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ABSTRACT

Recently, a nonlinear theory for perpendicular diffusion of charged particles was presented. This theory is
called the nonlinear guiding center theory and provides an integral equation for the perpendicular mean free path.
In this paper we consider analytical solutions of this equation in the case of magnetostatic turbulence. The
resulting formulas for the perpendicular mean free path are discussed. We also compare these new results with
results of the quasi-linear theory for parallel diffusion and with observational results.

Subject headings: cosmic rays — diffusion — turbulence

1. INTRODUCTION

The scattering of energetic charged test particles in a tur-
bulent electromagnetic field is a problem that is widely rec-
ognized to be of importance in space plasma physics and
astrophysics (Jokipii 1966; Jokipii & Parker 1969; Jokipii,
Kota, & Giacalone 1993; Jones, Jokipii, & Baring 1998). In
the collisionless limit the interaction with the electromagnetic
field takes the place of two-body Coulomb collisions as the
principal scattering agent. Consequently, when a large-scale or
mean magnetic field induces a preferred direction, diffusive
transport, when it exists, differs in the parallel and perpen-
dicular directions. For a variety of reasons, perpendicular
transport, which is generally the weaker of the two effects, has
also been the more difficult one to pin down at a theoretical
level. The classical quasi-linear estimate, sometimes known as
the field line random walk (FLRW) limit, concludes that the
perpendicular diffusion coefficient is �? ¼ vD?=3, where v is
the test particle velocity and D? is the Fokker-Planck (diffu-
sion) coefficient associated with the random walk of static
magnetic field lines. Though appealing, this result is known
at this point to be generally incorrect, overestimating transport
as a result of the secondary nonlinear influence of parallel
scattering. The basic idea that parallel scattering suppresses per-
pendicular scattering has been around for some time, and vari-
ous attempts to describe the net effect have been attempted,
often in combinations with weak Coulomb scattering, shear,
and dynamical effects.

To our knowledge it has only been through recent analytical
and numerical work (Jokipii et al. 1993; Jones et al. 1998;
Giacalone & Jokipii 1999; Kota & Jokipii 2000; Qin,
Matthaeus, & Bieber 2002a, 2002b; Matthaeus et al. 2003)
that the detailed understanding has begun to emerge the nature
of the suppression and loss of perpendicular diffusion due to
compound diffusive effects, and recovery of diffusion, in some
cases. In particular, a promising theory for perpendicular
diffusion known as the Nonlinear Guiding Center (NLGC)
model has been described recently (Matthaeus et al. 2003). In
the NLGC approach, particle gyrocenters are assumed to
follow field lines, while experiencing parallel scattering.
Diffusion in this case depends upon the randomization asso-
ciated with dynamical effects, and sampling of the transverse
spatial complexity of the turbulence. In direct comparison with
numerical results extracted from ensembles of test particles,

NLGC showed promise in accurately accounting for per-
pendicular diffusion for a range of parameters. Here we further
elucidate some of the properties of the NLGC theory by ex-
amining its analytic solutions.

2. PERPENDICULAR MEAN FREE PATH IN
MAGNETOSTATIC TURBULENCE

From the NLGC theory we obtain the following integral
equation

�? ¼ a2v2

3B2
0

Z
dkxdkydkz

SðkÞ
v
kk

þ k2?�? þ k2k�k þ �ðkÞ
; ð1Þ

where we used �? :¼ �xx ¼ �yy and S :¼ ðSxx þ SyyÞ=2. This
equation follows from equation (7) of Matthaeus et al. (2003)
for the case of axisymmetric turbulence. In equation (1) we
used the numerical factor a, the particle velocity v, the mag-
netic background field B0, the parallel mean free path kk, the
parallel spatial diffusion coefficient �k, the damping function
�ðkÞ, and the total power spectrum SðkÞ.

In the current paper we restrict our calculations to the case
of magnetostatic turbulence

�ðkÞ ¼ 0; ð2Þ

and to the following power spectrum:

SðkÞ ¼ S2Dðk?Þ�ðkkÞ þ SslabðkkÞ�ðk?Þ; ð3Þ

with

Sslab ¼ Cð�Þlslab�B2
slabð1þ k2k l

2
slabÞ

�� ð4Þ

and

S2D ¼ Cð�Þl2D�B2
2Dð1þ k2?l

2
2DÞ

�� 1

�k?
; ð5Þ

where we used

Cð�Þ ¼ 1

2
ffiffiffi
�

p �ð�Þ=�
�
� � 1

2

�� �
: ð6Þ
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This function was chosen so that
R
d3kSðkÞ ¼ �B2=2. Note

that the parameter lslab is related to the correlation length lc
through lslab ¼ lc= 2�Cð�Þ½ �. Using the power spectrum defined
through equations (3)–(6) we find for �?

