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ABSTRACT

Quasi-linear theory has been used extensively to study the interaction of energetic particles with MHD fluc-
tuations in the solar wind. However, in recent years there has developed a view that solar windMHD turbulence can
be modeled approximately as a dominating incompressible two-dimensional turbulence component combined
with a minor one-dimensional parallel-propagating Alfvén wave component (a one-dimensional slab component
in the static limit). Here a quasi-linear theory is developed to investigate the effect of dynamical two-dimensional
MHD turbulence in the solar wind on low-energy charged particle pitch-angle scattering and momentum diffusion.
Stochastic acceleration by transverse two-dimensional turbulence electric field fluctuations is also considered,
yielding finite momentum diffusion coefficients. We find significant effects by energy-containing–scale, dynamic
two-dimensional turbulence on low-energy particles in the vicinity of 1 keV energies, and overall dominance of
parallel-propagating Alfvén waves at higher energies.

Subject headings: acceleration of particles — MHD — scattering — solar wind — turbulence

1. HISTORICAL PERSPECTIVE

The landmark study of Belcher & Davis (1971) and other
similar studies have established a strong presence of Alfvén
waves in solar wind MHD fluctuations up to a level of 90% of
the total energy density in the magnetic field fluctuations in
some solar wind regions. Some other studies suggested that the
Alfvén waves are one-dimensional and outward propagating
along the large-scale magnetic field (Daily 1973; Chang &
Nishida 1973). Belcher & Davis (1971) also discovered that
variations of magnetic field magnitude are small compared to
the energy density of the magnetic field fluctuations. This
suggested that the magnetoacoustic wave component is smaller
(<10%) than the Alfvénic component. The strong presence of
Alfvén waves in the solar wind implied that the solar wind
medium is approximately incompressible. This lack of com-
pressibility is consistent with expected kinetic damping of all
plasma waves except the Alfvén mode (Barnes 1979).

At the same time another perspective of MHD fluctuations in
the solar wind evolved. Coleman (1968) presented observa-
tions that show extended power-law spectra in the energy
density of solar wind Alfvénic fluctuations, suggesting an in-
terpretation in terms of MHD turbulence theory. Lacking de-
tailed information, for a number of years this turbulent cascade
was assumed by default to be isotropic, as, for example, was
done in theoretical work of similar vintage (Kraichnan 1965).

These considerations led to an approach in which quasi-
linear kinetic theories (QLTs) for energetic particle transport in
solar wind MHD turbulence were developed that treated the
turbulence as having either a ‘‘slab’’ geometry inspired by the
observations of one-dimensional outward-propagating Alfvén
waves or an isotropic geometry, as in the theoretical work of
Kraichnan. Application of the slab model of QLTs led to the
well-known problem that the parallel diffusion mean free path

of cosmic rays is predicted to be about a factor of 10 lower
than expected from observations (Bieber et al. 1994).
More recently, it was realized that the isotropic cascade in

wavenumber space for incompressible MHD turbulence
should be revised (Montgomery & Turner 1981; Shebalin,
Matthaeus, & Montgomery 1983; Sridhar & Goldreich 1994;
Oughton, Priest, & Matthaeus 1994; Goldreich & Sridhar
1995; Montgomery & Matthaeus 1995; Matthaeus et al. 1998).
Many of the underlying ideas of this revision were discussed
byMontgomery& Turner (1981). According toMontgomery&
Turner (1981), in the presence of a strong large-scale mag-
netic field, the incompressible MHD turbulence spectrum
should have two components, an idea that was applied later
(Matthaeus, Goldstein, & Roberts 1990), in a somewhat dif-
ferent form, to solar wind observations. The first component,
also included in the solar wind two-component model, is
viewed as the dominant or most robust form of incompressible
nonlinear MHD activity. Its velocity and magnetic fluctuations,
as well as its wavenumbers, are all perpendicular or nearly
perpendicular to the background magnetic field B0. The so-
called two-dimensional MHD component with perpendicular
wavenumbers k? may be highly dynamic as a result of non-
linear effects but is also thought of as having ‘‘zero frequency.’’
This terminology derives from the wave frequency ! obtained
from the shear Alfvén wave dispersion relation, ! ¼ VA kk

�� ��,
where kk is the wavenumber parallel to B0 and VA is the Alfvén
speed. Having purely perpendicular wavenumbers (kk ¼ 0),
two-dimensional turbulence has zero frequency or equivalently
is ‘‘nonpropagating.’’ The second minor component, deter-
mined by the linear terms of the incompressible MHD equa-
tions, describes the shear Alfvén waves.
Montgomery & Turner (1981) predicted that most of the en-

ergy should reside in the two-dimensional turbulence compo-
nent. The possibility of energy transfer from a two-dimensional
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mode to two Alfvén waves exists, but the rate of transfer is
expected to be much lower than between three two-dimensional
modes. This suggests that an energy cascade should preferen-
tially occur perpendicular to B0 in the two-dimensional turbu-
lence component and suppressed along B0 for the shear Alfvén
wave component (Matthaeus et al. 1998). Consequently, the
turbulence correlation length should be much longer along B0

than transverse to B0. This anisotropy also makes sense if one
considers that it is much more difficult to bend and stretch
magnetic field lines along the background magnetic field B0

if B0 is strong compared with the fluctuating magnetic
field. Consistent with this view are the incompressible three-
dimensional MHD simulations of Cho & Lazarian (2002),
which suggest that the fluctuation energy density spectrum
E�B(k?) for perpendicular wavenumber k? is a Kolmogorov
power law given by E�Bðk?Þ / k

�5=3
? , while for parallel

wavenumber kk they found E�BðkkÞ / k�2
k , approximately.

There is evidence from more recent solar wind data studies
that a quasi–two-dimensional incompressible MHD turbu-
lence viewpoint might have validity. The two-point correlation
function of magnetic field fluctuations, assumed axisymmet-
ric, has a two-component structure, suggesting the presence of
both a one-dimensional or ‘‘slab’’ turbulence component with
a long correlation length perpendicular to B0 and a quasi–two-
dimensional turbulence component with a long correlation
length along B0 (Matthaeus et al. 1990). A complementary
direct analysis of solar wind magnetic spectra, assuming at the
onset a composite two-dimensional plus slab turbulence
model, revealed that as much as �85% of the fluctuation
energy resides in the two-dimensional component (Bieber,
Wanner, & Matthaeus 1996).

The advantage of viewing MHD turbulence in the solar
wind as consisting of a superposition of a dominating two-
dimensional component and a minor slab component became
apparent when Bieber et al. (1996) revised the parallel mean
free path predicted by slab QLT for cosmic rays and found
good agreement with observations if �15% of the fluctuation
energy is in the static slab modes. This result is based on the
finding from QLT that static two-dimensional turbulence does
not contribute to cosmic-ray scattering (Bieber et al. 1994).

Now we discuss the issue of incompressibility. A detailed
study of solar wind density fluctuations using high-resolution
Voyager data found fractional density fluctuations to be on
average small (�10%; Matthaeus et al. 1991) so that solar
wind is nearly incompressible in a statistical sense. A math-
ematical theory of nearly incompressible MHD (NIMHD)
turbulence (Zank & Matthaeus 1992, 1993) explains how low
compressibility fits into the quasi–two-dimensional picture.
According to the NI theory, as long as the plasma �p � 1
approximately, the leading-order and underlying description
of turbulence in the presence of B0 is determined by the in-
compressible two-dimensional MHD equations that are valid
in planes perpendicular to B0. A higher order description
allows in addition one-dimensional Alfvén waves propagating
along B0, while three-dimensional density fluctuations prop-
agate isotropically as high-frequency magnetosonic waves
when �p � 1. When �pT1, low-frequency acoustic waves
propagate along B0, while high-frequency two-dimensional
density fluctuations are convected by the incompressible two-
dimensional MHD fluctuations in a plane perpendicular to B0.
The NIMHD turbulence description thus corresponds closely
to the incompressible MHD description by yielding a domi-
nant incompressible two-dimensional turbulence component
and a minor Alfvén wave component, but it also allows for

additional minor compressible wave and density fluctuation
components. Interestingly, the theory supports the existence of
a parallel-propagating Alfvén wave mode as suggested by
solar wind observations (Matthaeus et al. 1990).

2. PURPOSE OF THIS PAPER

Based on the discussion above, we thus assume that MHD
turbulence in the solar wind can be described by a composite,
two-component model: a superposition of a dominant two-
dimensional turbulence component with a perpendicular cor-
relation length lc? and a minor one-dimensional incompressible
Alfvén wave component propagating along B0 with a parallel
correlation length lck. The QLT for particle transport through
parallel-propagating one-dimensional Alfvén wave turbulence
has been worked out before (e.g., Schlickeiser 1989), and only
the results are shown.

In the past, QLT was almost exclusively used to study
resonant interaction of energetic charged particles with waves
rather than turbulence. The notable exception is the work by
Bieber et al. (1994), in which a QLT for pitch-angle scattering
by dynamic two-dimensional MHD magnetic field turbulence
is presented but little detail is given (see also Shalchi &
Schlickeiser 2003). In this paper a detailed discussion is pre-
sented of QLT from the perspective of turbulence. In an ex-
tension of the Bieber et al. (1994) work, which treats only
dynamic two-dimensional magnetic turbulence fluctuations,
transverse two-dimensional electric fields are also included in
this theory. This enables us to study the role of dynamic two-
dimensional turbulence in the stochastic acceleration of en-
ergetic particles.

In the case of magnetostatic turbulence, two-dimensional
magnetic field fluctuations do not contribute to particle
pitch-angle scattering (Bieber et al. 1994, 1996) so that one-
dimensional parallel-propagating Alfvén waves, or, in the
magnetostatic limit, nonpropagating ‘‘slab’’ turbulence, are
mainly responsible for this process. The static assumption is
good for typical cosmic-ray energies when the particle speed
is much larger than the rms convective speed of the turbu-
lence (particle rigidities �100 MV and higher).

However, at lower super-Alfvénic particle speeds, particles
are affected by time variations in the turbulence, and dynamic
two-dimensional turbulence will contribute to pitch-angle
scattering (Bieber et al. 1994). In this paper our emphasis will
be on the effect of dynamic two-dimensional MHD turbulence
and parallel-propagating Alfvén waves on particle pitch-angle
scattering, as well as stochastic acceleration in the solar wind
at super-Alfvénic but sub–cosmic-ray energies. Specifically,
the relative contributions of dynamic two-dimensional turbu-
lence and propagating Alfvén waves to pitch-angle diffusion
and momentum diffusion will be compared as a function of
energy at different radial distances in the ecliptic plane from
near the Sun to 5 AU during quiet solar wind conditions.

