivalent to a model with no smoothly distributed dark
matter (�s � 0) and �0 ¼ �0

� ¼ ��=ð1� �sÞ. For example, the
models of image A with � ¼ 0:394 and ��=� ¼ 1, 1

2
, 1
4
, and 1

8
are the same as models with �0

s ¼ 0 and �0 ¼ �0
� ¼ 0:394,

0.245, 0.140, and 0.075, respectively. Thus, the model se-
quence in ��=� is related to macromodel sequence with � ¼
�� and an increasingly concentrated mass distribution. It does
not quantitatively match any real macromodel sequence be-
cause the four images must be scaled independently. We can

Fig. 7.—Probability distributions for the stellar mass fraction ��=� in the
nonparametric models. The solid (dashed) curves show the probability dis-
tributions for �=�� without (with) the strong mass prior.
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keep the source-plane length and velocity scales fixed ð� ¼ 1Þ
by increasing themicrolensmass scale, hMi0 ¼ hMi=ð1� �sÞ1=2.
Hence, the models ��=� < 1 models when rescaled to have
�0 ¼ �0

� would be less affected by the mass prior. Nonethe-
less, these scaling arguments suggest that the OGLE light
curves would tend to rule out mass distributions more cen-
trally concentrated than our standard isothermal model.

3.5. The Flux Ratios of the Images

In these models we have solved for the optimal magnitude
shifts,�	
, between the observed image magnitudes and those
expected from the source magnitude and the macromodel
magnifications of 	
 (in magnitudes; see x 2.1). If the light
curves correspond to a ‘‘fair’’ sample of the magnification

patterns, then the magnitude shifts should converge to a model-
independent value corresponding to any error in the macro-
magnification or other systematic shifts such as differential
extinction between the images. If the light curves are not a fair
sample, then there will be a distribution of shifts depending on
the location of each source trajectory in the overall magnifi-
cation pattern. The simplest means of estimating which light
curve comes closest to matching the mean magnification is to
pick the light-curve with the largest flux variations compared
with the range of magnifications in the magnification maps for
that image. For the raw magnification maps (whose pixel scale
corresponds to a source which is a little too small), the dynamic
ranges of the maps are approximately 60, 60, 300, and 200 for
the A, B, C, and D images, respectively, so we would expect

Fig. 8.—Probability distributions for offsets to the source magnitudes �	
 relative to image A. The dashed lines show the effect of imposing the strong mass
prior. The solid (dashed) vertical lines show the differential extinction estimates of Falco et al. (1999) and Agol et al. (2000).
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either the A or B images to come closest to converging to the
mean magnification given the peak-to-peak light-curve am-
plitude ratios of 2.0, 1.8, 3.3, and 1.9 for the light curves. Even
so, no light curve has sufficient dynamic range to have sampled
the full range of the magnification maps unless the source size
is large. Figure 8 shows the probability distributions for�	B�
�	A, �	C ��	A, and �	D ��	A both with and without

the strong mass prior. These were computed only for the
nonparametric model of the source.
We can compare the values of the �	
 to estimates of the

differential extinction between the images. Agol et al. (2000)
estimated total extinctions from the color of the lens galaxy
near each image to find V-band differences of �0:04 � 0:29,
0:42 � 0:37, and 0:27 � 0:34 mag for the A, B, and C images
relative to image D. Falco et al. (1999) estimated differential
extinctions using the colors of the lensed images to find
V-band differences of �0:21 � 0:13, 0:34 � 0:13, and 0:31 �
0:13 mag for the B, C, and D images relative to image A.
The two sets of estimates are mutually consistent. The dif-
ferential extinction estimates have smaller uncertainties but
are more subject to systematic errors created by microlensing.
If we add a term to the �2 to force the offsets to agree with
the Falco et al. (1999) differential extinction estimates with
the uncertainties rounded upward to 0.2 mag, we can ex-
amine the effects of the offsets on all the other physical
variables. When we do so, we find a weak effect toward
suppressing models with larger values of r̂s, but little else.