�? ¼ 2a2v2

3B2
0

Cð�Þ
"
l2D�B

2
2D

Z 1

0

dk
1þ k2l22D
� ���

v=kk
� �

þ k2�?

þ lslab�B
2
slab

Z 1

0

dk
1þ k2l2slab
� ���

v=kk
� �

þ k2�k

#
: ð7Þ

We can express the perpendicular mean free path,

k? ¼ 3

v
�?; ð8Þ

and the parallel mean free path,

kk ¼
3

v
�k; ð9Þ

in terms of the spatial diffusion coefficients. Now we use the
transformation x ¼ k � l2D in the first integral and x ¼ k � lslab
in the second integral to obtain

k? ¼ 2a2

B2
0

Cð�Þ
"
3�B2

2Dl
2
2D

k?

Z 1

0

dx
1þ x2ð Þ��

�2D þ x2

þ 3�B2
slabl

2
slab

kk

Z 1

0

dx
1þ x2ð Þ��

�slab þ x2

#
: ð10Þ

In equation (10) we introduced the dimensionless parameters

�2D ¼ 3l22D
kkk?

ð11Þ

and

�slab ¼
3l2slab

k2k
: ð12Þ

In terms of the dimensionless function

Ið�; �Þ ¼
Z 1

0

dx
1þ x2ð Þ��

�þ x2
; ð13Þ

the perpendicular mean free path can be written as

k? ¼ 6a2

B2
0

Cð�Þ l22D�B
2
2D

k?
Ið�; �2DÞ þ

l2slab�B
2
slab

kk
Ið�; �slabÞ

� �
:

ð14Þ

To proceed with our calculations we have to analyze the
function Ið�; �Þ. This function can be expressed through a
product of a �-function Bðx; yÞ and a hypergeometric function

2F1ða; b; c; xÞ (see Gradshteyn & Ryzhik 1966)

Ið�; �Þ ¼ 1

2�
B

1

2
;
1

2
þ �

� �
2 F1 1;

1

2
; � þ 1;

�� 1

�

� �
: ð15Þ

With

B

�
1

2
;
1

2
þ �

�
¼ �ð1=2Þ�ð� þ 1=2Þ

�ð� þ 1Þ

¼
ffiffiffi
�

p � � 1=2

�

�ð� � 1=2Þ
�ð�Þ ð16Þ

and with

Fð�; �Þ � 2F1 1;
1

2
; � þ 1;

�� 1

�

� �
; ð17Þ

we finally find

k?
kk

¼ 2� � 1

4�
a2

�B2
2D

B2
0

Fð�; �2DÞ þ
�B2

slab

B2
0

Fð�; �slabÞ
� �

: ð18Þ

This is still an exact, but nonlinear equation, because �2D
depends upon k?. In the next sections we consider analytical
results of this equation for pure slab, pure two-dimensional,
and composite geometry. One should note, however, that
equation (18) can also be solved numerically.

3. THE PERPENDICULAR MEAN FREE PATH FOR
PURE SLAB GEOMETRY

It should be noted that there are circumstances in which
perpendicular transport in pure or nearly pure magnetostatic
slab turbulence is subdiffusive—i.e., mean square perpendic-
ular displacements increase more slowly than tþ1, where t is
the time (Qin et al. 2002a; Kota & Jokipii 2000). Further,
analytic theorems demonstrate that the perpendicular mean
free path for a pure slab geometry must be zero since particles
are tied to magnetic lines of force. In contrast, diffusive
transport both parallel and perpendicular to the magnetic field
is a central assumption of the NLGC theory, and thus this
theory cannot accommodate subdiffusion. We speculate that
the slab limit of the NLGC theory may apply in situations
where slab modes dominate the turbulence energy, but there is
nonetheless sufficient transverse structure in the field to permit
diffusion to occur. To delve further into these issues is beyond
the scope of the present work, but see Qin et al. (2002a) for a
discussion of what might constitute ‘‘sufficient’’ transverse
structure. In addition, the presence of dynamical effects may
restore diffusion to pure slab geometries in a manner de-
scribable by the NLGC-theory. This possibility will be ex-
plored in future work. For the present we simply assume
diffusion is recovered and proceed as follows.
In the case of pure slab geometry we have

