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ABSTRACT

We report an investigation of cosmological parameters based on the measurements of anisotropy in the
cosmic microwave background radiation (CMB) made by the Arcminute Cosmology Bolometer Array
Receiver (ACBAR). We use the ACBAR data in concert with other recent CMB measurements to derive
Bayesian estimates of parameters in inflation-motivated adiabatic cold dark matter models.We apply a series
of additional cosmological constraints on the shape and amplitude of the density power spectrum and the
Hubble parameter and from supernovae to further refine our parameter estimates. Previous estimates of
parameters are confirmed, with sensitive measurements of the power spectrum now ranging from l � 3 to
2800. Comparing individual best-fit models, we find that the addition of �� as a parameter dramatically
improves the fits. We also use the high-l data of ACBAR, along with similar data from the Cosmic
Background Imager and Berkeley-Illinois-Maryland Association array, to investigate potential secondary
anisotropies from the Sunyaev-Zel’dovich effect. We show that the results from the three experiments are
consistent under this interpretation and use the data, combined and individually, to estimate �8 from the
Sunyaev-Zel’dovich component.

Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations

On-line material: color figure

1. INTRODUCTION

Anisotropies in the cosmic microwave background
radiation (CMB) are caused by density and temperature
fluctuations in the early universe, when radiation decoupled
from matter (z � 1100). For models in which these initial
fluctuations are of a Gaussian random nature, the informa-
tion carried by the CMB anisotropies is completely charac-
terized by their angular power spectrum as a function of
Legendre polynomial index l. The comparison between
measured CMB angular power spectra and theoretical pre-
dictions can be used to rule out entire classes of cosmologi-
cal models, as well as to estimate the values of a variety of
cosmological parameters within a given family of models.

Acoustic oscillations that occurred before the universe
became largely neutral (z > 1100) produced a harmonic
series of broad peaks in the power spectrum. For flat models,
the first peak lies near l � 220. Superposed on the subsequent

peak/dip structure is an overall diminishment at higher l
because of photon diffusion and the finite thickness of the last
scattering surface. Above l � 1500, the entire power spec-
trum is expected to be strongly attenuated by these effects;
this decay at high l is called the damping tail.

CMB anisotropies have been measured with high signifi-
cance over awide range of l. Large angular scale observations
with theCOBE-DMR instrument produced the first convinc-
ing detection of CMB anisotropy (Bennett et al. 1992). At
intermediate angular scales, a variety of groups have made
high signal-to-noise ratio measurements of the first peak,
near l � 200 (de Bernardis et al. 2000; Hanany et al. 2000;
Halverson et al. 2002; Scott et al. 2003; Benoı̂t et al. 2003).
There is also very good evidence for additional harmonic
features at higher l (Halverson et al. 2002; Ruhl et al. 2002).
Finally, at high l the expected damping tail has been found
(Pearson et al. 2003), along with some evidence for greater
power at l > 2000 than is expected for primary CMB
anisotropies (Mason et al. 2003).

These measurements provide strong support for the
inflation-motivated family of cold dark matter models with
adiabatic initial density perturbations. Improved measure-
ments of the power spectrumwill put these models to amore
stringent test. The Arcminute Cosmology Bolometer Array
Receiver (ACBAR) results reported in Kuo et al. (2003,
hereafter Paper I) provide the strongest constraint to date
on the angular power spectrum from 1000 < l < 2800, in
the damping tail region. In this paper we combine these new
ACBAR results with other published CMB results in order
to investigate constraints on cosmological parameters in the
adiabatic�-CDMmodel space.

The ACBAR results provide detections of power in the
high-l region where the effects of secondary anisotropies
become relevant. In this paper we also combine our high-l
data with previous results from the Cosmic Background
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Imager (CBI) and Berkeley-Illinois-Maryland Association
(BIMA) interferometers operating at 30 GHz in an attempt
to quantify the contribution from the Sunyaev-Zel’dovich
effect (SZE) to the power spectrum. Observations such as
these, at multiple frequencies and over a range of angular
scales, are essential to the separation of contributions from
the primary anisotropies and the SZE.