Our main finding is that the dynamic two-dimensional
turbulence component causes significant pitch-angle and mo-
mentum diffusion of low-energy protons with super-Alfvénic
particle speeds (�1 keV protons) in the ecliptic plane of the
solar wind. However, the prediction is that parallel-propagat-
ing Alfvén waves will still dominate these diffusion processes
in spite of the greater energy density assumed to be in the two-
dimensional component. The dominance of Alfvén waves in
pitch-angle scattering and momentum diffusion is expected to
increase with increasing heliocentric distance from the Sun
and with increasing particle energy.
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3. QUASI-LINEAR THEORY OF PARTICLE PITCH-
ANGLE SCATTERING AND MOMENTUM DIFFUSION IN

DYNAMIC TWO-DIMENSIONAL TURBULENCE

We followed a standard QLT approach to derive a Fokker-
Planck kinetic transport equation for the diffusion of charged
particles in pitch angle and momentum space during interac-
tion with the dynamic two-dimensional turbulence component
of MHD solar wind turbulence. The details of the QLT for
two-dimensional turbulence can be found in the Appendix.
The main assumptions of the QLT are the following:

1. Small-amplitude electromagnetic fluctuations. Particles
follow undisturbed helical orbits on a particle correlation
timescale t pc , which indicates the typical time that elapses be-
fore the particle starts to see incoherent or random fluctuations
along its undisturbed trajectory.

2. The particle correlation time t pcTt�, where t� is the
particle pitch-angle scattering timescale. The pitch-angle time-
scale represents the characteristic time needed before the parti-
cle experiences random deviations in its pitch angle. The
condition t pcTt� ensures that an undisturbed helical orbit is
maintained on a particle correlation timescale that is much
shorter than the timescale over which particle orbits are distorted
by pitch-angle scattering on the two-dimensional turbulence.

3. The ensemble-averaged distribution function is assumed
to be gyrotropic, which rules out the contributions of perpen-
dicular spatial diffusion and gradient and curvature drifts to
particle transport. This implies that the particle gyroradius
rgTlc?, so that for typical solar wind parameters near Earth
(lc? ¼ 0:01 AU), the derivation is valid for energetic particles
with rigidities RT2:5 GV. However, even if perpendicular
diffusion and drifts are important (Giacalone & Jokipii 1999),
the theory should still provide a good description of pitch-angle
scattering and stochastic acceleration.

4. It is implicit in the theory that particles have to propagate
many turbulence correlation lengths lc? along the background
magnetic field before they undergo pitch-angle scattering,
which results in spatial diffusion along the field so that
lc?Tkk, where kk is the mean free path for spatial diffusion
along the large-scale magnetic field B0.

5. It is also assumed that the large-scale magnetic field
is nonuniform only on the largest scale of the system L.
Thus, the ordering of length scales for QLT is given by
rgTlc?TkkTL.

6. The QLT was derived under the usual simplified con-
ditions of homogeneous stationary two-dimensional turbulence
that is axisymmetric around the large-scale magnetic field. The
assumptions here are not required to hold on spatial scales
exceeding the turbulence correlation length and timescales
longer than the particle correlation time.

The equation for particle transport during interaction with
the transverse random magnetic and electric field fluctuations
(see eqs. [A5] and [A6]) in the dynamic two-dimensional
component of MHD turbulence (Appendix, eq. [A49]) is
given by
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where f0ðz; p; �; tÞ is the ensemble-averaged particle distribu-
tion function, which is a function of position z along the large-

scale uniform magnetic field B0, particle momentum p, the
cosine of the particle pitch angle �, and time t. The expres-
sions for the Fokker-Planck diffusion coefficients in momen-
tum vector space are
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where D�� is the coefficient for particle diffusion in pitch-
angle space, Dpp is the coefficient for particle diffusion in
momentum magnitude space, Dp� ¼ D�p are the coefficients in
combined � and p space, rA is the Alfvén ratio, � is the
particle gyrofrequency, Tp

c is a time integral along the undis-
turbed particle orbit and is associated with the particle
decorrelation time, VA is the Alfvén speed, and �c is the cross
helicity. The Alfvén ratio is rA ¼ h�U 2

?i=h�V 2
Ai, where

�V 2
A ¼ h�B2

?i=ð4��Þ, h�U 2
?i is the ensemble-averaged energy

in the transverse two-dimensional velocity fluctuations, h�B2
?i

is the ensemble-averaged energy density in the transverse two-
dimensional magnetic field fluctuations, and � is the mass
density of the solar wind plasma, while the cross helicity is
defined as �c ¼ 2h�U? G �VAi=ðh�U 2

?i þ h�V 2
AiÞ. For the case

of stationary homogeneous axisymmetric two-dimensional
turbulence the time integral Tp

c has the expression

Tp
c ¼

Z 1

0

dð�tÞ
�
cos ð��tÞR�B �Bxx ð�rð�tÞ;�tÞ

� sin ð��tÞR�B �Bxy ð�rð�tÞ;�tÞ
	
; ð3Þ

where R�B �Bxx ð�rð�tÞ;�tÞ ¼ h�Bxð0; 0Þ�Bxð�rð�tÞ;�tÞi and
R�B �Bxy ð�rð�tÞ;�tÞ ¼ h�Bxð0; 0Þ�Byð�rð�tÞ;�tÞi are the
two-point two–time correlation functions involving transverse
components of the two-dimensional turbulence magnetic field
fluctuations. In equation (3), the argument �rð�tÞ of the
correlation functions Rij contains the undisturbed particle he-
lical trajectory information, which in Cartesian coordinates
has the components

�xð�tÞ ¼ �rg½ cos ð��tÞ � 1�;
�yð�tÞ ¼ þrg sin ð��tÞ;

�zð�tÞ ¼ v cos �ð�tÞ: ð4Þ

An approximate expression for Tp
c is developed in the

Appendix, leading to specific forms for the diffusion coef-
ficients in equation (2).
It has been shown before that the time integral Tp

c ¼ 0 in
QLT for the case of static two-dimensional turbulence (Bieber
et al. 1994, 1996; le Roux, Zank, & Matthaeus 2001). To gain
more insight in this issue, we investigated the properties of Tp

c .
The time integral Tp

c describes how particles experience in-
coherent two-dimensional magnetic field fluctuations over a
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particle correlation time t pc during its undisturbed orbit along
B0. In the limit of static (noninteracting) turbulence, this in-
tegral is singular, as we now discuss. Specifically,

Tp
c ¼ lim

T!1
FðTÞ; FðTÞ ¼

Z T

0

f ðtÞ dt; ð5Þ

where f (t) is a periodic function of time, with period 2�/�. We
show below that F(T ) itself is a periodic function of T and that
FðTÞ ¼ 0 if T is a harmonic of 2�/�, which implies that Tp

c

either converges to zero or does not converge at all. As far as
we know, M. A. Forman (2003, private communication) and
G. Qin, J. W. Bieber, & W. H. Matthaeus (2003, private
communication) were the first to point out this problem in-
dependently and to show that the net result of gyration over
one unperturbed particle orbit in two-dimensional static tur-
bulence implies no particle diffusion.

To illustrate that FðTÞ ¼ 0 if T is a harmonic of 2�/�, it is
useful to express the two-dimensional magnetic field fluctua-
tions in terms of their magnetic vector potential on the basis of
the solenoidal condition that H G �B? ¼ 0:

�B? ¼ H ��� Aez; ð6Þ

where the magnetic vector potential, given by A ¼ Aez, is
specified along the direction of the background magnetic field
B ¼ B0ez. From equation (6) it follows that the transverse two-
dimensional magnetic field components can be expressed as

�Bx ¼
@A

@y
; �By ¼ � @A

@x
: ð7Þ

Because the two-dimensional turbulence component is a
function of spatial coordinates (x, y) transverse to B0, the
magnetic field correlation function along the undisturbed
particle orbit only depends on the particle motion in the two-
dimensional plane perpendicular to B0. Thus, for static two-
dimensional turbulence we specify R�Bij ð�r?ð�tÞÞ, where
�r?ð�tÞ ¼ ð�xð�tÞ;�yð�tÞÞ with the components given by
equation (4). The integral F(T ) in equation (5) over an arbi-
trary integer number m of undisturbed particle gyro-orbits T ¼
m2�=� can then be expressed as

F m
2�

�

� �
¼ 2

rg�

Z m 2�=�ð Þ

0

dð�tÞ

� �Bxð�r?ð�t ¼ 0ÞÞ d�A
d�t

ð�r?ð�tÞÞ

 �

¼ 2

rg�



�Bxð�r?ð�t ¼ 0ÞÞ

� A �r? �t ¼ m
2�

�

� �� �
� Aðr?ð�t ¼ 0ÞÞ

� ��
¼ 0; ð8Þ

where m > 0 is an integer.
However, this symmetry can be broken by allowing the

particle orbit to be distorted during a particle correlation time
by the neglected nonlinear terms in an extended QLT (Dupree
1966; Jones, Kaiser, & Birmingham 1973; Volk 1973; Owens
1974) or by specifying that the fluctuations have a spatial
dependence along B0. A third option, which is the one we
explore here, is to introduce dynamic turbulence effects
(Bieber et al. 1994).

4. A SIMPLE ESTIMATE OF THE PITCH-ANGLE AND
MOMENTUM DIFFUSION COEFFICIENTS FOR
DYNAMIC TWO-DIMENSIONAL TURBULENCE

Before we present the results for the time integral Tp
c fol-

lowing the standard Fourier transform approach in wave-
number space, it is instructive to first estimate this integral in
real space. This provides physical insight that is more difficult
to acquire with the more complicated but also more precise
Fourier transform approach.

Within the framework of QLT and the corresponding ap-
proximate evaluation of forces along unperturbed orbits, we
assume that the two-point two–time particle correlation func-
tion decays with time as a result of two effects: (1) the particle
gyromotion in the two-dimensional plane perpendicular to the
large-scale magnetic field B0 (there is no spatial variation along
B0 and correspondingly no spatial decorrelation) and (2) the
random convective motions of two-dimensional turbulence
relative to the particle orbit.

Accordingly, the temporal decay of the correlation functions
of magnetic field fluctuations R�B �Bij along the undisturbed
particle orbit is modeled as

R�B �Bxx ð�r?ð�tÞ;�tÞ ¼ R�B �Bxx ð�r?ð�tÞÞe��t=t pc ;

R�B �Bxy ð�r?ð�tÞ;�tÞ ¼ R�B �Bxy ð�r?ð�tÞÞe��t=t pc ; ð9Þ

where �r?ð�tÞ represents the spatial separation in the two-
dimensional plane perpendicular to B0 and the timescale t pc
represents the correlation time due to dynamic turbulence
decorrelation effects modeled as an exponential decay (Bieber
et al. 1994). This is in the spirit of, but simpler than, the
Fourier transform approach where a similar separation of
spatial and temporal decorrelation takes place (see eq. [A37]).
The maximum spatial separation in the two-dimensional plane
is �r?j j � rg. However, since in the present development we
restrict ourselves to rgTlc?, it follows that R

�B �B
ij ðr?ð�tÞÞ �

R�B �Bij ð0Þ ¼ h�Bi �Bji. Accordingly,

R�B �Bxx ¼ �B2
x

� 
e��t=t pc ;

R�B �Bxy ¼ �Bx�By

� 
e��t=t pc ; ð10Þ

and the dominant decorrelation effect is due to intrinsic time
variation of the turbulence.