�B2D ¼ 0 ð19Þ

and

�Bslab ¼ �B: ð20Þ

In this special case equation (18) can be written as

k?
kk

¼ 2� � 1

4�
a2

�B2

B2
0

Fð�; �slabÞ: ð21Þ

This is an exact result for pure slab geometry. It is easy to see
that in the pure slab case the perpendicular mean free path is
only a function of �, kk, lslab, �B, B0, and of the parameter a.
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For all values of these parameters we have

k? � �B2

B2
0

: ð22Þ

In turn we consider two different cases for �slab. To do this it is
necessary to know the asymptotic properties of the hyper-
geometric function. From Appendix A we know that

Fð�; �Þ �
F1ð�Þ for �31;

F2ð�Þ
ffiffi
�

p
for �T1; ð23Þ

�

with the functions F1 and F2 defined as

F1ð�Þ �
2�

2� � 1
ð24Þ

and

F2ð�Þ �
ffiffiffi
�

p �ð� þ 1Þ
�ð� þ 1=2Þ ¼ 2�Cð�ÞF1ð�Þ: ð25Þ

3.1. The Case kk 3
ffiffiffi
3

p
lslab

In this case �slab is a small number, and we find (see eq. [23])

k? �
ffiffiffi
3

p 2� � 1

4�
lslab F2ð�Þ a2

�B2

B2
0

: ð26Þ

Thus, in the case kk 3
ffiffiffi
3

p
lslab, which is the normal case, the

perpendicular mean free path is independent of the parallel
mean free path and therefore independent of the rigidity. Note
that equation (26) is very similar to the equations derived by
Forman, Jokipii, & Owens (1974), Zank et al. (1998), and Le
Roux, Zank, & Ptuskin (1999).

3.2. The Case kkT
ffiffiffi
3

p
lslab

In this case �slab is a large number, and equation (21)
becomes

k?
kk

� a2

2

�B2

B2
0

: ð27Þ

3.3. The Perpendicular Mean Free Path at 1 AU

To compare our results with observations and simulations
we have to specify the parameters. In the current paper we use
values representative of the solar wind at 1 AU:

a2 ¼ 1

3
;

�B ¼ B0;

� ¼ 5

6
;

lslab ¼ 4:55� 109 m � 0:030 AU;

l2D ¼ lslab

10
: ð28Þ

In the following discussions we always use this parameter set.
If one or more parameters are different from equation (28), we
note this. Using these parameters, Figure 1 compares the exact

perpendicular mean free path (dotted line) with the analytic
approximations derived above (solid lines).

4. THE PERPENDICULAR MEAN FREE PATH FOR PURE
TWO-DIMENSIONAL GEOMETRY

In this section we consider the case of pure two-dimen-
sional geometry. It should be noted that the Jokipii et al.
(1993) theorem on reduced dimensionality does not apply
when the magnetic field coincides with the ignorable direc-
tion, as it does in pure two-dimensional turbulence.

To calculate the perpendicular mean free path as a function
of rigidity with the NLGC theory, we need the parallel mean
free path as a function of rigidity. In the current paper we use
results of the quasi-linear theory (QLT) (see Appendix B).
Therefore, it is questionable whether the case of pure two-
dimensional geometry is useful in the pure magnetostatic
turbulence, because here we have the QLT results, that k2Dk ¼
1 (see Shalchi & Schlickeiser 2004). But in the next section
we demonstrate that in the case of composite geometry the
two-dimensional contribution of the power spectrum domi-
nates the perpendicular mean free path in most cases, which
implies that the results of this section should be good
approximations for the case of composite geometry. Further,
in the case of medium or large amplitude two-dimensional
turbulence, there is a nonlinear two-dimensional contribution
to scattering, yielding a finite mean free path (Qin et al.
2002b).

In the case of pure two-dimensional geometry we have

�Bslab ¼ 0 ð29Þ

and

�B2D ¼ �B: ð30Þ

In this case equation (18) can be written as

k?
kk

¼ 2� � 1

4�
a2

�B2

B2
0

Fð�; �2DÞ: ð31Þ

Fig. 1.—Perpendicular mean free path k? as a function of the parallel mean
free path kk for pure slab geometry. The dotted line shows the exact per-
pendicular mean free path computed numerically from eq. (18). The solid lines
show the analytic approximations given by eqs. (26) and (27).
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This is an exact result for pure two-dimensional geometry but
equation (31) is a nonlinear equation. Therefore, we must
consider two different cases for �2D.