3.6. Examples of Light Curves

In this section we examine five of the six best light-curve
realizations found for the nonparametric models. We save the
light curves of only the best model found for each set of
physical parameters after varying all the variables for gener-
ating light curves (trajectory origin and velocity). The fourth
best model had the same physical parameters as the third best,
so its light curve was not preserved. All five cases have �2 ’
200 compared with Ndof ¼ 290, slightly over fitting the data

Fig. 9.—Difference light curves for the OGLE data and the five model light
curves. The points show the six possible difference light curves (m


i � m
�
i

with 
 6¼ � ) that can be constructed from the OGLE data. The error bars are
the OGLE uncertainties combined with a �0 ¼ 0:05 mag systematic error in
quadrature. The curves show the model light-curve differences. The vertical
scale of each panel is 2.0 mag.

Fig. 10.—Difference light curves for the OGLE data and the five model light
curves. We show the same light curves as in Fig. 9, but with the timescale
expanded to show the behavior of the model light curves during the 10 yr
before the start of the OGLE monitoring period. The vertical scale of each
panel has been expanded to 5.0 mag, compared with the 2.0 mag used in Fig. 9.

Fig. 11.—Reconstructed source magnitudes for the light curves shown in
Fig. 9. The lines connecting the points are only to guide the eye—the source
magnitude can be estimated only where there is data. The shifts between the
curves are another manifestation of how the monitoring period is not long
enough for the light curves to determine the mean magnification (see x 3.5 and
Fig. 8). The points connected by the dashed lines show the mean source light
curves found after averaging either the five source models shown here (‘‘av-
erage5’’) or these five plus the next five best models (‘‘average10’’). The mean
magnitude of each source light curve was subtracted first, and the error bars
show the dispersion of the light curves. The mean magnitude of these aver-
aged light curves is arbitrary and was set simply to keep the light curves well
separated.
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given the additional �0 ¼ 0:05 mag of systematic error we
added to each data point (i.e., if we reduced �0 to 0.04 mag we
would find �2 ’ Ndof ). Three of the cases have log r̂s ¼ 15:75,
one has log r̂s ¼ 15:50, and one has log r̂s ¼ 16:25. All have
��=� ¼ 1, and four of five are thin-disk models. The effective
source velocities are v̂e ¼ 14; 000, 14,600, 29,000, 7100, and
40,000 km s�1, respectively.

The goodness of fit of the nonparametric models is deter-
mined by how well the model light curves reproduce the six
possible light-curve differences (eq. [6]). In Figure 9 we show
howwell these five models fit the constraints. As expected from
the �2 values, the models reproduce the data with a general
accuracy slightly exceeding the size of the error bars. In fact,
even these models could be significantly improved by further
local optimizations, because neither the effective velocity nor
the source size is part of the local optimization process dis-
cussed in x 2.2 (only the trajectory starting points and directions
are optimized). In general, the light curves remain similar as
they interpolate through the gaps in the data, although there is
some divergence for the gap near 900 days. This is not true,

however, if we extrapolate the behavior over longer time peri-
ods. Figure 10 shows the light curves for the same models but
with the time period expanded to cover the 10 yr before the
OGLE monitoring period. For typical models, the source
crosses 1–3 Einstein radii in the OGLE data, so the light curves
on longer time periods will show little correlation with those
observed by OGLE. Since the OGLE data allows a wide range
of magnitude offsets (x 3.5, Fig. 8), most of the shifts in Figure 10
are simply due to the difference between the mean magnification
during the OGLE monitoring period and the global mean.

Figure 11 shows the nonparametric estimates of the intrinsic
source magnitude for the same model realizations. The offsets
in the mean magnitudes are again due to the lack of conver-
gence to the meanmagnification. The rms of the intrinsic source
variability ranges from 0.15 to 0.29 mag, considerably more
than the level of 0.05 mag we used in our parametric analysis.
The scatter about a linear trend with time is smaller (0.12 to
0.14 mag). This suggests that our parametric models were
overly restrictive in their assumptions about the source vari-
ability, thereby forcing the microlensing variability to try to