2. THE INSTRUMENT

A brief description of the ACBAR instrument is given in
Paper I, with a more complete treatment in Runyan et al.
(2004). We give only the most relevant details here. ACBAR
is a 16 pixel bolometer array installed on the 2.1 m Viper
telescope at the South Pole, with an angular resolution of
�50 at 150 GHz. We report here on results derived from a
subset of those detectors, with bands centered at 150 GHz.
In the first season of observations (2001) the array had four
such 150 GHz detectors, while in the second season (2002)
there were eight. Improvements to the receiver and telescope
between seasons led to greater sensitivity and improved
pointing reconstruction in the second season.

The ACBAR power spectrum used in this work is derived
from observations of two fields covering a total of 24 deg 2

of sky. The fields are selected to contain a millimeter-bright
guiding point source near the center, which is removed prior
to power spectrum estimation. The absolute calibration of
the instrument is derived from observations of Venus and
Mars and has an uncertainty of 10%. The beam profiles are
derived from images of the guiding point sources and thus
include any drifts or uncertainties in pointing reconstruc-
tion. The systematic uncertainty in the beam width, also
needed here for use in parameter estimation, is 3%.

3. THE POWER SPECTRUM

The results of Paper I provide 14 ‘‘ band powers ’’ with
effective centers between l ¼ 190 and 2500. Figure 1 shows
these results, along with a selection of other current measure-
ments for context and comparison. The points plotted in Fig-
ure 1 lie at the maximaCB of the joint likelihood distribution
LðCBÞ for each band power (CB), with the vertical bars
showing errors derived from the curvature of the likelihood

Fig. 1.—Top: ACBAR CMB power spectrum, Cl � lðl þ 1ÞCl=ð2�Þ, plotted over a vacuum energy–dominated (�k ¼ �0:05, �� ¼ 0:5, !cdm ¼ 0:12,
!b ¼ 0:02, H0 ¼ 50, �C ¼ 0:025, ns ¼ 0:925, amplitude C10 ¼ 1:11� 10�10T2

CMB) model (black thin line) and a CDM-dominated (�k ¼ 0:05, �� ¼ 0,
!cdm ¼ 0:22, !b ¼ 0:02, H0 ¼ 50, �C ¼ 0, ns ¼ 0:925, amplitude C10 ¼ 1:34� 10�10T2

CMB) model (green thick line). These are the best-fit models, for � and
�-free models, respectively, found during the ACBAR+Others parameter estimation described in the text, with the weak-h prior. Bottom: Same as top but
with the addition of power spectra from several other experiments. Both models appear to be reasonable fits to the data, with the �� ¼ 0:5 model statistically
being the better of the two.
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at that maximum,

F
ðCÞ
BB0 ¼ � @2 lnLðCBÞ

@CB@CB0
: ð1Þ

The errors shown are Gaussian ones, ðF�1=2ÞBB. For
ACBAR, the curvature matrix determined from the original
bands has been rotated into the diagonal frame, with eigen-
values fB. Figure 1 shows f

�1=2
B for the errors. For the other

experiments shown, the results are not rotated to the
diagonal frame.

Of course, the likelihood curves for the individual band
powers are not Gaussians. An offset lognormal distribution
(Bond, Jaffe, & Knox 2000) has been shown to be an accu-
rate representation of the likelihood curves and is used in all
of our parameter estimations. This distribution is Gaussian
in the variables

ZB ¼ lnðCB þ xBÞ : ð2Þ

Here xB represents a noise contribution to the band power.
For ACBAR, xB was treated as a parameter determined by
fitting the lognormal distribution to the likelihood, as
described in Paper I. CB, f

�1=2
B , and xB are given in Table 2

of that paper.