4.1. The Case kk k?T3 l22D

In this case �2D is a large number, and we find together with
equation (23)

k?
kk

� a2

2

�B2

B2
0

: ð32Þ

This result corresponds precisely to the pure slab result of the
last section in the limit of small kk.

4.2. The Case kk k? 3 3 l22D

In this case �2D is a small number, and we find

k?
kk

� 2� � 1

4�
F2ð�Þ a2

�B2

B2
0

ffiffiffi
3

p l2Dffiffiffiffiffiffiffiffiffiffiffiffiffi
kk � k?

p ; ð33Þ

where we used equation (23) again. Therefore, equation (33)
can be written as

k? � 2� � 1

4�
F2ð�Þ a2

�B2

B2
0

ffiffiffi
3

p
l2D

� �2=3
k1=3k ; ð34Þ

and we finally find

k? � k1=3k : ð35Þ

If we use dissipationless magnetostatic QLT results for kk
(see Appendix B), we find for the rigidity dependence of the
perpendicular mean free path

k?ðRT1Þ � R1=9;

k?ðR3 1Þ � R2=3; ð36Þ

where R ¼ RL=lslab. Note that for fixed field strength and
bend-over scale lslab the ratio R is proportional to the particle
rigidity.

5. THE PERPENDICULAR MEAN FREE PATH FOR
COMPOSITE SLAB/TWO-DIMENSIONAL GEOMETRY

In this section we consider the general case of composite
geometry, which means that we have to consider both parts of
equation (18). As in the two-dimensional case we must
consider small and large values of �2D to solve the nonlinear
equation.

5.1. The Case kk k?T3 l22D

In this case �2D is a large number, and we can use the
approximation

Fð�; �2DÞ � F1ð�Þ; ð37Þ

and we find the equation

k?
kk

� 2� � 1

4�
a2

�B2
2D

B2
0

F1ð�Þ þ
�B2

slab

B2
0

Fð�; �slabÞ
� �

: ð38Þ

The right side of this equation is only a function of kk and
not of k?. Therefore, equation (38) is the final result of this

subsection. For the function Fð�; �slabÞ one can use the
approximations presented before. In the case of kkT

ffiffiffi
3

p
lslab

we always find that the perpendicular mean free path is pro-
portional to the parallel mean free path:

k?
kk

� a2

2

�B2

B2
0

: ð39Þ

In the case that we have kk 3
ffiffiffi
3

p
lslab, which should be sat-

isfied for most cosmic rays at 1 AU we find

k?
kk

� 2� � 1

4�
a2

�B2
2D

B2
0

F1ð�Þ þ
�B2

slab

B2
0

F2ð�Þ
ffiffiffi
3

p lslab

kk

� �
: ð40Þ

5.2. The Case kk k? 3 3 l22D

In this case �2D is a small number, and we can use

Fð�; �2DÞ � F2ð�Þ
ffiffiffiffiffiffiffi
�2D

p
¼ F2ð�Þ

ffiffiffi
3

p l2Dffiffiffiffiffiffiffiffiffiffiffiffi
kkk ?

p ð41Þ

to obtain

k?
kk

� 2� � 1

4�
a2

�B2
2D

B2
0

F2ð�Þ
ffiffiffi
3

p l2Dffiffiffiffiffiffiffiffiffiffiffiffi
kkk ?

p þ �B2
slab

B2
0

Fð�; �slabÞ
" #

;

ð42Þ

which is a cubic equation for k1=2? . This equation can be solved
without using further approximations, as demonstrated in
Appendix C. With the functions

q ¼ � 2� � 1

4�
a2

�B2D

B0

� �2

F2ð�Þ
ffiffiffi
3

p
l2D

ffiffiffiffiffi
kk

q
;

p ¼ � 2� � 1

4�
a2

�Bslab

B0

� �2

Fð�; �slabÞ kk;

D ¼ p

3

	 
3
þ q

2

	 
2
; ð43Þ

we find for the perpendicular mean free path

k? ¼ � q

2
þ

ffiffiffiffi
D

p	 
1=3
þ � q

2
�

ffiffiffiffi
D

p	 
1=3� �2
ð44Þ

if D � 0 and

k? ¼ 2

ffiffiffiffiffiffiffiffiffi
j p j
3

r
cos

1

3
arccos � q

2
j p j =3ð Þ�3=2

h i� � !2

ð45Þ

if D 	 0. The hypergeometric function in equation (43) can be
approximated with equation (23) to simplify the results. In the
important case of kk 3

ffiffiffi
3

p
lslab the hypergeometric functions

can be well approximated through

Fð�; �slabÞ � F2ð�Þ
ffiffiffi
3

p lslab

kk
: ð46Þ

In our further discussions we keep the hypergeometric func-
tion in the equations to obtain results with a higher precision.