For the case of axisymmetric turbulence h�B2
xi ¼ 1

2
h�B2

?i,
where h�B2

?i denotes the total energy density in the two-
dimensional magnetic field fluctuations, and h�Bx�Byi ¼ 0.
Accordingly,

R�B �Bxx ¼ 1
2
�B2

?
� 

e��t=t pc ;

R�B �Bxy ¼ 0: ð11Þ

Straightforward integration of the time integral Tp
c leads to the

result that

Tp
c ¼ 1

2

1=t pc

1=t pcð Þ2þ�2

" #
�B2

?
� 
B2
0

: ð12Þ

Further simplification can be achieved by taking the limit
�31=t pc , which will hold for the important contributions to
diffusion associated with the energy-containing eddies, which
we refer to in x 4.1 as energy-containing–scale turbulence.
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4.1. Energy-Containing–Scale Two-dimensional Turbulence

With energy-containing–scale two-dimensional fluctuations
we imply fluctuations with wavenumbers restricted to
k?T1=rg. Within the QLT conceptual framework, a particle
with an undisturbed helical orbit along B0 cannot experience
decorrelated energy-containing–scale two-dimensional fluc-
tuations as a result of its gyromotion in the two-dimensional
plane perpendicular to B0 because rgT1=k?. Decorrelation
due to particle motion along B0 is also not possible because
the two-dimensional component is not a function of distance
along B0. Within the context of QLT decorrelation can only
occur as a result of the random convective motions of the
turbulence relative to the undisturbed particle orbit (dynamic
turbulence). Thus, the particle correlation time

t pcð�tÞ ¼ lc?

�Uðlc?Þ
� lc?

�U?
; ð13Þ

where the assumption of equipartition in the energy of the two-
dimensional velocity and magnetic field fluctuations means
that �U? ¼ ð�B?=B0ÞVA (see paragraph below eq. [A43]). This
assumption is reasonable for solar wind conditions (Goldstein,
Roberts, & Matthaeus 1995) and is also supported by MHD
turbulence simulations in the presence of a sufficiently strong
background magnetic field (Oughton, Matthaeus, & Ghosh
1998). For typical heliospheric parameters�31=t pc so that T

p
c

in equation (12) becomes
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2
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t
p
c�

2
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� 
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¼ 1

2
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� �
1
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�B2
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� 
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0

: ð14Þ

By inserting equation (14) into equation (2) and assuming
v3VA and �c 6¼ 0, we get

D�� ¼ 1

2
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;
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Dp� ¼ D�p ¼ �D��
pVA

v

� �
1

2
�cðrA þ 1Þ

� �
: ð15Þ

5. DIFFUSION COEFFICIENTS FOR DYNAMIC TWO-
DIMENSIONAL TURBULENCE BASED ON THE
FOURIER-TRANSFORMED TIME INTEGRAL

Evaluation of the time integral Tp
c in equation (3) is carried

out in the Appendix. It is found that, for small-amplitude
fluctuations and super-Alfvénic particles that are resonant in
the inertial range, the decorrelation integral Tp

c simplifies to

Tp
c � 8�

3

�U?

lc?

�B2
?

� 
B2
0

1

�2

Z 1

rg=lc?

dx
1

x3

X1
n¼1

J 2n ðxÞ ð16Þ

(see also Shalchi & Schlickeiser 2003). The principal additional
approximations regarding the turbulence employed in arriving

at this form are a two-dimensional Kolmogorov inertial range
spectrum for the wavenumber dependence and dynamical
effects modeled with a k?-dependent exponential decay in time
at a rate given by the local (in wavenumber) nonlinear eddy
turnover timescale, along with incompressibility, axisymmetry,
and structural similarity of correlation functions.
In terms of Fourier transforms the expression for Tp

c is
complicated. Nonetheless, it is clear that in the limit of static
(noninteracting) two-dimensional turbulence (�U? ¼ 0 in
eq. [16]), Tp

c and therefore the diffusion coefficients involving
transverse two-dimensional fluctuations are zero for any
wavenumber, which is consistent with previous QLT theories
for static two-dimensional turbulence (Bieber et al. 1994,
1996; le Roux et al. 2001). This result is also consistent
with the fact that the time integral FðTÞ ¼ 0 if T is a har-
monic of 2�/� whereby Tp

c either converges to zero or does
not converge at all in the limit of static two-dimensional
turbulence (see discussion below eq. [4]). Whereas the QLT
for static slab turbulence leads to a gyroresonance for
wavelengths of the order of the particle gyroradius, no such
resonances for any wavenumber occur in the QLT for static
two-dimensional turbulence. In fact, the particles are not
affected at all.
Since the integral in Tp

c cannot be computed analytically,
further simplification is needed. Referring to the Appendix
(eq. [A43]), we see that the approximated expression for Tp

c in
equation (16) involves an integration in which the Bessel
function contributions are weighted by the fluctuation spec-
trum. Therefore, it is convenient to think of Tp

c as consisting of
contributions from various scales of turbulence. For this pur-
pose a useful parameter is the argument x ¼ k?rg of the Bessel
functions. In xx 5.1, 5.2, and 5.3 we calculate separately the
contribution to Tp

c due to three ranges of scale (wavenumber),
corresponding to ranges of x. We show that in the contribution
associated with small-scale turbulence x31, gyroscale tur-
bulence (x ¼ 1), and energy-containing–scale turbulence
xT1, it is possible to obtain analytically simplified expres-
sions for the diffusion coefficients.

5.1. Energy-Containing–Scale Two-dimensional Turbulence

Simplification of Tp
c in equation (16) follows if we take the

Bessel functions in the limit x ¼ k?rgTn. Then JnðxÞ �
ðx=2Þn=n!. Application of the condition for energy-containing–
scale turbulence, x ¼ k?rgT1, yields the result that

X1
n¼1

J 2n ðxÞ
x2

� 1

4
: ð17Þ

Thus,

Tp
c � 2�

3

�U?
lc?

�B2
?

� 
B2
0

1

�2

Z a

rg=lc?

dx
1

x
; ð18Þ

where aT1 is a constant ensuring that for the upper inte-
gration limit xT1. After integration it follows that

Tp
c ¼ 2�

3

1

�2

�U?

lc?

� �
�B2

?
� 
B2
0

ln
lc?a

rg

� �
: ð19Þ

The substitution of equation (19) into equation (2) and the
assumption of fast particles v3VA and finite cross helicity �c
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result in the following simplified expressions for Fokker-
Planck diffusion coefficients:

D�� ¼ 2�

3
1� �2
� � �U?

lc?

� �
�B2

?
� 
B2
0

ln
alc?

rg

� �
;

Dpp ¼D��
pVA

v

� �2

rA;

Dp� ¼D�p ¼ �D��
pVA

v

� �
1

2
�cðrA þ 1Þ

� �
; ð20Þ

where �U?ðlc?Þ ¼ ð�B?=B0ÞVA. Comparison of expressions
of the diffusion coefficients in equation (20) with the first
estimate of those coefficients in equation (15) reveals that the
expressions are the same except for an additional logarithmic
factor in equation (20). This difference arises from integrating
over a power law for the spectral magnetic field fluctuation
energy density in wavenumber over a finite wavenumber in-
terval determined by the condition for energy-containing–
scale fluctuations and the correlation scale.

We investigate whether the QLT condition t pcTt� is ful-
filled by the expression for D�� in the case of the Fourier
transform approach. Since particle decorrelation for energy-
containing–scale turbulence is determined by the dynamics of
the turbulence (see x 4.1 and eq. [13]), we calculate the particle
correlation time t pc by specifying t pc ¼ 1=½k?�U?ðk?Þ� ¼
1=�ðk?Þ, where �(k?) is given by equation (A44). After
averaging t pc over all the wavenumbers fulfilling the condition
k?rgT1, we find

t pc ¼ 3
lc?

�U?

� �
rg

alc?

� �2=3

; ð21Þ

where �U? ¼ ð�B?=B0ÞVA. After approximation of D�� in
equation (20) as D�� ¼ 1=t�, the ratio t pc=t� becomes

t pc
t�

¼ 2� 1� �2
� � �B2

?
� 
B2
0

rg

alc?

� �2=3

ln
alc?

rg

� �

� 0:007
v

U0

� �2=3

ln 5:3� ln
v

U0

� �����
����; ð22Þ

where standard solar wind parameters at 1 AU were assumed
[lc? ¼ 0:01 AU, �U? ¼ ð�B?=B0ÞVA ¼ 0:2� 40 km s�1 ¼
2 km s�1, the solar wind flow speed U0 ¼ 400 km s�1,
rg � 5� 10�6 AU for 1 keV protons]. The constant a was
chosen to be an upper limit of a ¼ 0:1, and � ¼ 0 to ensure
maximum values for the ratio corresponding to the worst-case
scenario. According to equation (22), t pc=t� � 0:1 approxi-
mately for a wide range of particle energies, and it is only for
proton energies of �E3 90 MeVor so that the ratio becomes
unacceptably large.

In the case of energy-containing–scale fluctuations, �3
1=t pc so that the particle sees slowly time-varying two-
dimensional turbulence fluctuations. This implies that the
particle’s magnetic moment �m should approximately be con-
served. In the absence of fluctuations the magnetic moment
of the particle following an undisturbed helical trajectory is

�m0 ¼
1=2ð Þmv2?0

B0

: ð23Þ

We find for �B?=B0T1 that the deviation in the mag-
netic moment produced by QLT in the presence of slowly

varying two-dimensional fluctuations is determined by the
expression

�m ¼ 1=2ð Þmv 2?0

B0 þ �B?
� �m0 1� �B?

B0

� �
: ð24Þ

For �B=B0 � 0:2, appropriate for 1 AU, we find that the mag-
netic moment deviates by �20%. This raises questions about
the accuracy of the diffusion coefficients given by equation
(20). However, the accuracy should improve at smaller radial
distances from the Sun, where �B/B0 is expected to become
smaller because, according to the Parker spiral magnetic field
model, B0 / r�2 close to the Sun, while �B / r�3=2 approxi-
mately close to the Sun according to observations and MHD
turbulence transport theory (Zank, Matthaeus, & Smith 1996).

Assuming that QLT does conserve magnetic moment suffi-
ciently well in the presence of slowly varying two-dimensional
turbulence, it is clear that pitch-angle scattering will occur
because random changes in the magnitude of the total magnetic
field result in random changes in the velocity component
perpendicular to the B0 while the particle speed is conserved.
Slowly changing two-dimensional transverse fluctuating elec-
tric fields �E? ¼ ��U? ��� B0 leads to a polarization drift
motion in the direction of the electric fields in the plane per-
pendicular to B0. This causes random particle acceleration,
resulting in particle momentum magnitude diffusion.

5.2. Small-Scale Two-dimensional Turbulence

A useful identity to apply for the case of small-scale two-
dimensional turbulence x ¼ k?rg 31 (Arfken 1985, p. 584;
Shalchi & Schlickeiser 2003) is obtained from

X1
n¼1

J 2n ðxÞ ¼ 1
2
� 1

2
J 20 ðxÞ: ð25Þ

In the limit x3 1,

X1
n¼1

J 2n ðxÞ � 1
2
: ð26Þ

Consequently, Tp
c (eq. [16]) becomes

Tp
c � 4�

3

�U?
lc?

�B2
?

� 
B2
0

1

�2

Z 1

1=a

dx
1

x3
; ð27Þ

where the lower integration limit ensures that the smallest value
of x31 because aT1. After integration Tp

c can be expressed as

Tp
c ¼ 2�

3

�U?

lc?

�B2
?