4. COMPARISON WITH THEORY

For the standard cosmological model with adiabatic
initial density perturbations, the CMB angular power
spectrum can be readily calculated as a function of input
cosmological parameters y. These theoretical predictions
for Cl can be made individually for each l, while our mea-
surement is over bands of finite width, characterized by the
window functions ’Bl . Given the theoretically predicted Cl ,
the predicted band powerCB in one of our bands is

CB � Ið’BlClÞ=Ið’BlÞ ; ð3Þ

whereCl � lðl þ 1ÞCl=2� and

IðflÞ �
X
l

ðl þ 1=2Þ
lðl þ 1Þ fl : ð4Þ

The window functions ’Bl give the response of the bands
to power at each l. Numerical tabulations of the window
functions are available on the ACBAR experiment public
web site.11 They have been rotated into the diagonal frame.

The likelihood that the data would result from the
cosmology described by y is given by

lnLðCÞ ¼ lnLðCÞ � 1
2

X
BB0

ðZB � ZBÞF ðzÞ
BB0 ðZB0 � ZB0 Þ ; ð5Þ

where ZB ¼ lnðCB þ xBÞ is the value of the lognormal
parameter at the position of maximum likelihood CB and
F

ðzÞ
BB0 is the curvature matrix transformed into the lognormal

variables,

F
ðzÞ
BB0 ¼ ðCB þ xBÞF ðCÞ

BB0 ðC
0
B þ x0BÞ : ð6Þ

Provided with the maximum likelihood band powers CB,
the lognormal offsets xB, the curvature matrix F

ðCÞ
BB0 , and the

window functions ’Bl , the likelihood of the parameter set y,
given the data, can be computed.

Our set y consists of seven cosmological parameters:
�k ¼ ð1� �totÞ, � �, !cdm, !b, ns, �C, and lnC10. The total
energy density of the universe in units of critical density �tot

is linked to the global curvature of space: negatively curved
for �tot < 1, positively curved for �tot > 1, and flat for
�tot ¼ 1. The total energy density has three constituents:
vacuum (��), matter, and relativistic particles. The relativis-
tic energy density is currently negligible. The matter density
is split into two types, baryonic matter (�b � !b=h2), which
interacts with electromagnetic radiation, and cold dark
matter (�cdm � !cdm=h2), which does not. The total matter
density is denoted �m ¼ �b þ �cdm. The amplitude of the
CMB power spectrum at l ¼ 10, lnC10, gives the overall
amplitude of the primordial fluctuations. This quantity is
well constrained by the COBE-DMR observations (Bennett
et al. 1996). The full COBE-DMR power spectrum as
described in Bond et al. (2000) is included in all of our
parameter analyses. The spectral index of primordial
density perturbations, ns, parameterizes the variation in the
fluctuation power as a function of length scale; ns ¼ 1
corresponds to scale invariance.

The universe reionized at some point between decoupling
and the present. After reionization, CMB photons scatter
further; �C is the Compton optical depth (from decoupling
to present) due to such scattering. High �C diminishes CMB
power by a factor of expð�2�CÞ over most of the l range,
though not in the DMR range.

Many more parameters than our basic seven may be
needed to completely describe inflationary models. These
include the gravity wave–induced tensor amplitude and tilt,
variations of tilt with wavenumber, relativistic particle den-
sities, more complex dynamics associated with the dark
energy ��, etc. For example, a gravity wave–induced com-
ponent is expected in the largest class of inflation models
and has an impact on the spectrum in the l < 100 region.
Although far from the scales on which ACBAR is most sen-
sitive, it can affect the amplitude, tilt, and Compton depth.
If one constrains the tilts and amplitudes of the tensor com-
ponent to those motivated by simple inflation models, there
is little change in the other parameters.

It is possible that secondary anisotropies, such as the
Sunyaev-Zel’dovich effect investigated later in this paper,
could contribute significant power to the highest l band of
our measurement. However, the detection of anisotropy in
that band is only 1.1 �, or 0.9 � above the best-fit model
primary CMB angular power spectrum. Thus, for the
purpose of cosmological parameter estimation from the
primary CMB signal, we can safely ignore the effects of
potential SZE contamination.