SHALCHI, BIEBER, & MATTHAEUS678 Vol. 604



5.3. Comparison of the Analytical Approximations with
Numerical Calculations

Figure 2 shows the analytical approximations (eqs. [38],
[44], and [45]) in comparison with numerical results. To ob-
tain the numerical results we solved the nonlinear equation
(18) numerically. The agreement is very good except the area
where the condition kk k? � 3 l22D is fulfilled.

5.4. The Asymptotic Properties of the Perpendicular Mean
Free Path

In this subsection we derive simple equations for k? in
the case of very small (R ! 0) and very high (R ! 1) values
of the parameter R ¼ Rl=lslab, which is proportional to the
rigidity.

5.4.1. k? in the Limit of Very Small Rigidities

If the rigidity becomes small enough, we have kkT
ffiffiffi
3

p
�

lslab and kk k?T3 l22D. In this case we always have

k?
kk

� a2

2

�B2
2D

B2
0

ð47Þ

and therefore k? � kk � R1=3, where we used the QLT result
kkðRT1Þ � R1=3 (see Appendix B). It is important to note
that this QLT results are only valid in the case of the power
spectrum used in equation (B14) and in the case of magne-
tostatic turbulence. For a more realistic power spectrum with
dissipation range and using the damping model of dynamical
turbulence (both introduced by Bieber et al. 1994) the rela-
tions kk � kslabk and kslabk ðRT1Þ � R1=3 are no longer valid
(see Teufel & Schlickeiser 2002, 2003; Shalchi & Schlickeiser
2004).

5.4.2. k? in the Limit of Very High Rigidities

In the case of R ! 1, we assume kk 3
ffiffiffi
3

p
lslab and

kk k? 33 l22D. In this case we can use equation (42), and the
hypergeometric function can be approximated through

Fð�; �slabÞ � F2ð�Þ
ffiffiffi
3

p lslab

kk
: ð48Þ

To proceed with our calculations we set l2D ¼ lslab=10 and
assume that �B2

slab ¼ ð4=5Þ �B2 and �B2
2D ¼ ð1=5Þ �B2. Under

these assumptions equation (42) becomes

k? � 2� � 1

4�
a2F2ð�Þlslab

�B2

B2
0

ffiffiffi
3

p

5

2

5

ffiffiffiffiffiffi
kk
k?

s
þ 1

0
@

1
A: ð49Þ

Under the assumption that k?Tkk, we find that the two-
dimensional contribution in the power spectrum controls the
perpendicular mean free path, and we finally find

k? � 2� � 1

4�
F2ð�Þlslab a2

�B2

B2
0

2
ffiffiffi
3

p

25

� �2=3
k1=3k : ð50Þ

Employing the corresponding QLT result kkðR31Þ � R2

we find

k?ðR ! 1Þ � R2=3: ð51Þ

5.5. The Perpendicular Mean Free Path for 20% Slab, 80%
Two-dimensional, and l2D¼ lslab=10

As an example we consider the analytical results for the
special case of

�B2
slab ¼

1

5
�B2;

�B2
2D ¼ 4

5
�B2;

l2D ¼ 1

10
lslab ð52Þ

Fig. 3.—Ratio k?/kk for pure slab (dotted line) and composite (solid line)
geometry. For calculating the dashed line we neglected the slab part of the
NLGC theory to demonstrate that the perpendicular mean free path is con-
trolled by the two-dimensional contribution. In this figure we used l2D ¼ lslab.

Fig. 2.—Solid line shows the perpendicular mean free path obtained from
the analytical results (eqs. [38], [44], and [45]) in comparison with numerical
results (dotted line). Results are for composite two-dimensional/slab geometry
with the parameters given by eq. (28).
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to simplify the general results (eqs. [38], [44], and [45]).
Using this parameter set we can consider the both cases for
k? kk again.