� 
B2
0

a2

�2
: ð28Þ

When equation (28) is substituted in equation (2), we find in the
limit of super-Alfvénic particle speeds (v3VA) and for the case
of finite cross helicity that the diffusion coefficients simplify to

D�� ¼ 2�

3
a2 1� �2
� � �U?

lc?

� �
�B2

?
� 
B2
0

;

Dpp ¼D��
pVA

v

� �2

rA;

Dp� ¼D�p ¼ �D��
pVA

v

� �
1

2
�cðrA þ 1Þ: ð29Þ
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The basic requirement of QLT, that the particle correlation
time t pcTt�, where t� is the timescale for pitch-angle scat-
tering, is easily fulfilled because

t pc
t�

¼ 2�

3
a2

�U?

v

� �
�B2

?
� 
B2
0

� �
arg

lc?

� �
T1; ð30Þ

since all the factors in parentheses are much less than 1 for
1 keV protons in solar wind conditions.

In the case of small-scale turbulence x ¼ k?rg 31, sim-
plification of Tp

c is also possible by taking the large argument
limit of the Bessel function Jn(x) (x ¼ k?rg 3n) in equation
(26). Then JnðxÞ � ½2=ð�xÞ�1=2 cos2x and Tp

c can be written as

Tp
c � 8

3

�U?

lc?

�B2
?

� 
B2
0

1

�2

X1
n¼1

Z 1

n=a

dx
1

x4
; ð31Þ

after assuming that one can approximately replace the integral
over cos2x by the average hcos2xi ¼ 1

2
. The lower integra-

tion limit reflects the assumption that x3n (the constant
aT1). After integration we find that

Tp
c ¼ 8

9

a3

�2

�U?

lc?

�B2
?

� 
B2
0

	ð3Þ; ð32Þ

where 	ð3Þ � 1:2 is the Riemann zeta function.
However, since we are interested in the case x ¼ k?rg 31,

the x ¼ k?rg 3n condition is too restrictive, leading to an
underestimation of the importance of small-scale fluctuations
(compare eq. [28] with eq. [32]).

5.3. Gyroscale Two-dimensional Turbulence

A remaining case of interest is to compute the contributions
to Tp

c due to turbulence with scale lengths between energy-
containing scale and small scale, that is, scale lengths of the
order of the particle gyroradius k?rg � 1.

For simplicity we assumed that k?rg ¼ 1 and specified the
differential energy density of the two-dimensional magnetic
field fluctuations as follows:

E�Bðk?Þ ¼ E0� k? � 1

rg

� �
; ð33Þ

where E0 is the differential energy density of the magnetic
field fluctuations at wavenumber k? ¼ 1=rg. Integration of
E�B(k?) for a Kolmogorov spectrum given by equation (A45)
and for the alternative spectrum given by equation (33) over
all wavenumbers k? � 1=rg produces the relationship

E0 ¼ rg �B
2
?

�  rg

lc?

� �2=3

: ð34Þ

By substituting equations (33) and (34) into the time integral
Tp
c (eq. [A43]), one finds that

Tp
c ¼ 4�

1

�2

�U?
lc?

� �
�B2

?
� 
B2
0

X1
n¼1

n2J 2n ð1Þ
y2 þ n2

; ð35Þ

where y2 is given by equation (A47). As before we take the
limit yT1 and Tp

c simplifies to

Tp
c ¼ 4�

1

�2

�U?

lc?

� �
�B2

?
� 
B2
0

X1
n¼1

J 2n ð1Þ: ð36Þ

As was done in x 5.2, we use

X1
n¼1

J 2n ðxÞ ¼ 1
2
� 1

2
J 20 ðxÞ: ð37Þ

By taking the first two terms of a series representation of Jn(x)
(Arfken 1985, p. 584), we find that J0ð1Þ � 3

4
. Consequently,

X1
n¼1

J 2n ð1Þ �
7

32
; ð38Þ

and Tp
c becomes

Tp
c ¼ 7�

8

1

�2

�U?
lc?

� �
�B2

?
� 
B2
0

: ð39Þ

Substitution of equation (39) into equation (2) and assum-
ing v3VA and �c 6¼ 0 result in the following set of diffusion
coefficients:

D�� � 7�

8
1� �2
� � �U?

lc?

� �
�B2

?
� 
B2
0

;

Dpp ¼D��
pVA

v

� �2

rA;

Dp� ¼D�p ¼ �D��
pVA

p

� �
1

2
�cðrA þ 1Þ

� �
: ð40Þ

5.4. Comparison of the Diffusion Coefficients for Different
Scale Lengths

To compare the contribution to the diffusion coefficients
for energy-containing–scale, small-scale, and gyroscale two-
dimensional turbulence, it is sufficient to consider the ratio of
the pitch-angle diffusion coefficients D�� because the ratio of
the other diffusion coefficients Dpp, D�p, and Dp� only depends
on the D�� ratio. The D�� ratio of small-scale over energy-
containing–scale two-dimensional turbulence is

DS
��

DEC
��

¼ a2

ln alc?=rg
� � � 0:01

ln 200� ln v=U0ð Þ ; ð41Þ

where we specified standard parameters at Earth (lc? ¼ 0:01 AU
and U0 ¼ 400 km s�1) and chose the constant a to be an
upper limit of a ¼ 0:1. This ratio is smaller than 1 for proton
kinetic energies E < 40 MeV approximately, which indicates
that for low-energy particles with super-Alfvénic speeds
small-scale two-dimensional turbulence is negligible relative
to energy-containing–scale two-dimensional turbulence in
affecting particle pitch-angle scattering and momentum
diffusion.
The ratio of D�� for gyroscale over energy-containing–

scale turbulence is given by

DG
��

DEC
��

¼ 1:5

ln 200� ln v=U0ð Þ : ð42Þ

In this case the ratio is smaller than one for proton kinetic
energies E < 2 MeV approximately. Clearly gyroscale two-
dimensional turbulence is more important than small-scale
two-dimensional turbulence in causing pitch-angle scat-
tering and by implication momentum diffusion. In fact, the
pitch-angle scattering rates for energy-containing–scale and
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gyroscale two-dimensional turbulence are basically of the
same order of magnitude at Earth for a significant range of
super-Alfvénic particle energies. Thus, a good estimate of
particle pitch-angle scattering and momentum diffusion by
dynamic two-dimensional turbulence can be achieved by
considering either energy-containing scales or gyroscales.

6. PITCH-ANGLE SCATTERING AND MOMENTUM
DIFFUSION BY TWO-DIMENSIONAL TURBULENCE IN

THE SOLAR WIND

In the static limit, QLT predicts in general that transverse
two-dimensional electric and magnetic field fluctuations have
no significant effect on particle pitch-angle scattering and
momentum diffusion irrespective of the scale length of the
two-dimensional fluctuations as discussed above. Thus, only
static slab fluctuations will affect particle pitch-angle scatter-
ing and momentum diffusion within the framework of two-
component (two-dimensional plus slab) turbulence. The static
assumption is good for high-energy particles such as Galactic
or anomalous cosmic rays in the solar wind where v3 �U?
for the two-dimensional component and v3VA in the case of
Alfvén waves. It remains to be determined whether particles
with super-Alfvénic but sub–cosmic-ray speeds will respond
significantly to the time dependence of the two-dimensional
turbulence component caused by nonlinear interactions. More
specifically, we want to determine whether pitch-angle scat-
tering and momentum diffusion caused by dynamic two-
dimensional turbulence can in principle be comparable to the
contribution from parallel-propagating Alfvén waves in the
quiet low-latitude solar wind. We focus our comparison on
the super-Alfvénic solar wind between the Sun and 5 AU in
the inner heliosphere.

The particle pitch-angle and momentum diffusion coef-
ficients due to interaction with parallel-propagating Alfvén
waves (Schlickeiser 1989) are

DA
�� ¼ D0 1� �2

� � 1þ �c
2

� �
1� �VA

v

� �2 v�� VAj j
�lck

� �s�1

þ D0 1� �2
� � 1� �c

2

� �
1þ �VA

v

� �2 v�þ VAj j
�lck

� �s�1

;

DA
pp ¼ DA

��

pVA

v

� �2

rA; ð43Þ

where D0 ¼ 2�2ðs� 1Þðh�B2
?iA=B2

0Þ�. In equation (43) � is
the particle gyrofrequency, h�B2

?iA is the energy density in
one-dimensional transverse magnetic field fluctuations asso-
ciated with parallel-propagating Alfvén waves, and lck is the
correlation length associated with the inertial range of the
power spectrum of Alfvén waves with spectral index s.

Now we discuss the parameters specified for calculating the
diffusion coefficients. It has been assumed in equations (20),
(39), and (40) that the two-dimensional spectral density
E�Bðk?Þ / ðk?lc?Þ�5=3

, which is consistent with solar wind
observations (Goldstein et al. 1995) and theory (Goldreich &
Sridhar 1995; Matthaeus et al. 1998). For the Alfvén wave
spectrum we consider two cases, namely, a Kolmogorov
spectrum E�BðkkÞ / ðkklckÞ�5=3

so that s ¼ 5=3 in equa-
tion (43), and a steeper spectrum E�BðkkÞ / ðkklckÞ�2

. The
latter assumption of a steeper spectrum is qualitatively con-
sistent with some theory and simulations (Shebalin et al. 1983;
Goldreich & Sridhar 1995; Matthaeus et al. 1998; Cho &
Lazarian 2002). However, there is no observational evidence

for such significant deviations from a Kolmogorov power law
in the solar wind.

It is assumed that 85% of the energy density in MHD fluc-
tuations is located in the two-dimensional component and 15%
in the parallel component following the example of Bieber et al.
(1996). The dependence of the energy density on heliocentric
distance r is assumed to be r�3. This radial dependence agrees
well with observations (Zank et al. 1996).

For the correlation length in the power spectra we assumed
lck ¼ lc? ¼ 0:01 AU at Earth (Goldstein et al. 1995). There is
no observational evidence that these correlation scales differ at
low latitudes in the solar wind. The correlation length is kept
unchanged when the Alfvén wave power-law spectrum is
steepened from a power law with index from s ¼ 5

3
to 2.

Observations also suggest that the turbulence correlation
length increases with heliocentric distance r. We used lc / r1=2,
which reproduces the correlation length observations suffi-
ciently well in the inner heliosphere (Smith et al. 2001).

The dependence of the magnitude of the large-scale magnetic
field on heliocentric distance is specified according to the Parker
model whereby B0 / 1=r for r3 1 and B0 / 1=r2 for rT1.
We choose �B?=B0 ¼ 0:2 at Earth orbit. The rms of the turbu-
lent two-dimensional velocity fluctuations �U? ¼ ð�B?=B0ÞVA

assuming equipartition in the energy of two-dimensional ve-
locity and magnetic field fluctuations, where at Earth the Alfvén
speedVA � 40 km s�1 so that �U? � 2 km s�1. Close to the Sun
�U? / r�1=2, while at large distances �U? / r�1 approxi-
mately. For the Alfvén ratio rAwe specify rA ¼ 1 closer to the
Sun and let it decrease linearly to a value of 0.5 at 2 AU from the
Sun, beyond which it is kept constant (Goldstein et al. 1995).