Fig. 12.—Source trajectories superposed on magnification patterns for the best nonparametric realization (�2 ¼ 186 for Ndof ¼ 290). This is a monomass, thin-
disk model with log ðr̂sÞ ¼ 15:75 and v̂e ¼ 13; 900 km s�1. The gray scale shows the (unconvolved) magnification pattern for images A (top left), B (top right), C
(lower left) and D (lower right). Darker colors indicate higher magnifications. The line shows the source trajectory across the pattern for the OGLE monitoring
period. The large circle has a radius of h�Ei, and the small circle has a radius of r̂s (the smoothing scale). The circles are centered on the point corresponding to the
initial epoch of the OGLE data. Depending on the background magnification, the source trajectory and the circles are either black or white.
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model some of the intrinsic variability. This may explain some
of the velocity shifts between the analyses. The assumptions of
the parametric model cannot, however, be completely unreal-
istic—for each image we do find light-curve realizations where
a constant source with an rms variability of 0.05 mag is sta-
tistically consistent with the data. If such solutions exist for the
individual images, then they also exist for all the images si-
multaneously. They must, however, occupy a small region of
the allowed parameter space. The source flux variations of
our five best solutions are quite similar (for example, all show
a peak near day 1370), so in Figure 11 we also show the sta-
tistical average of the source light curves for these solutions
(scaled to the same mean magnitude) and the scatter of the
light curves around the mean. Despite coming from models in
wildly different regions of the magnification maps (see below),
the scatter between the source light curves is considerably
smaller than the overall variations. This continues to be true
even if we construct the mean source fluctuations including
the next set of five best realizations. Thus, it seems likely that
the source quasar varied by approximately 0.5 mag during the
monitoring period with a peak near day 1400.

Finally, in Figures 12–16 we show the source trajectories
generating these light curves superposed on the magnification

patterns. In order to make the caustics more easily visible, we
did not convolve the patterns with the source structure of the
realizations. The origin of the scatter in the magnitude offsets
�	
 (x 3.5) and the offsets in average source brightness
(Fig. 11) are easily understood from these figures. For example,
image Awas used as the magnitude reference point (because we
measured �	
 ��	A), so the changes in the mean magnifi-
cation of image A are responsible for the shifts in the average
magnitude of the source (Fig. 11). In Figures 13, 15, and 16
image A is produced in a magnified region, leading to fainter
source magnitudes, while in Figures 12 and 14 it is in a
demagnified region, leading to a brighter source magnitude.
The magnification patterns are also useful for understanding

the origins of the peaks in the light curves (Fig. 1). In par-
ticular, several studies (e.g., Yonehara 2001; Shalyapin et al.
2002) have attempted to model the peaks in the A and C light
curves using simple fold caustic crossings or isolated point
lenses to estimate the source structure. Sometimes models of
the peak in the A light curve as a fold crossing are appropriate
(e.g., Figs. 12 and 13). But in Figures 14, 15, and 16 the peak
is due to one or more caustic crossings associated with one or
more cusps. The peaks seen in the light curve of image C are
all associated with cusps, frequently arising from the high

Fig. 13.—Source trajectories superposed on magnification patterns for the second-best nonparametric realization (�2 ¼ 187 for Ndof ¼ 290). This is a Salpeter,
thin-disk model with log ðr̂sÞ ¼ 15:75 and v̂e ¼ 14; 600 km s�1. See Fig. 12 for description.
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magnification regions outside the tip of the cusp (e.g., Fig. 14).
Wyithe et al. (2000e) drew a similar conclusion on more
qualitative grounds. The light curve of image D can be smooth
by staying inside the smooth part of a high magnification
region (Fig. 12), by using the finite source size to smooth out
the variability of a region with very densely packed caustics
(Figs. 13 and 15), by staying in a smooth, demagnified region
(Fig. 14), or by putting the caustic crossing inside the moni-
toring gaps (Fig. 16). The shear range of possibilities for
producing quantitatively similar fits does not bode well for
attempts to reconstruct source structures by making simpli-
fying assumptions about the local caustic structures.

4. DISCUSSION

The method we introduce in this paper reduces the problem
of interpreting quasar microlensing data to a problem of com-
putation rather than conceptualization. Any quasar micro-
lensing data, from one or more lenses and both more or less
complex, can be analyzed to derive physical results. We dem-
onstrated the method using the most complex, single-quasar
microlensing data set, the OGLE light curves for the four
images of Q2337+0305 to obtain simultaneous constraints on

the microlens mass scale, source size, accretion disk structure,
and the stellar mass fraction near the images. While all these
issues have been studied in previous models of microlensing in
Q2237+0305, this is the first time that all the relevant physical
properties of the system have been treated simultaneously.