5.5.1. The Case k? kkT3 l22D

In this case we have

k?
kk

¼ 2� � 1

4�
a2

�B

B0

� �2
4

5
F1ð�Þ þ

1

5
Fð�; �slabÞ

� �
: ð53Þ

The maximum of the hypergeometric function is
Fð�; �slabÞ ¼ F1ð�Þ (see eq. [23]). Therefore, we can use the
approximation

k?
kk

� 2

5
a2

�B2

B2
0

: ð54Þ

5.5.2. The Case k? kk 3 3 l22D

To simplify the equations in this case we must consider the
function D (see eq. [43]). If we do this we find that

D � q2

4
> 0: ð55Þ

Therefore, we obtain

k? � �qð Þ2=3� 2� � 1

5�

ffiffiffi
3

p
F2ð�Þ

a2

10

�B2

B2
0

lslab

� �2=3
k1=3k ; ð56Þ

and we find

k? � �B

B0

� �4=3

l
2=3
slab k1=3k : ð57Þ

Fig. 4.—Ratio k?/kk for 80% two-dimensional/20% slab composite ge-
ometry in comparison to observations (dotted box; Palmer 1982). The theo-
retical curve assumes l2D ¼ 0:1 lslab.

Fig. 5.—k? for different �Bslab=�B2D

Fig. 6.—k? for different �B=B0

Fig. 7.—k? for different l2D
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Note that in both equations (54) and (56), the two-dimensional
part of the power spectrum always controls the perpendicular
mean free path.

5.6. The Perpendicular Mean Free Path for
Different Parameters

In this subsection we calculate the perpendicular mean free
path using the analytical results (eqs. [38], [44], and [45])
in the case of composite geometry. Figure 3 shows the ratio
k?/kk as a function of R ¼ RL=lslab, where we have again
adopted the dissipationless magnetostatic QLT result for kk.
The dotted line in Figure 3 shows the pure slab case and
the solid line shows the case of 20% slab and the 80% two-
dimensional case. The dashed line shows also the 80% two-
dimensional case, but here we neglected the slab contribution
of the power spectrum in the NLGC theory. This means that
in QLT the slab contribution controls the parallel mean free
path, whereas the perpendicular mean free path is controlled

by the two-dimensional contribution. Note, however, that the
perpendicular mean free path is also controlled by the parallel
mean free path and therefore the slab contribution is indirectly
important for the perpendicular mean free path.

In Figure 4 we compare our results with observational
results (Palmer 1982). A key result of this paper is that the
NLGC theory can explain the Palmer observational results for
the perpendicular mean free path if we set l2D ¼ 0:1 lslab.

To illustrate the influence of different parameters we cal-
culated the perpendicular mean free path as a function of R ¼
RL=lslab for different values of �Bslab=�B2D, B0, l2D, lslab, �,
and a. Results appear in Figure 5, 6, 7, 8, 9, and 10. To obtain
these results we employed the dissipationless magnetostatic
QLT (see Appendix B) again.

6. SUMMARY AND CONCLUSION

In this paper we derived analytical solutions of the NLGC
theory that was presented by Matthaeus et al. (2003). We
compared these new results with observational results from
Palmer (1982). The agreement between the NLGC theory and
simulations as well as observations is remarkable, suggesting
the NLGC theory should find wide application in space
physics and astrophysics.

The derived equations for the perpendicular mean free path
provide a wide range of applications. One important applica-
tion is to use the analytical results to calculate initial values for
the numerical calculations of k?. This will reduce the calcu-
lation time enormously.

Our derived analytical results for composite geometry (see
eqs. [38], [44], and [45]) are very general. In contrast to other
analytical results (e.g., Zank et al. 2004) the results derived
here can be applied also for all possible combinations of the
governing parameters �slab and �2D (eqs. [11] and [12]).

This work profited enormously from discussions at the
Potchefstroom International Cosmic Ray Workshop in 2002
March and the Bochum International Cosmic Ray Workshop
in 2003 March. This research was supported by the National
Science Foundation under grant ATM-0000315.

Fig. 10.—k? for different a2Fig. 8.—k? for different lslab

Fig. 9.—k? for different �
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APPENDIX A

ASYMPTOTIC PROPERTIES OF THE FUNCTION Fð�; �Þ

In the current paper we have to calculate the asymptotic properties of the function

Fð�; �Þ ¼ 2F1 1;
1

2
; � þ 1;

�� 1

�

� �
: ðA1Þ

To do this we approximate the hypergeometric function for large and small � in turn.