To derive estimates of cosmological parameters, we
compare our data with the primary CMB power spectra
predicted by combinations of cosmological parameters y. In
this comparison, we vary lnC10 continuously, while the
other parameters take the discrete values listed in Table 1.
An angular power spectrum is generated for each set of dis-
crete parameter values, forming a grid. Given a CMB data
set (e.g., ACBAR or a combination of various measured
power spectra), the likelihood is then calculated for each
point on the seven-dimensional grid.

To compute the likelihood that a particular parameter X
has a value x0, the seven-dimensional grid of likelihoods
is integrated over the other six parameters, holding the11 See http://cosmology.berkeley.edu/group/swlh/acbar.
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parameter of interest fixed at x0. This method, known as
marginalization, involves calculating

LðX ¼ x0Þ ¼
Z

�ðX � x0ÞPpriorðyÞLðyÞ dy ; ð7Þ

where �ðxÞ is the usual �-function and the prior PpriorðyÞ is
discussed below.

For each model on the parameter grid, along with the
overall amplitude parameter C10, we continuously vary the
beam widths �bi and calibrations Ai for each experiment i
about their estimated values �bi and unity, to take into
account the uncertainties in the respective measurements.
We approximate the beam uncertainty and calibration
uncertainty ‘‘ prior ’’ probabilities by Gaussians in Dð�biÞ2
and lnA2

i , respectively. The modification to the band
power as a result of the uncertainty Dð�biÞ2 is modeled by
exp½�hðl þ 1

2 Þ
2iBDð�biÞ2�, with hðl þ 1

2 Þ
2iB ¼ I ½’Blðl þ 1

2 Þ
2�=

Ið’BlÞ. The overall impact of the calibration and beam
uncertainties is that the combination lnC10 þ

P
i lnA

2
i�

hðl þ 1
2 Þ

2iBDð�biÞ2 is adjusted for each grid parameter com-
bination to give the best fit with errors. Marginalization
over the continuous parameters is done by calculating a
Fisher matrix and assuming a Gaussian distribution in
the posterior distributions in the flnC10; lnA

2
i ;Dð�biÞ2g

variables. Marginalization over the grid parameters is done
by discrete integration.

In addition to the parameters given in Table 1, we exam-
ine four ‘‘ derived ’’ parameters, which are functions of our
basic seven variables, ft0, h, �2

8, �effg. Here h is the value of
the Hubble expansion parameter, H0 ¼ 100 h km s�1

Mpc�1, and is given by

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!b þ !cdm

1� �k � ��

r
: ð8Þ

The age of the universe is

t0ðGyrÞ � 9:778

h

Z 1

0

2x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m þ �kx2 þ ��x3

p dx ; ð9Þ

where we have dropped the minor effects of relativistic par-
ticles here but not when we do our actual comparisons. The
variance in the (linear) density fluctuation spectrum on the

scale of clusters of galaxies (8 h�1 Mpc) is �2
8. The shape of

the linear density power spectrum is described by the
parameter

�eff ¼ �þ ðns � 1Þ=2 ; ð10Þ

where

� ¼ �m h e�½�bð1þ��1
m

ffiffiffiffi
2h

p
Þ�0:06� :

Note that �eff � �m h with corrections due to baryon
density and spectral tilt ns over the region probed by large-
scale structure observations that approximate the dominant
dependences. The derived parameters are not marginalized
over and do not define dimensions in the parameter grid
because they are determined given a set of parameters y.
The derived parameters are calculated at each point on the
model grid. We can make Bayesian estimates of those
parameters using equation (7) with X being the derived
parameter of interest.

We can also use the derived parameters to account
for other cosmological information. Estimates of these
parameters from other, non-CMB, observations can be
included as ‘‘ prior constraints.’’ Equation (7) is cast in a
form that gives a likelihood as a function of our parameters
and priors PpriorðyÞ.

All our analyses include the loose prior implicitly
imposed by the edges of the database given in Table 1 and
two other very weak priors that are generally accepted by
most cosmologists: models are restricted to those for which
the current age of the universe is t0 > 10 Gyr and for
which the matter density�m is greater than 0.1.