In Figure 1 we show the pitch-angle diffusion coefficientD��

in inverse time units of S�1 (1 S ¼ 3:74� 105 s � 4:3 days) as
a function of the cosine of the particle pitch angle � at Earth for
1 keV protons. The top curve labeled ‘‘A’’ denotes D�� for
parallel-propagating Alfvén waves with a Kolmogorov mag-
netic field fluctuation power spectrum assumed to contain all
the power in MHD fluctuations, the curve labeled ‘‘AQ2DK’’
represents Alfvén waves with a Kolmogorov power spectrum
having 15% of the fluctuation power, while the curve with the
label ‘‘AQ2D2’’ was calculated for Alfvén waves with the same
fraction of total fluctuation power but with a steeper k�2

k
spectrum. The bottom two curves, representing dynamic two-
dimensional fluctuations in different wavenumber regimes,
carry most of the remaining 85% allocated to the total two-
dimensional turbulence component. The curve with the label
‘‘2DI’’ represents energy-containing–scale two-dimensional
fluctuations and carries most of the total two-dimensional
fluctuation power, while the bottom curve with the label
‘‘2DS’’ denotes small-scale two-dimensional turbulence car-
rying about 1% of the total two-dimensional fluctuation power.
For all the two-dimensional turbulence curves Kolmogorov
power spectra were assumed.

The main result is that the pitch-angle scattering rate by the
minor parallel-propagating Alfvén wave component is on the
whole larger than for the two-dimensional turbulence compo-
nent of dynamic quasi–two-dimensional MHD turbulence in
the solar wind for 1 keV protons at Earth for all cases shown. It
is only for the steeper Alfvén wave power spectrum [E�BðkkÞ /
k�2
k ] that the pitch-angle scattering rate by the energy-
containing–scale two-dimensional component approaches the
rate of the Alfvén waves, and that only occurs at large pitch
angles (small �-values). It must be remembered, however, that
QLTs for energy-containing–scale two-dimensional fluctua-
tions are possibly inaccurate to some degree at 1 AU because of
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a �20% deviation in the particle magnetic moment that should,
strictly speaking, be conserved in slowly varying fluctuations
(see x 5.1, eq. [24]).

Originally, people thought that Alfvén waves carried almost
all of the power in solar wind MHD fluctuations (see curve
labeled ‘‘A’’ in Fig. 1). The consequence of the two-component
model is that the Alfvén wave–induced pitch-angle scattering
rate of 1 keV protons at Earth is approximately an order of

magnitude lower than originally thought, mainly because only
15% of the total magnetic fluctuation energy resides in the
wavelike slab modes (Bieber et al. 1994, 1996). If in addition
the Alfvén wave power spectrum of magnetic field fluctuations
is indeed steeper than a Kolmogorov spectrum as suggested by
quasi–two-dimensional MHD theory and simulations, we find
that the scattering rate by Alfvén waves for 1 keV protons is
about 2 orders of magnitude smaller than people originally
thought.
We also confirmed that small-scale dynamic two-

dimensional turbulence is much less efficient in causing par-
ticle pitch-angle scattering than energy-containing–scale or
gyroscale two-dimensional turbulence (see last paragraph of
x 5.4), partly because there is much less energy in the small-
scale fluctuations. The main cause, however, is that par-
ticles see decorrelated fluctuations on a much shorter time-
scale of less than a gyroperiod in the case of small-scale
two-dimensional turbulence, while for intermediate-scale tur-
bulence the decorrelation timescale is determined by the tur-
bulence dynamic timescale, which at 1 AU is about 4 orders
of magnitude longer for 1 keV protons (see eqs. [21] and [30]).
In Figure 2 we show D�� as a function of heliocentric dis-

tance between 0.05 and 5 AU in the ecliptic plane for 1 keV
protons. The curves are labeled in the same manner as in
Figure 1. The D�� values are averaged over � for � < 0 in
Figure 2a and for � > 0 in Figure 2b. For � < 0 the results are
qualitatively the same as in Figure 1. The Alfvén wave com-
ponent produces on average more pitch-angle scattering than
the two-dimensional turbulence component at all heliocentric
distances if � < 0. However, the scattering rate for energy-
containing–scale two-dimensional turbulence is well within an
order of magnitude of the lowest scattering rate given by Alfvén
waves with a steepened k�2

k magnetic field fluctuation energy
density inside 1 AU (the average D�� value for those Alfvén
waves is about a factor of 4 more than for the two-dimensional
component at �0.2 AU). Beyond 1 AU the Alfvén wave pitch-
angle scattering rate becomes increasingly dominant.
In the case of � > 0 (Fig. 2b), the domination of Alfvén

waves over two-dimensional turbulence in causing pitch-angle
scattering is predicted to be less strong inside 1 AU but the same
beyond 1 AU compared to Figure 2a. The curve representing
the steepened Alfvén wave k�2

k magnetic fluctuation power

Fig. 2.—(a) Theoretical pitch-angle diffusion coefficient D�� averaged over � < 0 values in units of S�1 (1 S ¼ 4:33 days) for 1 keV ions as a function of
heliocentric distance in astronomical units (AU) at low heliolatitudes. The curves are labeled the same way as in Fig. 1. (b) Same as (a), except that D�� was
averaged over � > 0 values.

Fig. 1.—Theoretical pitch-angle diffusion coefficient D�� in units of S�1

(1 S ¼ 4:33 days) for 1 keV ions at Earth for quiet solar wind conditions as a
function of � (� ¼ cos �, where � is the particle pitch angle). The top dashed
curve labeled ‘‘A’’ denotes the D�� for standard Alfvén waves propagating
parallel to the large-scale magnetic field with a Kolmogorov power spectrum
in the inertial range. The curve labeled ‘‘AQ2DK’’ represents the same case as
the top curve, except for the assumption that only 15% of the total MHD
fluctuation energy density is in the Alfvén mode, and the curve labeled
‘‘QA2D2’’ is valid for the same parameters as the ‘‘AQ2DK’’ case, except that the
inertial range power spectrum has a k�2

k dependence on parallel wavenumber
as suggested by some MHD turbulence simulations. The solid curve labeled
‘‘2DI’’ denotes D�� as we predict with our new QLT for dynamic two-
dimensional turbulence in the limit of energy-containing–scale fluctuations
where k?T1=rg , while the bottom curve labeled ‘‘2DS’’ represents small-
scale dynamic two-dimensional turbulence (k? 31). In both two-dimensional
cases it is assumed that we have a Kolmogorov power spectrum in the inertial
range and that 85% of the total MHD magnetic field fluctuation energy density
is in the two-dimensional turbulence mode.
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spectrum has a reduced pitch-angle scattering rate that ap-
proximately equals the scattering rate of the energy-con-
taining–scale two-dimensional turbulence component for
heliocentric distances less than �0.2 AU from the Sun. The
reason is that the cross helicity increases with decreasing he-
liocentric distance close to the Sun so that Alfvén waves
propagating away from the Sun mostly cause pitch-angle
scattering (first term in eq. [43]). The first term has a resonance
gap for � ¼ þvA=v, close to � ¼ 1 at 0.05 AU, for example, so
that pitch-angle scattering is predicted to be considerably less
for � > 0 than for � < 0. In reality, cyclotron wave damping
will occur so that particles will see decorrelated fluctuations on
the damping timescale and a finite scattering rate will be
maintained in the resonance gap (Schlickeiser & Achatz 1993).
One might question the accuracy of the diffusion coefficients
for energy-containing–scale two-dimensional turbulence with
which the Alfvén wave diffusion coefficients are compared as a
result of the violation in the magnetic moment in the derivation
of the two-dimensional diffusion coefficients. However, the
scattering rate due to the energy-containing–scale two-
dimensional fluctuations is more accurate closer to the Sun
because the violation of the conservation of magnetic moment
becomes as small as 6% at 0.05 AU as a result of the decrease in
�B?/B0 with decreasing heliocentric distance. Thus, we
conclude that also for � > 0 the average D�� inside 1 AU will
be dominated by Alfvén waves in the case of the steepened
Alfvén wave power spectrum.

The same conclusions can be drawn from the momentum
diffusion coefficients because these coefficients differ from the
pitch-angle coefficients by the same factor regardless of
whether one considers two-dimensional turbulence or Alfvén
waves. In Figure 3 we show the �-averaged momentum dif-
fusion coefficients in units of GV2 S�1 following the same
format as in Figure 2 for D��. The main differences are that the
Dpp values are smaller in magnitude and have a stronger de-
pendence on heliocentric distance when compared to the D��

values in Figure 2 as a result of the presence of the square of
the Alfvén speed in Dpp expressions (the dependence of the
Alfvén speed on heliocentric distance is approximately VA /
1=r close to the Sun).

The dominance of the Alfvén wave component over the
two-dimensional component in causing quasi-linear particle
pitch-angle scattering and momentum diffusion becomes more

pronounced with increasing particle energy because D�� for
two-dimensional turbulence is at most weakly dependent on
particle speed (see eq. [20]) while D�� / v 2=3 for Alfvén
waves (see eq. [43]) with a Kolmogorov power spectrum.
Thus, at high energies in the solar wind, such as cosmic-ray
energies, the role of dynamic two-dimensional turbulence in
pitch-angle scattering and momentum diffusion will be totally
negligible relative to the Alfvén wave component. This sug-
gests that the static two-dimensional turbulence assumption
that produces zero pitch-angle scattering and momentum dif-
fusion in QLT is a very good one at cosmic-ray energies. To
good approximation it seems to us that one has to consider
only the role of the Alfvénic wave component in particle
pitch-angle scattering and momentum diffusion at high and
low super-Alfvénic particle speeds within the context of
transverse MHD fluctuations associated with the two-
component model of solar wind MHD turbulence.

7. SUMMARY AND CONCLUSIONS

In the past, quasi-linear theory (QLT) was almost exclu-
sively used to study resonant interaction of energetic charged
particles with waves such as Alfvén waves rather than turbu-
lence in the solar wind. The notable exception is the work by
Bieber et al. (1994), where a QLT for energetic particle pitch-
angle scattering by dynamic two-dimensional MHD magnetic
field turbulence is presented but little detail is given (also note
recent work on the subject by Shalchi & Schlickeiser 2003).
This work was motivated by the emerging viewpoint that the
dominating component of MHD turbulence in the solar wind is
nonpropagating but highly active two-dimensional turbulence
structures convected with the solar wind flow, while Alfvén
waves propagating parallel to the background magnetic field
(also known as one-dimensional slab turbulence in the static
limit) form a minor second component.

In this paper a detailed discussion is presented of QLT from
a turbulence perspective. In an extension of the Bieber et al.
(1994) work, which treats only dynamic two-dimensional
magnetic turbulence fluctuations, turbulent transverse two-
dimensional electric fields are also included in this theory.
This enables us to study the role of dynamic two-dimensional
turbulence in the stochastic acceleration of energetic particles.
The level of turbulence, which is treated as a free parameter by

Fig. 3.—(a) Momentum diffusion coefficient Dpp in units of GV2 S�4 (1 S ¼ 4:33 days) for 1 keV ions averaged over � < 0 values as a function of heliocentric
distance in AU at low heliolatitudes. The curves have the same labels as in Fig. 1. (b) Same as (a), except that Dpp was averaged over � > 0 values.
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Bieber et al. (1994), is estimated in this paper within the
framework of Kolmogorov turbulence theory.