A1. THE CASE �31

In the case of large � the function Fð�; �Þ can be approximated through

Fð�; �31Þ � 2F1 1;
1

2
; � þ 1; 1

� �
: ðA2Þ

Using the well-known equation

2F1ða; b; c; 1Þ ¼
�ðcÞ�ðc� a� bÞ
�ðc� aÞ�ðc� bÞ ðA3Þ

if c > aþ b, we Bnd

Fð�; �31Þ � �ð� þ 1Þ�ð� � 1=2Þ
�ð�Þ�ð� þ 1=2Þ ¼ 2�

2� � 1
� F1ð�Þ: ðA4Þ

Note that our calculations are only valid in the case of � > 1=2.

A2. THE CASE �T1

In this case we have to transform the hypergeometric function. To do this we can use

2F1ða; b; c; zÞ ¼ ð1� zÞ�b
2F1

�
b; c� a; c;

z

z� 1

�
; ðA5Þ

and the function Fð�; �Þ can be written as

Fð�; �Þ ¼
ffiffi
�

p
2F1

1

2
; �; � þ 1; 1� �

� �
; ðA6Þ

which can be approximated through

Fð�; �T1Þ �
ffiffi
�

p
2F1

1

2
; �; � þ 1; 1

� �

¼
ffiffi
�

p ffiffiffi
�

p �ð� þ 1Þ
�ð� þ 1=2Þ

�
ffiffi
�

p
F2ð�Þ: ðA7Þ

APPENDIX B

QLT RESULTS FOR THE PARALLEL MEAN FREE PATH

In order to determine the rigidity dependence of the perpendicular mean free path with the NLGC theory we need analytical
expressions for the parallel mean free path. In this paper we use results of the quasi-linear theory (QLT) in the case of dissipa-
tionless magnetostatic turbulence. As shown in Shalchi & Schlickeiser (2004), the two-dimensional contribution to the parallel
mean free path is equal to zero in the case of magnetostatic turbulence in the quasi-linear limit. To calculate the parallel mean free
path we use the same formalism as presented in Bieber et al. (1994):

SHALCHI, BIEBER, & MATTHAEUS682 Vol. 604



kk ¼
3v

2

Z 1

0

d�
ð1� �2Þ2

�ð�Þ : ðB1Þ

In equation (B1) we introduced the Fokker-Planck coeDcient

� ¼ �2

B2
0

ð1� �2Þ
Z þ1

�1
dkz SslabðkzÞDðkzÞ; ðB2Þ

with the power spectrum SslabðkzÞ and the resonance function DðkzÞ, which is related to the dynamical correlation function �ðkz; tÞ
(Bieber et al. 1994) by

DðkzÞ ¼ Re

Z þ1

�1
dt eiðkz�v��Þt�ðkz; tÞ: ðB3Þ

In the magnetostatic limit � ¼ 1 this function becomes

DðkzÞ ¼
2�

v j � j �
�
kz �

�

j � j v

�
: ðB4Þ

With this result we Bnd

� ¼ 2��2

v j � j B2
0

ð1� �2ÞSslab
�
kz ¼

1

RL j � j

�
: ðB5Þ

For the power spectrum we use

Sslab ¼ Cð�Þ lslab�B2
slabð1þ l2slabk

2Þ��; ðB6Þ

and we obtain for the Fokker-Planck coeDcient

�ð�Þ ¼ 2�Cð�Þv
R2lslab

�B2

B2
0

ð1� �2Þ�2��1 �2 þ R�2
� ���

; ðB7Þ

where we introduced the parameter

R � RL

lslab
¼ v

� lslab
: ðB8Þ

Therefore, we Bnd for the parallel mean free path

kk ¼
3

4�Cð�Þ lslab
B2
0

�B2
R2 Kð�;RÞ: ðB9Þ

In the last equation we introduced the integral Kð�;RÞ

Kð�;RÞ ¼
Z 1

0

d� �1�2� � �3�2�
� �

�2 þ R�2
� ��

: ðB10Þ

This integral can be expressed through hypergeometric functions

Kð�;RÞ ¼ R�2�

2

1

1� �
2F1 1� �;��; 2� �;�R2
� �� �

� 1

2� �
2F1 2� �;��; 3� �;�R2
� �� �

: ðB11Þ

The function Kð�;RÞ can also be expressed through elementary functions if we consider large and small values of the parameter R:

Kð�;RÞ �

R�2�

2ð1� �Þð2� �Þ for RT1;