We add to these constraints a series of additional priors:

1. Weak-h.—Here 0:45 < h < 0:90. This is a top-hat
restriction, designed to allow the CMB data, rather than
arguable priors, to drive the results.
2. LSS.—We employ two constraints based on large-

scale structure (LSS) observations, on the combinations
�8�

0:56
m and �eff . For both priors, we adopt a Gaussian

distribution convolved with a top-hat distribution, charac-
terized by the parameters �8�

0:56
m ¼ 0:47þ0:02;þ0:11

�0:02;�0:08 and
�eff ¼ 0:21þ0:03;þ0:08

�0:03;�0:08, where the first error gives the 1 � point
of the Gaussian distribution and the second error gives the

TABLE 1

Parameter Values Used in Grid

�C ns !b !cdm �� �k

0..................... 0.5, 0.9, 1.2 0.003125, 0.10 0.03, 0.8 0 �0.5, 0.5

0.025 .............. 0.55, 0.925, 1.25 0.00625, 0.15 0.06 0.1 �0.3, 0.7

0.05 ................ 0.6, 0.95, 1.3 0.0125, 0.2 0.08 0.2 �0.2, 0.9

0.075 .............. 0.65, 0.975, 1.35 0.0175 0.10 0.3 �0.15

0.1.................. 0.7, 1.0, 1.4 0.02 0.12 0.4 �0.1

0.15 ................ 0.725, 1.025, 1.45 0.0225 0.14 0.5 �0.05

0.2.................. 0.75, 1.05, 1.5 0.025 0.17 0.6 0

0.3.................. 0.775, 1.075 0.03 0.22 0.7 0.05

0.4.................. 0.8, 1.1 0.035 0.27 0.8 0.1

0.5.................. 0.825, 1.125 0.04 0.33 0.9 0.15

0.7.................. 0.85, 1.15 0.05 0.40 1.0 0.2

0.875, 1.175 0.075 0.55 1.1 0.3

Note.—Grid point values for the six cosmological parameters that are varied discretely.
The grid is not spaced evenly for !cdm, !b, ns, and �C; points are purposefully more
concentrated in regions in which the likelihood (found from previous data sets) is high. On
this grid we calculate only models that have �m > 0:1; this, along with the edges of each
parameter range, forms an implicit prior in our analysis.
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extent of the top-hat distribution. Our basic philosophy is
to adopt priors that are not overly restrictive since the LSS
data are still improving. The motivation for the choice and
the discussion of the LSS data are given in Bond et al.
(2002b). The �eff distribution encompasses recent results
from the 2dF Galaxy Redshift Survey and the Sloan Digital
Sky Survey. The �8-distribution encompasses results from
recent weak-lensing surveys. It also covers many of the clus-
ter abundance determinations using X-ray temperature and
other cluster data.
3. LSS(low-�8).—There are currently a few cluster abun-

dance estimations that point to values of �8 that are lower
than the weak-lensing estimates. Although our standard
LSS prior takes most of these variations into account by
its spread, we have also tested the effect of shifting the
entire �8-distribution downward by 15%, to �8�

0:56
m ¼

0:40þ0:02;þ0:11
�0:02;�0:08. We keep the C prior the same.

4. HST-h.—We strengthen our h-prior, based on the
Hubble Space Telescope (HST) Key Project measurement
(Freedman et al. 2001) of the Hubble constant, h ¼
0:72� 0:08. This is a Gaussian prior with the stated error
as the 1 � points.
5. Strong data.—We combine the LSS prior given above

with theHST-h prior and add a constraint (in the�� vs.�tot

plane) based on surveys of the brightness versus redshift

relation of Type Ia supernovae (Perlmutter & Riess 1999;
Riess et al. 1998).
6. Flat.—Inflation models generally predict a flat geome-

try, and recent evidence supports this (e.g., de Bernardis
et al. 2000; Halverson et al. 2002). For the converted, we
investigate the effects of holding�tot equal to 1.