The general expressions for the diffusion coefficients are
complicated, but we succeeded in deriving tractable expres-
sions when computing the contributions from small-scale
(k?rg 31), gyroscale (k?rg � 1), and energy-containing–
scale two-dimensional fluctuations (k?rgT1). We found that
the particle pitch-angle scattering and momentum diffusion
rates caused by energy-containing–scale and gyroscale dy-
namic two-dimensional turbulence are of the same order
of magnitude, while the contribution of small-scale two-
dimensional turbulence is negligible at low sub–cosmic-ray
but super-Alfvénic particle energies.

We also calculated the values for the two-dimensional tur-
bulence Fokker-Planck diffusion coefficients in the quiet solar
wind between 0.05 and 5 AU in the ecliptic plane using
standard solar wind parameters. These values were compared
with the values of the diffusion coefficients due to parallel-
propagating Alfvén waves. Our main result is that dynamic
two-dimensional turbulence does indeed produce significant
pitch-angle scattering of energetic particles, as well as mo-
mentum diffusion. However, even at low energies of the order
of 1 keV for protons, we find that the Alfvénic component is
more important for pitch-angle scattering and momentum
diffusion than the two-dimensional component by about 2
orders of magnitude on average. If the Alfvén wave compo-
nent is weakened from a Kolmogorov power spectrum to a
k�2
k dependence for the power spectrum as suggested by
some MHD turbulence simulations, we find that the domi-
nation of Alfvén waves drops to less than an order of mag-
nitude for distances less than about 1 AU from the Sun at
1 keV proton energies. There is, however, no evidence from
solar wind observations that Alfvén wave power spectra de-
viate significantly from a Kolmogorov power law.

This domination of Alfvén waves in particle diffusive
transport grows with increasing energy. Thus, at high energies
in the solar wind (cosmic-ray energies), the role of dynamic
two-dimensional turbulence in pitch-angle scattering and

momentum diffusion will be totally negligible relative to the
Alfvén wave component. This suggests that the assumption
of static two-dimensional turbulence that produces zero
pitch-angle scattering and momentum diffusion in QLT is
good at cosmic-ray energies. To good approximation it
seems to us that one has to consider only the role of the
Alfvénic component in particle pitch-angle scattering and
momentum diffusion at high cosmic-ray and low sub–cosmic-
ray super-Alfvénic particle speeds. That is true within the
context of transverse MHD fluctuations associated with the
two-component model of incompressible solar wind MHD
turbulence during quiet solar wind conditions.
However, more theoretical work needs to be done in the

future before final conclusions can be drawn. The assumption
that the particle orbit is undisturbed during the characteristic
time of interaction with weak energy-containing–scale two-
dimensional turbulence needs to be reinvestigated. Particles
that interact with energy-containing–scale turbulence also in-
teract simultaneously with Alfvén waves on a much shorter
timescale so that the particle orbit might in principle be sig-
nificantly disturbed on the characteristic timescale associated
with energy-containing–scale two-dimensional turbulence.
Our results indicate that small-scale Alfvén wave pitch-angle
scattering rates are sufficient to disturb the particle orbit. In
addition, several parameters come into play in the determina-
tion of the relative importance of resonant and turbulent dif-
fusion; we defer the important further exploration of this issue
to future work.
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APPENDIX

QUASI-LINEAR KINETIC THEORY FOR CHARGED PARTICLE TRANSPORT IN TWO-DIMENSIONAL TURBULENCE:
THE DETAILS

The Vlasov or collisionless Boltzmann equation is given by

@f

@t
þ p

m
G
@f

@x
þ q Eþ p��� B

m

� �
G
@f

@p
¼ 0 ðA1Þ

and describes the evolution of a charged particle distribution f ðr; p; tÞ as a function of position r, momentum p, and time t. Particles
with massm and net charge q are influenced by plasma electromagnetic fields where E is the electric field and B is the magnetic field.

Following QLT, the electromagnetic fields, plasma flow velocity U (specified in E according to eq. [A3]), and f are separated into
slowly evolving large-scale and more rapidly fluctuating smaller scale random parts:

E ¼hEi þ �E; hEi ¼ E0; h�Ei ¼ 0;

B ¼hBi þ �B; hBi ¼ B0; h�Bi ¼ 0;

U ¼hUi þ �U; hUi¼ U0; h�Ui¼ 0;

f ¼h f i þ �f ; h f i ¼ f0; h�f i ¼ 0; ðA2Þ

where h: : :i denote ensemble average quantities. The electromagnetic fields are assumed to vary smoothly on a large scale L, while
exhibiting energy-containing–scale random variations on the correlation length scale lc?, where lc?TL. The power spectrum of
fluctuations ranges from scales on the order of the correlation length to smaller than a particle gyroradius rg. For simplicity, the
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inertial range extends to infinite wavenumber, thereby ignoring kinetic damping effects. In the large-scale solar wind, on scale
lengths L � lc?, away from current sheets or shocks, the most important contribution to the total electric field is from the motional
electric field, E ¼ �U ��� B, where U and B are measured in the observer frame. Using equation (A2) and assuming small-
amplitude fluctuations (�BTB0 and �UTU0), we find

E0 ¼ �U0 ��� B0;

�E ¼ �U0 ��� �B� �U ��� B0; ðA3Þ

neglecting terms that are quadratic in the fluctuations. Within the framework of a quasi-linear theory based on linear waves, two-
dimensional turbulence has zero frequency (see x 1) whereby the Faraday relationship between electric field and magnetic field
fluctuations is lost. However, from a turbulence perspective the relationship between electric and magnetic field fluctuations is
established by using equation (A3). The connection between velocity and magnetic fluctuations is described by the Alfvén ratio
parameter (see text below eq. [A25]).

We substitute equation (A2) into equation (A1) and subtract the ensemble average of equation (A1) from equation (A1). The
resulting equation for �f is linearized by assuming �BTB0, �UTU0, �f Tf0 and dropping terms that are quadratic in these
small parameters. Further simplification is achieved by assuming the frame comoving with the plasma (U0 ¼ 0). Consequently,
equation (A3) in the comoving frame becomes E0

0 ¼ 0 and �E0 ¼ ��U 0 ��� B0
0. For notational convenience, the primes are dropped

in the rest of the text below. The equation for �f ðx; p; tÞ then becomes

@�f

@t
þ p

m
G
@�f

@x
þ p��� 6 G

@�f

@p
¼ �q �Eþ p��� �B

m

� �
G
@f0
@p

; ðA4Þ

where 6 ¼ qB0=m is the particle gyrofrequency. We specify a Cartesian coordinate system (x, y, z) in the comoving frame with its
z-axis aligned with the large-scale magnetic field so that B0 ¼ B0ez. For the two-dimensional MHD turbulence component, we define

�Uðx; yÞ ¼ �Uxðx; yÞex þ �Uyðx; yÞey;
�Bðx; yÞ ¼ �Bxðx; yÞex þ �Byðx; yÞey; ðA5Þ

so that

�Eðx; yÞ ¼ ��UyB0ex þ �UxB0ey: ðA6Þ

Thus, also the induced electric field fluctuations are transverse to B0.
We also introduce Cartesian coordinates ( px, py, pz) of the particle momentum p in the mean field–aligned comoving frame

(U0 ¼ 0) so that pz is the momentum component along the large-scale magnetic field. Expressed in terms of spherical coordinates,
the momentum components become ( p sin � cos 
, p sin � sin 
, p cos �), where p is the magnitude of the particle momentum, � is
the particle pitch angle, and 
 is the particle phase angle.

The method of characteristic solution to equation (A4) is

�f ðr; p; tÞ ¼
Z t

t0

dt 0 �q sin �
@f 00
@p

�E 0
x cos 


0 þ �E 0
y sin 


0
� �� �

þ
Z t

t0

dt 0 �q cos �
1

p

@f 00
@�

�E 0
x cos 


0 þ �E 0
y sin 


0
� �� �

þ
Z t

t0

dt 0 ��

B

@f 00
@�

��By cos 

0 þ �Bx sin 


0� �� �
þ �f ðr0; p0; t0Þ; ðA7Þ

where 
0 ¼ 
ðt 0Þ, �E 0
i ¼ �Eiðrðt 0Þ; t 0Þ, �Biðrðt 0Þ; t 0Þ, and f0 ¼ f0ðrðt 0Þ; pðt 0Þ; t 0Þ. Furthermore, r0 ¼ rðt0Þ ¼ ½x0; y0; z0� is the position

of particles with momentum p0 and phase angle 
ðt0Þ ¼ 
0 at initial time t0. The characteristic solution of equation (A4) also yields
the particle trajectory described by particle phase angle 
(t) and particle position rðtÞ. Thus,


 t 0ð Þ ¼ 
0 � � t 0 � t0ð Þ; x t 0ð Þ ¼ x0 � rg sin 
 t 0ð Þ � sin 
0½ �;
y t 0ð Þ ¼ y0 þ rg cos 
 t 0ð Þ � cos 
0½ �; z t 0ð Þ ¼ z0 þ v cos � t 0 � t0ð Þ; ðA8Þ

where rg ¼ v sin �=� is the particle gyroradius. These expressions indicate that the particles execute approximately undisturbed
helical trajectories along B0 (no changes in � and p) on the characteristic timescale of interaction with small-amplitude turbulence
fluctuations, namely, the particle correlation time t pc . Therefore, the value for t

p
c must be restricted so that t 0 � t0 is small enough to

ensure that �f Tf0 (Jokipii 1972). The particle trajectories are allowed to be distorted significantly only after many interactions
with fluctuations on large spatial and long timescales as discussed below.

In equation (A7) we assumed a gyrotropic average particle distribution (@f0=@
 ¼ 0), which means that cross field diffusion and
drifts are negligible. This implies that the particle gyroperiod tg ¼ 1=�Tt pc or that the particle gyroradius rgTlc?, where lc? is
the correlation length of the turbulence. For typical solar wind parameters at 1 AU (lc? ¼ 0:01 AU, B0 ¼ 5 nT) the derivation is
valid for energetic particles with rigidity RT2:5 GV in the solar wind. However, evidence has been presented for large-scale cross
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field diffusion (mainly due to large-scale turbulent magnetic fields) and for the importance of drifts in the heliosphere (Giacalone &
Jokipii 1999) in this rigidity interval, which implies that the theory might be applicable to lower energies than suggested above.