1

4
for R31: ðB12Þ

8>><
>>:
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With the results above the parallel mean free path can be written as

kk ¼
3 lslab

8�Cð�Þ
B0

�Bslab

� �2

R2�2�

�
1

1� �2
F1 1� �;��; 2� �;�R2
� �

� 1

2� �
2F1 2� �;��; 3� �;�R2
� ��

; ðB13Þ

which is the exact QLT result in the dissipationless magnetostatic limit. For the case RT1 we Bnd

kkðRT1Þ � 3 lslab

8�Cð�Þ
B0

�Bslab

� �2
R2�2�

ð1� �Þð2� �Þ ; ðB14Þ

and in the case R31 we have

kkðR31Þ � 3 lslab

8�Cð�Þ
B0

�Bslab

� �2
R2

2
: ðB15Þ

In Figure 11 we have shown the exact QLT result (eq. [B13]) and the approximations (eqs. [B14] and [B15]). To do this we used
the following set of parameters:

�B ¼ B0;

� ¼ 5

6
;

lslab ¼ 4:55� 109 m � 0:030 AU;

�B2
slab ¼ 0:2 �B2: ðB16Þ

To obtain more realistic expressions for the parallel mean free path we refer to Teufel & Schlickeiser (2002, 2003), where a similar
formalism was used to derive equations for kk including a dissipation range in the power spectrum. Those papers also considered
two diAerent functions for �: the damping model of dynamical turbulence and the random sweeping model.

APPENDIX C

SOLVING THE CUBIC EQUATION FOR THE PERPENDICULAR MEAN FREE PATH

In the case kk k? 33l22D and assuming composite geometry, the perpendicular mean free path can be written as

k?
kk

� 2� � 1

4�
a2

�B2
2D

B2
0

F2ð�Þ
ffiffiffi
3

p l2Dffiffiffiffiffiffiffiffiffiffiffiffi
kkk ?

p þ �B2
slab

B2
0

Fð�; �slabÞ
" #

: ðC1Þ

Fig. 11.—Parallel mean free path for 20% slab and 80% two-dimensional in the dissipationless magnetostatic limit calculated with QLT. The dotted line shows
the exact result, the solid lines show the approximations.
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Now we can use

x �
ffiffiffiffiffiffi
k?

p
;

q � � 2� � 1

4�
a2

�B2D

B0

� �2

F2ð�Þ
ffiffiffi
3

p
l2D

ffiffiffiffiffi
kk

q
;

p � � 2� � 1

4�
a2

�Bslab

B0

� �2

Fð�; �slabÞ kk;

D � p

3

	 
3
þ q

2

	 
2
ðC2Þ

to rewrite equation (C1) as

x3 þ pxþ q ¼ 0; ðC3Þ

which is a cubic equation in x. To solve this equation we must consider three diAerent cases for D.

C1. THE CASE D > 0

In this case we have the three solutions:

x1 ¼ 	1 þ 	2;

x2 ¼ � 	1 þ 	2

2
þ

ffiffiffi
3

p 	1 � 	2

2
i;

x3 ¼ � 	1 þ 	2

2
�

ffiffiffi
3

p 	1 � 	2

2
i; ðC4Þ

where we used

	1 ¼ � q

2
þ

ffiffiffiffi
D

p	 
1=3
ðC5Þ

and

	2 ¼ � q

2
�

ffiffiffiffi
D

p	 
1=3
: ðC6Þ

x must be a real number, which implies that only x1 is a physical solution of the cubic equation.

C2. THE CASE D < 0

In this case we have also three solutions:

x1 ¼ þ2

ffiffiffiffiffiffiffiffiffi
j p j
3

r
cos

�1

3

� �
;

x2 ¼ �2

ffiffiffiffiffiffiffiffiffi
j p j
3

r
cos

�1 � �

3

� �
;

x3 ¼ �2

ffiffiffiffiffiffiffiffiffi
j p j
3

r
cos

�1 þ �

3

� �
; ðC7Þ

where we used

cos �1ð Þ ¼ � q

2
j p j =3ð Þ�3=2: ðC8Þ

The solutions x2 and x3 are negative numbers. Therefore, only x1 is again a physical solution.
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C3. THE CASE D ¼ 0

In the last case we have D ¼ 0 and we can use equation (C4) or equation (C7), because in this case we have 	1 ¼ 	2 and
cos ð�1Þ ¼ 1. Therefore, x1 in equation (C4) and x1 in equation (C7) are equal. The solutions x2 and x3 are always negative
numbers. Therefore, we find for x the two physical solutions:

x ¼ 	1 þ 	2 ðC9Þ

if D � 0, and

x ¼ 2

ffiffiffiffiffiffiffiffiffi
j p j
3

r
cos

�1

3

� �
ðC10Þ

if D 	 0.
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