5. CONSTRAINTS ON COSMOLOGICAL PARAMETERS
FROM CMB SPECTRA

We apply these methods to three combinations of CMB
data, using a series of priors for each case. By doing so, we
can investigate the power of adding ACBAR data to the
current cosmological mix, as well as the dependence of
results on the strength and nature of the applied priors.

The full COBE-DMR power spectrum of Bond, Jaffe, &
Knox (1998) is included in all our analyses. The first combi-
nation of CMB data, ACBAR +DMR, investigates the
potential for using the DMR low-l anchor with the damp-
ing-tail measurement of ACBAR as an independent
check on previous CMB-based cosmological parameter
estimation.

Figure 2 shows marginalized likelihood curves for
ACBAR andDMR only, using the weak-h and weak-h+flat
priors. These are displayed for each of two sets of ACBAR

Fig. 2.—Likelihood curves for ACBAR+DMRwith the weak and weak+flat priors. The flat prior likelihoods are not shown in the upper left panel because
the likelihood is zero everywhere except �k ¼ 0. Each prior case is plotted with and without the first ACBAR band (centered on l ¼ 187) included in the
analysis. In the top middle and bottom middle panels, the weak prior likelihoods with and without the first ACBAR band mostly overlap. In the upper right
panel, the 1–3 � contours are shown for the two-dimensional �k-�� likelihood with the weak prior and bands 1–14 (blue) and bands 2–14 (red ). The thick
black lines define�m ¼ 0 and�m ¼ 1, and the dotted black line defines�m ¼ 0:5. The yellow contours are the 1, 2, and 3 � levels of constraints based on Type
Ia nupernovae. The lack of stability of the curves (for !b in particular) indicates that ACBAR+DMRalone is not sufficient for robust parameter estimation.
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data, the first being the full spectrum (bands 1–14), the
second being bands 2–14. The curves show that the
parameter estimates are very prior dependent and also
depend on whether we include the lowest l-band data,
despite the large errors in that band. These variations are a
result of ACBAR not pinning down the peak/dip structure
well. Parameter estimates then rely more on the specific
shape of the damping tail.

The physics of damping is well known and clearly
depends on the cosmological parameter characterizing
the strength of the viscous and diffusive couplings, !b. It
might then be thought that by using only ACBAR and
DMR we could get a strong constraint on this parameter.
However, when we take account of all of the influences
that determine the damping scale in l-space, it is found
to be relatively insensitive (see, e.g., Sievers et al. 2003
for a discussion). Once some information is given on the
peak/dip structure that helps to pin the parameters,
ACBAR improves the quality of the determinations by
virtue of its small error bars in the damping-tail region.
We therefore proceed by including CMB data in the l-
range between DMR and ACBAR, over the first three
acoustic peaks.

Many CMB experiments have made sensitive measure-
ments of the power spectrum in the region of those peaks;
we choose here to combine the low-l measurement of DMR
with a set of recent higher l observations, composed of

Archeops (Benoı̂t et al. 2003), BOOMERANG (Ruhl et al.
2002), Degree Angular Scale Interferometer (DASI;
Halverson et al. 2002), MAXIMA (Hanany et al. 2000), and
Very Small Array (VSA; Scott et al. 2003). We also include
the recent high-l results of CBI (Pearson et al. 2003). We
give the label ‘‘ Others ’’ to this aggregate set of data and first
investigate the parameter extraction that can be done with
these measurements, without ACBAR. Finally, we investi-
gate the improvements made when adding ACBAR to the
mix, in a combination we label ‘‘ ACBAR+Others.’’

Two plots of one-dimensional marginalized likelihood
curves, for ‘‘ Others ’’ and ‘‘ ACBAR+Others,’’ are given in
Figures 3 and 4, respectively. Here we see that results are
generally stable to the application of priors—that is, the
application of a prior may narrow the result but does not
move it outside the range imposed by other priors.

It is remarkable how many parameters are well con-
strained in Figures 3 and 4. Using only a weak-h prior, four
of the five parameters shown (�k, �b h2, �cdm h2, and ns)
are well localized. The detection of �� becomes stronger as
stronger priors are applied.