It is useful to substitute�t ¼ t � t 0 in equations (A7) and (A8), where t is the time of observation and t 0 denotes the passage of time
as the particle follows its helical trajectory. Because t ¼ ½t0; t�, where t0 is the initial time, it implies that�t ¼ ½t � t0; 0�. With regard
to �t, we are following the particle motion backward in time. The advantage of this substitution is that the final transport equation
does not require the specification of the initial values of the particle helical orbit as shown below. The solution for �f then becomes

�f ðr; p; tÞ ¼
Z t�t0

0

dð�tÞ �q sin �
@f0
@p

�Ex cos 
þ �Ey sin 

� �� �

þ
Z t�t0

0

dð�tÞ �q cos �
1

p

@f0
@�

�Ex cos 
þ �Ey sin 

� �� �

þ
Z t�t0

0

dð�tÞ � �

B

@f0
@�

��By cos 
þ �Bx sin 

� �� �

þ �f ðr0; p0; t0Þ; ðA9Þ

where 
 ¼ 
ðt ��tÞ, �Bi ¼ �Biðrðt ��tÞ; t ��tÞ, �Ei ¼ �Eiðrðt ��tÞ; t ��tÞ, and f0 ¼ f0ðrðt ��tÞ; pðt ��tÞ; t ��tÞ.
Expressions for the undisturbed particle helical trajectory 
ðt ��tÞ and the components of rðt ��tÞ, now independent of initial
values, are given by


ðt ��tÞ ¼ 
ðtÞ þ �ð�tÞ; xðt ��tÞ ¼ xðtÞ þ rg½ sin 
ðtÞ � sin 
ðt ��tÞ�;
yðt ��tÞ ¼ yðtÞ � rg½ cos 
ðtÞ � cos 
ðt ��tÞ�; zðt ��tÞ ¼ zðtÞ � v cos �ð�tÞ: ðA10Þ

After substituting equation (A2) into equation (A1), taking the average of equation (A1), and exploiting the comoving frame,

@f0
@t

þ p

m
G
@f0
@x

þ p��� 6 G
@f0
@p

¼ �q �Eþ p��� �B

m

� �
G
@�f

@p


 �
; ðA11Þ

where the nonlinear term in fluctuating quantities on the right-hand side contains information about the average effect of electro-
magnetic field fluctuations on the particle distribution. The last term on the right-hand side of equation (A7) can be neglected when
equation (A7) is substituted into equation (A11) because, for homogeneous stationary turbulence, h�Fðr; p; tÞ G Hp �f ðr0; p0; t0Þi ¼
Rðr� r0; p� p0; t � t0Þ ¼ 0 on long timescales (Jokipii 1972), where �F is the Lorentz force due to electromagnetic fluctuations
and t pc is the particle correlation time. This means that t � t0 3 t pc and therefore r� r0j j3 lc?.

In addition, because we are considering weak turbulence (small changes in pitch angle occur during particle interaction with the
turbulence), particles will need many pitch-angle scatterings for efficient spatial diffusion so that lc?Tkk, where kk is the parallel
mean free path for spatial diffusion. In addition, we assume that the large-scale magnetic field appears uniform to the diffusing
particles so that kkTL. Thus, the theory is valid for rgTlc?TkkTL.

Expressed in Cartesian coordinates with the momentum coordinates transformed into spherical coordinates, the right-hand side
of equation (A11) becomes

�q �Eþ p��� �B

m

� �
G
@�f

@p


 �
¼� 1
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@p
p2q sin � �f��E
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� 1

sin �

@

@�

�

B0

sin � �f��B
� � �

; ðA12Þ

where

��Eðr; tÞ ¼ �Exðr; tÞ cos 
ðtÞ þ �Eyðr; tÞ sin 
ðtÞ;
��Bðr; tÞ ¼ ��Byðr; tÞ cos 
ðtÞ þ �Bxðr; tÞ sin 
ðtÞ: ðA13Þ

Closure of equation (A11) is achieved by the substitution of equation (A9). Consequently, equation (A12) acquires the form of a
diffusion equation

�q �Eþ p��� �B

m
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G
@�f

@p
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¼ 1

sin �
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þ D�p
@f0
@p

� �
þ 1
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@p

� �� �
; ðA14Þ

where the diffusion coefficients can be expressed as

D��ðr; tÞ ¼ q2 sin � cos2�
1

p2

Z 1

0

dð�tÞ cos ð��tÞ R�E �Exx c2 þ R�E �Eyx csþ R�E �Exy csþ R�E �Eyy s2
� �

þ q2 sin � cos2�
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Z 1

0

dð�tÞ sin ð��tÞ R�E �Exx cs� R�E �Eyx c2 þ R�E �Exy s2 � R�E �Eyy cs
� �
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Here c ¼ cos 
ðt ��tÞ ¼ cos ð
ðtÞ þ ��tÞ and s ¼ sin 
ðt ��tÞ ¼ sin ð
ðtÞ þ ��tÞ (see eq. [A10]), and Rij represents two-
point, two–time correlation functions for the two-dimensional fluctuations along the undisturbed particle orbit. To derive equations
(A14)–(A18), 
(t) was transformed to 
ðt ��tÞ according to equation (A10) so that

cos 
ðtÞ ¼ cos 
ðt ��tÞ cos ð��tÞ þ sin 
ðt ��tÞ sin ð��tÞ;
sin 
ðtÞ ¼ sin 
ðt ��tÞ cos ð��tÞ � cos 
ðt ��tÞ sin ð��tÞ: ðA19Þ

The various two-point, two–time correlation functions imply that

R�B �Bij ðr; rðt ��tÞ; t; t ��tÞ ¼ h�Biðr; tÞ�Bjðrðt ��tÞ; t ��tÞi;
R�E �Eij ðr; rðt ��tÞ; t; t ��tÞ ¼ h�Eiðr; tÞ�Ejðrðt ��tÞ; t ��tÞi;
R�E �Bij ðr; rðt ��tÞ; t; t ��tÞ ¼ h�Eiðr; tÞ�Bjðrðt ��tÞ; t ��tÞi;
R�B �Eij ðr; rðt ��tÞ; t; t ��tÞ ¼ h�Biðr; tÞ�Ejðrðt ��tÞ; t ��tÞi; ðA20Þ

where the components of rðt ��tÞ are determined by equation (A10).
In addition, it was assumed that the particle correlation time t pcTt�, where t� is the timescale for particle pitch-angle scattering.

This implies that Rij ! 0 on a much shorter timescale than the timescale over which the particle orbit deviates from an undisturbed
helical trajectory. It is only then that the assumption of an undisturbed helical trajectory can be defended. Because the integrand of
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the time integrals contributes only on a relatively short time t pc rather than the timescale t� to the time integration, it allows us to
do the following in equations (A14)–(A18): (1) extract the derivatives of f0 in front of the time integrals because they are changing on
the longer timescale t� as a result of the assumption of gyrotropy ( f0 is not a function of the particle phase angle, which varies on a
timescale much shorter than t�), and (2) extend the upper time integration boundary to 1 (t0 ! �1 in eq. [A9]).

Considerable simplification of the expressions in equations (A15)–(A18) can be achieved if one restricts oneself to turbulence
that is axisymmetric about B0. According to Matthaeus & Smith (1981), the axisymmetry condition for the correlation matrix Rð�rÞ
under an arbitrary rotation 
0 about the direction of the large-scale magnetic field B ¼ B0ez is expressed by Rð�rÞ ¼ ORðOT �rÞOT,
where both the left- and right-hand sides are independent of 
0. Thus,

Rð�rÞ ¼
Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

2
64

3
75 ¼ OR OT �r

� �
OT

¼
Rxxc

2 þ Rxyscþ Ryxscþ Ryys
2 �Rxxscþ Rxyc

2 � Ryxs
2 þ Ryysc Rxzcþ Ryzs

�Rxxsc� Rxys
2 þ Ryxc

2 þ Ryysc Rxxs
2 � Rxysc� Ryxscþ Ryyc

2 �Rxzsþ Ryzc

Rzxcþ Rzys �Rzxsþ Rzyc Rzz

2
64

3
75; ðA21Þ

where c ¼ cos 
0, s ¼ sin 
0, O is the rotation matrix given by

O ¼
cos 
0 sin 
0 0

� sin 
0 cos 
0 0

0 0 1

2
64

3
75; ðA22Þ

and OT is its transpose so that all the matrix elements on the left- and right-hand sides of equation (A21) are independent of 
0.
Inspection of equations (A15)–(A18) reveals that the Rij terms in each bracket correspond exactly with the matric element
expressions on the right-hand side of equation (A21). By assuming that 
0 ¼ 
ðt ��tÞ and substituting equation (A19) into
equation (A10), one finds, for the case 
ðt ��tÞ ¼ 0,

�r ¼ �rg sin ð��tÞ; rg sin �ð1� cos ð��tÞ;�v cos ��t
� 	

: ðA23Þ

Based on equation (A23), one finds that OT �r becomes

OT �r
� �

x
¼� rg cos 
ðt ��tÞ sin�t 0 þ sin 
ðt ��tÞ 1� cos��tð Þ½ �;

OT �r
� �

y
¼ rg � sin 
ðt ��tÞ sin��t þ cos 
ðt ��tÞ 1� cos��tð Þ½ �;

OT �r
� �

z
¼� v cos ��t; ðA24Þ

which agrees with equation (A10) after substitution of equation (A19) into equation (A10). Thus, for the case of axisymmetric
turbulence the Rij terms in each bracket in equations (A15)–(A18) are independent of 
ðt ��tÞ so that without loss of generality
we can set 
ðt ��tÞ ¼ �=2 in these terms. This useful simplification was to our knowledge first pointed out by Bieber (J. W.
Bieber 2001, private communication) and is discussed in detail by Hattingh (1998, p. 41) after communication with Bieber.

Further simplification of equations (A15)–(A18) is possible if the electric field fluctuations are expressed in terms of velocity
fluctuations using equation (A6). We now assume, in accord with nearly incompressible MHD theory (Zank & Matthaeus 1992),
that the leading-order turbulence fields are incompressible so that both velocity and magnetic field fluctuations are subject to the
solenoidal condition. In addition, we assume that all the relevant correlation functions are similar to one another, apart from
possibly differences in the overall energy budgets. In accord with this structural similarity hypothesis (Townsend 1976, p. 105), we
assume that

R
fg
ij ðr; rðt ��tÞ; t; t ��tÞ ¼ k fgRijðr; rðt ��tÞ; t; t ��tÞ; ðA25Þ

where both f and g could be either �U or �B and Rij is a universal correlation function for each pair i and j independent of the
combination of �U and �B one considers. We assume that the trace of Rijð0Þ ¼ 1 whereby k fg can be interpreted as the energy in
two-dimensional fluctuations. By taking the trace of equation (A25), one finds that

k�B �B ¼ �VA G �VAh i4��; k�U �U ¼ h�U G �Ui; k�U �B ¼ �U G �VAh i
ffiffiffiffiffiffiffiffi
4��

p
: ðA26Þ

Upon introducing definitions for the Alfvén ratio rA and the cross helicity �c given by

rA ¼ h�U G �Ui
h�VA G �VAi

; �c ¼
2h�U G �VAi

h�U G �Ui þ h�VA G �VAi
; ðA27Þ
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where � is the mass density of the solar wind plasma, it follows that

R�U �U
ij ¼ rAV

2
A

R�B �Bij

B2
0

; R�U �B
ij ¼ 1

2
�cðrA þ 1ÞB0VA

R�B �Bij

B2
0

: ðA28Þ

Substitution of the expressions in equation (A28) into the diffusion coefficient expressions given by equations (A15)–(A18) and
setting 
ðt ��tÞ ¼ �=2 in the terms in square brackets of the diffusion coefficient expressions result in compact expressions for
the diffusion coefficients that only depend on R�B �Bij . After simplification, the expressions for the diffusion coefficients in equations
(A15)–(A18) become

D�� ¼ sin ��2Tp
c cos2�rA

vA
v

� �2

þ cos �
VA

v

� �
�cðrA þ 1Þ þ 1

� �
;

Dpp ¼ sin2�rA�
2 pVA

v

� �2

Tp
c ;