We estimate that the effective source velocity is fairly high,
10; 200 km s�1P vehhM=M�i�1=2P 39; 600 km s�1, which
means that the source takes roughly 2 yr to move one Einstein
radius. Because the variability during the OGLE monitoring
period was greater than during most of the preceding decade,
the estimate of the effective velocity may be biased toward
higher values than if we had modeled all the available data.
We estimate statistically that the source is moving approxi-
mately 3300 km s�1 from estimates for the peculiar velocity of
the lens and the velocity dispersion of its constituent stars.
Combining the probability distributions for the effective and
physical source velocities, we obtain an estimate for the mean
stellar mass of hMi ’ 0:037 h2 M� (0:0059 h2 M�P hMiP
0:20 h2 M�), which is somewhat low. Unfortunately, the mass
estimate depends on the square of the velocities, so modest
biases in the effective velocity from using the data during which
the variability was largest or our approximate treatment of the

Fig. 14.—Source trajectories superposed on magnification patterns for the third-best nonparametric realization (�2 ¼ 201 for Ndof ¼ 290). This is a Salpeter, thin-
disk model with log ðr̂sÞ ¼ 15:75 and v̂e ¼ 29; 000 km s�1. See Fig. 12 for description.
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internal motions of the stars make the systematic uncertainties
in the mass estimate difficult to evaluate. Nevertheless, these
mass estimates are consistent with previous results for this
system (e.g., Lewis & Irwin 1996; Wyithe et al. 2000b) and
Galactic microlensing studies (e.g., Alcock et al. 2000).

The lens galaxy in Q2237+0305 is composed of stars, with
a lower bound of ��=�k 0:5 on the fraction of the surface
mass density causing the flux variations. The limit rises to
��=�k 0:7 if we impose a prior of 0:2 h2 M� < hMi < 2 h2

M� on the masses of the microlenses, because models with
low �

*
require higher effective velocities (Einstein radii per

year) corresponding to lower mass scales hM i in order to
produce the same amount of variability. Since the lensed
images in Q2237+0305 are passing through the bulge of a
nearby spiral galaxy (Huchra et al. 1985), we expect �� ’ �
for this system. However, our ability to estimate the stellar
mass fraction for Q2237+0305 using microlensing data indi-
cates that we should also be able to estimate the stellar surface
density fractions in other lenses where we expect dark matter
to dominate the surface density with ��=� � 0:1 to 0.2 (see
Schechter & Wambsganss 2002; Rusin, Kochanek, & Keeton
2003). While we kept the properties of the ‘‘macro’’ model
(the total surface density and shear for each image) fixed in

these calculations, these parameters could also be constrained
by fits to the light curves. Our models with ��=� < 1 are
closely related to models in which the mass distribution of the
lens is more centrally concentrated than our standard iso-
thermal model. This indicates that the microlensing data will
favor the isothermal mass distribution over more centrally
concentrated density profiles.
We find that the data is better fitted by a standard thin

accretion disk model than by a Gaussian model of the source’s
surface brightness. We obtain an accurate estimate of the ra-
dius rs ¼ 2:6þ2:0

�1:2 ; 10
15 h�1 cm at which the disk temperature

matches the wavelength of the observations (2000 8 in the
rest frame or Ts ’ 70,000 K). The results are consistent with
blackbody emission and do not require nonthermal or opti-
cally thin emission processes. We estimate that the black hole
mass is MBH ’ 1:1þ1:4

�0:7 ; 10
9 h�3=2�

1=2
0:1 ðL=LEÞ

�1=2
M�, which

means that rs corresponds to approximately 8 Schwarzschild
radii from the black hole. While reassuringly consistent, our
treatment of the source structure has limitations. First, the
physical model for the accretion disk is more appropriate for the
outer regions of a thin disk than for the inner regions. Second,
we assumed that the disk was viewed face-on and was circular.
A more realistic model would need to use an inclined disk.

Fig. 15.—Source trajectories superposed on magnification patterns for the fifth-best nonparametric realization (�2 ¼ 211 for Ndof ¼ 290). This is a Salpeter,
Gaussian disk model with log (r̂s) ¼ 15:50 and v̂e ¼ 7100 km s�1. See Fig. 12 for description.
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The only practical limitation to our approach is its com-
putational intensity. Our present analysis considered 208 dif-
ferent combinations of stellar density, stellar mass function,
source structure, and source size, generating 40 billion non-
parametric light-curve realizations, and required approxi-
mately 2 processor-months to do the final calculations. The
problem is, however, trivially parallel, making larger param-
eter surveys relatively easy to conduct simply by using more
computers (it would take one day given 60 processors).
Improvements in the sampling of the variables or the strategies
for rapidly discarding poor light-curve trials should signifi-
cantly reduce the number of trials needed to achieve the same
statistical results. For example, we uniformly sampled the
log r̂s/ log v̂e plane, but only a restricted region of the plane
produces statistically acceptable solutions (see Fig. 4). One
major systematic limitation to our estimate of the mass scale
hM i is our inability to correctly treat the internal motions of
the stars in the lens galaxy using static magnification patterns.
Adding the internal motions requires tracing the source tra-
jectories through a sequence of magnification patterns (e.g.,
Wambsganss & Kundic 1995). This adds little to the execution
time but requires large amounts of memory. Models of the

OGLE light curves of Q2237+0305 including the stellar
motions require 200–400 time steps (resolving the mean
stellar motion in steps of 0.01–0.02h�Ei) for each image, all
13–26 Gbytes of which must be stored in memory. Fortu-
nately, most multiprocessor computers that would signifi-
cantly speed the completion of the calculations also have the
memory needed to hold such large data spaces.

At present, only Q2237+0305 has light-curve data that
justifies such computational intensity simply due to the lack
of monitoring data for most lenses. The Einstein crossing
time due to lens motions scales as ð1þ zlÞðDOLDLS=DOSÞ1=2,
which means that systems with low lens redshifts such as
Q2237+0305 have shorter timescales for microlensing vari-
ability (Kayser & Refsdal 1989). But they are not enormously
shorter—the other quasar lenses with known redshifts have
timescales that are only 2–3 times longer.3 Even if the

Fig. 16.—Source trajectories superposed on magnification patterns for the sixth-best nonparametric realization (�2 ¼ 213 for Ndof ¼ 290). This is a Salpeter, thin-
disk model with log ðr̂sÞ ¼ 16:25 and v̂e ¼ 40;200 km s�1. The trajectory for image B crossed the upper edge of the magnification pattern and then continued from
the bottom edge, which is not shown. See Fig. 12 for description.

3 Although Q2237+0305 has the smallest projected CMB velocity of the
quasar lenses (57 km s�1), the Einstein crossing time due to the motion of the
observer scales as ð1þ zlÞðDOLDOS=DLSÞ1=2, which favors low lens redshifts
more strongly than motions due to the lens. As a result, even the lenses with
the maximum projected CMB velocity (370 km s�1) have crossing times due
to our motion only 60% that of Q2237+0305.
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variability rates of the roughly 30 available quasar lenses are
3 times slower than in Q2237+0305, monitoring all of them
routinely generates data equivalent to three OGLE light curves
each year. These data can be significantly enhanced by sys-
tematically measuring the differences between the continuum
and emission-line flux ratios of the images (e.g., Lewis et al.
1998; also radio [Falco et al. 1996] or mid-infrared [Agol et al.
2000; Wyithe et al. 2002a]). Since the emission lines are
generated on scales significantly larger than the continuum,
the differences in the flux ratios provide immediate constraints
on the location of the images in the magnification pattern
and on the relative sizes of the two emitting regions. A final,
but important, advantage of monitoring as many lenses as
possible is that they are statistically independent. Each new
image in a new lens lies in a random region of a new mag-
nification pattern, providing new constraints without the long-
term temporal correlations of data obtained by monitoring a

particular lens. Moreover, estimates of the stellar mass scale
hMi in any particular lens are ultimately limited by the un-
certain peculiar velocity of the lens. Only by combining the
estimates from multiple lenses can we ever obtain an accurate
estimate.
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for a copy of his particle-mesh microlensing code, which
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research was supported by the Smithsonian Institution and
NASA ATP grant NAG5-9265.