Dp� ¼ sin ��2 pVA

v

� �
Tp
c cos �rA

vA
v

� �
þ 1

2
�cðrA þ 1Þ

� �
¼ Dp�; ðA29Þ

where time Tp
c , related to the particle decorrelation time, is given by

Tp
c ¼

R1
0

d�t cos ð��tÞR�B �Bxx � sin ð��tÞR�B �Byx

h i
B2
0

: ðA30Þ

Based on the condition for axisymmetric turbulence discussed above, we also set 
ðt ��tÞ ¼ �=2 in rðt ��tÞ given by
equation (A10) after substituting the expressions of equation (A19) into it so that we have the following simplified components for
the arguments of the two-point, two–time correlation functions:

xðt ��tÞ ¼ xðtÞ þ rg cos ð��tÞ � 1½ �; yðt ��tÞ ¼ yðtÞ � rg sin ð��tÞ; zðt ��tÞ ¼ zðtÞ � v cos ð��tÞ: ðA31Þ

What remains to be done is the evaluation of the time integral Tp
c . This is accomplished by applying the standard method of

Fourier transforms. For this purpose we assume homogeneous stationary turbulence, which means that

R�B �Bij ðr; rð��tÞ; t; t ��tÞ ¼ R�B �Bij ð�rð��tÞ;��tÞ ¼ R�B �Bji ð�rð�tÞ;�tÞ; ðA32Þ

where the components of �r are

�xð�tÞ ¼ �rg½cos ð��tÞ � 1�; �yð�tÞ ¼ þrg sin ð��tÞ; �zð�tÞ ¼ þv cos �ð�tÞ: ðA33Þ

The correlation functions can now conveniently be expressed in terms of a spatial Fourier transform so that

R�B �Bji ð�rð�tÞ;�tÞ ¼
Z

dk eik G�rð�tÞPjiðk;�tÞ ¼
Z

dk eik G�rð�tÞPjiðkÞ�ðk;�tÞ; ðA34Þ

where k is the turbulence wavenumber vector, PjiðkÞ is the energy spectrum tensor, and the time dependence is parame-
terized following Bieber et al. (1994) by the function �. Note that Tr

�
R�B �Bji

�
ð0Þ ¼

R
dkPiiðkÞ ¼ h�B G �Bi. The particle corre-

lation function R
�B �B
ji is expected to decay in time, and we adopt the exponential damping model (Bieber et al. 1994)

�ðk;�tÞ ¼ e��ðkÞ�t. Thus, we have

R�B �Bji ð�rð�tÞ;�tÞ ¼
Z

dk eik G�rð�tÞe��ðkÞ�tPjiðkÞ: ðA35Þ

It is convenient for axisymmetric turbulence to transform the turbulence wavevector k into cylindrical coordinates
ðk? cos�; k? sin�; kkÞ, where k? (kk) is the wavevector component perpendicular (parallel) to B0 and � is the phase angle of the
wavevector. Consequently, equation (A35) becomes

R�B �Bji ð�rð�tÞ;�tÞ ¼
Z 2�

0

d�

Z 1

�1
dkk

Z 1

0

dk? k?e
ik?rg cos �� cos ð�þ��tÞ½ �eikkv cos ��te��ðkk;k?Þ�tPjiðkÞ: ðA36Þ
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To simplify the integrals in equation (A34), it is useful to introduce the Jacobi-Anger expansion in terms of Bessel Functions Jn(x),
eix cos � ¼

P1
n¼�1 inein�JnðxÞ, and to make use of the relationships JnðxÞ ¼ ð�1ÞnJnð�xÞ and J�nðxÞ ¼ ð�1ÞnJnðxÞ. Thus,

R�B �Bji ð�rð�tÞy;�tÞ ¼
Z 2�

0

d�

Z 1

�1
dkk

Z 1

0

dk? k?
X1

m¼�1

X1
n¼�1

im�neiðm�nÞ�JmðxÞJnðxÞ

� e�in��teikkv cos ��te��ðkk;k?Þ�tPjiðkÞ; ðA37Þ

where x ¼ k?rg.
In order to do the time integrations for the two-dimensional turbulence component, we have to find expressions for Pjiðkk; k?Þ.
The general expression (Oughton, Rädler, & Matthaeus 1997) for Pij simplifies considerably in the case of axisymmetric two-

dimensional turbulence because it depends only on a single scalar function. In particular, one finds that

PijðkÞ ¼ �ij �
kikj

k2?

� �
E�BðkÞ; ðA38Þ

where k? is the wavevector perpendicular to the large-scale magnetic field (Oughton et al. 1997). Again using cylindrical
coordinates,

PxxðkÞ ¼ E�BðkÞ sin2 ; PyxðkÞ ¼ PxyðkÞ ¼ �E�BðkÞ cos  sin  ; ðA39Þ

where  is the wavevector angle.
By substituting equation (A39) into equation (A37), expressing the spectral energy density in the fluctuations in equation (A40)

as E�BðkÞ ¼ E�Bðk?Þ�ðkkÞ, and assuming �(k?) as appropriate for the two-dimensional turbulence component, we find that

R�B �Bxx ð�rð�tÞ;�tÞ ¼ �

2

Z 1

0

dk? k?
X1

n¼�1
Jn�2ðxÞJnðxÞ þ Jnþ2ðxÞJnðxÞ � 2J 2n ðxÞ

� 	
e�in��te��ðk?Þ�tE�Bðk?Þ;

R�B �Bxy ð�rð�tÞ;�tÞ ¼ Ryxð�rð�tÞ;�tÞ

¼ � �

2
i

Z 1

0

dk? k?
X1

n¼�1
Jn�2ðxÞJnðxÞ � Jnþ2ðxÞJnðxÞ½ �e�in��te��ðk?Þ�tE�Bðk?Þ: ðA40Þ

After substitution of equation (A40) into equation (A30) and resumming the series of Bessel functions, we find that

Tp
c ¼ �

2

Z 1

0

dð�tÞ
Z 1

0

dk? k?
X1
n¼1

J 21�n þ 2J1�nJ�1�n þ J 2�1�n

� 	
eþin�ð�tÞe��ðk?Þ�t E

�Bðk?Þ
B2
0

: ðA41Þ

Using the identities J�nðxÞ ¼ ð�1ÞnJnðxÞ and Jn�1ðxÞ þ Jnþ1ðxÞ ¼ ð2n=xÞJnðxÞ, this becomes

Tp
c ¼ 2�

Z 1

0

dð�tÞ
Z 1

0

dk? k?e
��ðk?Þ�t E

�Bðk?Þ
B2
0

X1
n¼�1

n2

x2
J 2n ðxÞe

þin�ð�tÞ: ðA42Þ

Completion of the time integration leads to the result that

Tp
c ¼ 4�

Z 1

0

dk? k?�ðk?Þ
E�Bðk?Þ

B2
0

X1
n¼1

n2

x2
J 2n ðxÞ

½�ðk?Þ�2 þ ½n��2
: ðA43Þ

It is reasonable to assume that the exponential decay of the particle correlation function due to the inherent time dependence of
the turbulence, described by �(k?) in equation (A43), can be characterized by the timescale for nonlinear interactions between two-
dimensional MHD turbulence eddies. This timescale is plausibly given by the nonlinear time �nlðk?Þ ¼ 1=k?�Uðk?Þ, where �U(k?)
is the convective speed of the turbulence at a perpendicular wavenumber k? in the inertial range. In the Kolmogorov turbulence
model, the transfer rate of energy in the inertial range is independent of the scale size of the two-dimensional turbulence so that we
can write �Uðk?Þ ¼ �U?ðk?lc?Þ�1=3

, where �U? is the rms of the velocity fluctuations associated with the two-dimensional
turbulence correlation length lc?. Invoking approximate equipartition between the energy density of the velocity and magnetic
field fluctuations (Oughton et al. 1998), �U? � ð�B?=B0ÞVA, where VA is the Alfvén speed. It then follows that
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�nlðk?Þ � ðk?lc?Þ1=3=½k?ð�B=B0ÞVA�. This indicates that temporal decay of the correlation function due to dynamic turbulence is
faster for smaller scale eddies. Consequently,

�ðk?Þ ¼ k? �Uðk?Þ ¼
k?ð�B=B0ÞVA

k?lc?ð Þ1=3
ðA44Þ

in equation (A43). This model corresponds to the exponential damping model suggested by Bieber et al. (1994) if ðk?lc?Þ ¼ 1.
When the two-dimensional magnetic field fluctuation spectral energy E�B(k?) in the inertial range is specified as a Kolmogorov

power law according to

E�Bðk?Þ ¼
2

3
lc? �B2

?
�  1

k?

1

k?lc?ð Þ5=3
; ðA45Þ

the expression for Tp
c (eq. [A44]) becomes

Tp
c ¼ 8�

3

�U?
lc?

�B2
?

� 
B2
0

1

�2

Z 1

rg=lc?

dx
1

x3

X1
n¼1

n2J 2n ðxÞ
y2 þ n2

; ðA46Þ

where

y2 ¼
�B2

?
� 
B2
0

VA

v?

� �2
rg

lc?

� �2=3

x4=3; ðA47Þ

v? ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
with � the cosine of the particle pitch angle, and U? ¼ �Uðlc?Þ ¼ ð�B?=B0ÞVA.

Then assuming that the ratios h�B2
?i=B2

0T1, ðVA=v?Þ2T1, and ðrg=lc?Þ2=3T1, which is appropriate for particles with super-
Alfvénic but sub–cosmic-ray speeds interacting with weak two-dimensional turbulence in the solar wind, it follows that yT1
provided that x is not too large or � is not too close to 1. However, there is probably no need to consider the y > 1 case because for
large x-values or �-values close to 1, the coefficients are negligibly small. This follows because the diffusion coefficients are
proportional to 1� �2 (see eq. [A50]) and Tp

c / 1=x3. Thus, for yT1, Tp
c simplifies to

Tp
c � 8�

3

�U?

lc?

�B2
?

� 
B2
0

1

�2

Z 1

rg=lc?

dx
1

x3

X1
n¼1

J 2n ðxÞ: ðA48Þ

For more information on the y > 1 case, see Shalchi & Schlickeiser (2003).
The final Fokker-Planck equation is found by introducing a uniform large-scale magnetic B ¼ B0ez into the left-hand side of

equation (A11) and by averaging the equation over particle phase angle 
. This is consistent with the assumption mentioned above
that particles see a uniform large-scale magnetic field on the timescale they experience diffusion in momentum space. The final
transport equation is

@f0
@t

þ v�
@f0
@z

¼ @

@�
D��

@f0
@�

þ D�p
@f0
@p

� �
þ 1

p2
@

@p
p2 Dp�

@f0
@�

þ Dpp

@f0
@p

� �
; ðA49Þ

where the expressions for the Fokker-Planck diffusion coefficients in momentum space are

D�� ¼�2 1� �2
� �

Tp
c �2rA

VA

v

� �2

þ��cðrA þ 1Þ VA

v

� �
þ 1

" #
;

Dpp ¼�2 1� �2
� � pVA

v

� �2

Tp
c rA;

D�p ¼Dp� ¼ ��2 1� �2
� � pVA

v

� �
Tp
c �

VA

v

� �
rA þ 1

2
�cðrA þ 1Þ

� �
; ðA50Þ

where � ¼ cos � is the cosine of the particle pitch angle and T p
c is given by equation (A43), equation (A46), or equation (A48).
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