APPENDIX

GENERATING PERIODIC MAGNIFICATION MAPS

We use the ray-shooting method (e.g., Schneider et al. 1992) to compute the source-plane magnification patterns. We use a
particle-particle/particle-mesh (P3M; Hockney & Eastwood 1981) algorithm to separate the long- and short-range effects of the
stars. The source-plane region is a square with outer dimension Lu, pixel scale �u, and a dimension Nu ¼ Lu=�u that is chosen to
be a power of 2. The image plane is an Lx ; Ly rectangle defined by Lxj1� �� �j ¼ Lyj1� �þ �j ¼ Lu. The image-plane pixel
scale is �x, so image plane dimensions of Nx ¼ Lx=�x and Ny ¼ Ly=�x differ. We choose the larger dimension of the image plane
to be a power of 2. The smaller dimension of the image plane is determined by the axis ratio of the rectangle. In order to have both
square pixels and an exact periodicity of both the source and image planes, the integer array dimensions must satisfy
Nxj1� �� �j ¼ Nyj1� �þ �j. We impose the constraint by first finding the smaller dimension that comes closest to satisfying it
given the fixed larger dimension and then making a small adjustment to the shear value (�� ’ N�1

y ’ 0:001) so that it becomes
exact. These adjustments are so small that they have no physical consequences for our results.

The long-range effects of the stars are computed using Fourier methods. The mass of each star is assigned to the nearest grid
points using weights determined by the distance of the star from the pixels (the triangle-shaped cloud [TSC]). We then compute the
deflections produced by the stars by convolving the surface density with the deflection kernels 
 s. We completely separate the
long- and short-range effects of the gravity using spline models for the surface density. We use the spline density distribution,
which is

�sðR; sÞ ¼
2

�s2
1� r2

s2

� �
ðA1Þ

for R < s and equal to zero for R > s. For the convolution we use the deflection pattern of the surface density distribution,
�sðR; sÞ � �sðR; aÞ, which has zero net mass. The inner scale s ¼ 5�x sets the boundary between the long- and short-range effects
of the star. The outer scale, a ¼ min ðLx; LyÞ=2, guarantees that � is the total surface density. It does, however, limit the long-range
stochasticity of the potential because fluctuations in the stellar density on scales larger than a are filtered out of the gravitational
field. An attentive reader will have noticed that the smaller dimension of the image plane is not generally a power of 2. We use the
‘‘Fastest Fourier Transform in the West’’ (FFTW; Frigo & Johnson 1998) Fourier transform package, which is both fast and
handles such transforms without any special treatment. This gives the long-range deflection field 
g. On scales smaller than the
inner scale, s ¼ 5�x, the deflection field computed from the convolution must be corrected from that of the spline to that of a real
point mass. Each image plane pixel is associated with a list of all stars within s of the pixel boundaries. When we compute ray
deflections for that pixel we add the true deflection from each of these stars minus the contribution from the spline density that we
included in the long-range deflection field 
g to give the particle contribution to the deflection 
pðxÞ.

The total deflection is

u ¼ x
1� �� � 0

0 1� �þ �

� �
� 
gðxÞ � 
pðxÞ: ðA2Þ

The terms hide two cancellations. The outer, negative spline density in the gridded deflection, 
g, is needed to allow the � in the
deflections to be the total surface density � rather than �s ¼ �� ��. This could be changed without any particular problem. The
inner spline region (R < s) for each star is added in 
g and then subtracted in 
p so that the final deflections exactly match that of a
point mass. Note that a similar scheme would work equally well for models of substructure. Because the deflections of the stars are
exactly periodic on both the image and source planes, a single pass over the image plane can identify all rays that will be mapped
onto the source plane, and source trajectories can be continuously traced across the source-plane boundaries. Similarly, if we allow
the microlenses to move, their trajectories are periodic on the lens plane grid. We set all scales using the average Einstein radius of
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the stars h�Ei. Typically we generated a magnification pattern with Lu ¼ 40h�Ei and Nu ¼ 2048 with source-plane pixels
�u ’ 0:02h�Ei. We traced rays on a uniform grid with a minimum image plane resolution of 0.01h�Ei and required an average of
100 rays per source pixel.

Although the magnification patterns for a fixed mass function would appear to depend on three variables (the smooth surface
density �, the stellar surface density �

*
, and the shear �), the mass sheet degeneracy (Paczyński 1986 for the case of microlensing)

means that there are only two independent variables. Here we derive a generalized version of the mass sheet degeneracy. Consider
two systems, labeled A and B, defined by point masses with Einstein radii bi at positions xi in an external shear �, a smooth
convergence �s, and a mean convergence due to the stars of ��. The shear and convergence define a reduced shear g ¼ �=(1� �s).
The x-component of the lens equations for the two systems are

uA ¼ ð1� �sAÞð1� gAÞxA �
X
i

b2A;i
xA � xA;i

xA � xA; ij j2
; ðA3Þ

uB ¼ ð1� �sBÞð1� gBÞxB �
X
i

b2B;i
xB � xB;i

xB � xB;i
�� ��2 ; ðA4Þ

respectively. Now assume that the two equations can be related by simultaneously rescaling the source-plane coordinates,
uB ¼ 
uA, the lens plane coordinates, xB ¼ �xA, and the Einstein radii, b2B;i ¼ 
b2A;i. For the lens equations this leads to the
constraints that the two systems must have the same reduced shear, gA ¼ gB, that the convergences are related by
1� �sA ¼ ð1� �sBÞ�=
 , and that the Einstein radii are related to the coordinate rescalings by 
 ¼ 
�. The same scalings hold for
the magnifications, with 	B ¼ �2	A=
 ¼ �	A=
 . The average surface density of the stars transforms as ��B ¼ ��A
=�

2, and the
source-plane velocity scales as ve;B ¼ 
ve;A. The familiar mass sheet degeneracy is found by holding the lens plane scale fixed
(� � 1) and setting �sA ¼ 0, in which case 
 ¼ 
 ¼ 1� �sB, b

2
B ¼ ð1� �sBÞb2A, and ��B ¼ j1� �sBj��A. While there is no new

physics in this generalization, it can be computationally useful.
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Wambsganss, J., Paczyński, B., & Schneider, P. 1990, ApJ, 358, L33
Webster, R. L., Ferguson, A. M. N., Corrigan, R. T., & Irwin, M. J. 1991, AJ,
102, 1939

Witt, H. J., Kayser, R., & Refsdal, S. 1993, A&A, 268, 501
Witt, H. J., & Mao, S. 1994a, ApJ, 429, 66
———. 1994b, ApJ, 430, 505
Wozniak, P. R., Alard, C., Udalski, A., Szymanski, M., Kubiak, M.,
Pietrzynski, G., & Zebrun, K. 2000, ApJ, 529, 88

Wozniak, P. R., Udalski, A., Szymanski, M., Kubiak, M., Pietrzynski, G.,
Soszynski, I., & Zebrun, K. 2000, ApJ, 540, L65

Wyithe, J. S. B., Agol, E., & Fluke, C. J. 2002, MNRAS, 331, 1041
Wyithe, J. S. B., Agol, E., Turner, E. L., & Schmidt, R. W. 2002, MNRAS,
330, 575

Wyithe, J. S. B., & Turner, E. L. 2001, MNRAS, 320, 21
Wyithe, J. S. B., Webster, R. L., & Turner, E. L. 19. 1999, MNRAS, 309, 261
———. 2000a, MNRAS, 312, 843
———. 2000b, MNRAS, 315, 51
———. 2000c, MNRAS, 318, 762
———. 2000d, MNRAS, 315, 337
Wyithe, J. S. B., Webster, R. L., & Turner, E. L. 2000e, MNRAS, 318, 1120
Wyithe, J. S. B., Webster, R. L., Turner, E. L., & Agol, E. 2000f, MNRAS,
318, 1105

Wyithe, J. S. B., Webster, R. L., Turner, E. L., & Mortlock, D. J. 2000g,
MNRAS, 315, 62

Yonehara, A. 2001, ApJ, 548, L127

QUASAR MICROLENSING LIGHT CURVES 77No. 1, 2004