We have investigated the effects of dropping the first
ACBAR bin on the results shown in Figure 4, and unlike
the ACBAR+DMR results, the effects of this action are
negligible. This is not surprising, given that the first peak
information in ‘‘ Others ’’ and ‘‘ Others+ACBAR ’’ is driven
by the other measurements.

Fig. 3.—Likelihood curves for Archeops+B98+CBI+DASI+DMR+MAXIMA+VSA (‘‘ Others ’’) with the weak, weak +LSS,HST-h, and strong data
priors. The �k-�� contours are shown for the weak (blue) and strong data (red ) cases. The yellow contours are the 1, 2, and 3 � levels of constraints based on
Type Ia supernovae. CMB estimates of�k, !cdm, and !b are stable, with sensible behavior as additional priors are employed.
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The likelihood curves shown in these figures can be used to
find confidence intervals on each parameter for each prior.
We can proceed in a similar way to constrain the values of
other parameters, such as h and the current age of the

universe (t0). Table 2 gives the median values and 1 � limits
(16% and 84% integrals of the likelihood) for a set of cosmo-
logical parameters. For �C, the 95% confidence upper limit is
given. A comparison of the values in the table, or of Figures 3

Fig. 4.—Likelihood curves for ACBAR+Archeops+B98+CBI+DASI+DMR+MAXIMA+VSA (ACBAR+‘‘Others ’’) with the weak, weak+LSS,
HST-h, and strong data priors. The�k-�� contours are shown for the weak (blue) and strong data (red ) cases. The yellow contours are the 1, 2, and 3 � levels
of constraints based on Type Ia supernovae. The positions and widths of these curves do not differ significantly from those in Fig. 3 despite the addition of the
low-noise ACBAR data through the damping tail. A comparison of the curves here containing the LSS prior (weak+LSS and strong data) with those derived
using the lower estimate (discussed in the text) shows only small changes. Themost noticeable changes are an upward shift in the lower tail on�� and a broader
and higher value ns peak. Table 2 gives numerical estimates of these parameters, derived by integration of these curves.

TABLE 2

Parameter Estimates and Errors

Priors Run �tot ns �b h2 �cdm h2 �� �m �b h Age �C

Weak-h ........................................... Others 1:030:050:04 0:960:090:05 0:0220:0030:002 0:130:030:03 0:530:180:19 0:500:190:19 0:0720:0230:023 0:570:110:11 14:91:31:3 <0.48

ACBAR+others 1:040:040:04 0:950:090:05 0:0220:0030:002 0:120:030:03 0:570:160:18 0:470:180:18 0:0710:0220:022 0:570:110:11 15:11:31:3 <0.47

HST-h............................................. Others 1:000:030:03 0:990:070:07 0:0220:0030:003 0:120:030:02 0:680:090:12 0:330:110:11 0:0490:0130:013 0:680:080:08 13:71:01:0 <0.45

ACBAR+others 1:000:030:02 0:970:070:06 0:0220:0030:002 0:120:020:02 0:700:070:10 0:310:100:10 0:0490:0130:013 0:680:080:08 13:90:90:9 <0.43

Weak-h+flat ................................... Others (1.00) 0:950:080:05 0:0220:0030:002 0:130:030:03 0:590:150:23 0:430:190:19 0:0560:0140:014 0:630:100:10 13:90:50:5 <0.34

ACBAR+others (1.00) 0:950:070:05 0:0220:0020:002 0:130:020:02 0:660:100:16 0:350:150:15 0:0490:0110:011 0:670:090:09 13:80:40:4 <0.31

Weak-h+LSS.................................. ACBAR+others 1:030:050:04 0:980:090:07 0:0220:0030:003 0:110:020:03 0:640:080:12 0:410:110:11 0:0670:0190:019 0:590:090:09 15:21:41:4 <0.51

Weak-h+flat+LSS.......................... ACBAR+others (1.00) 0:940:070:05 0:0220:0020:002 0:130:020:02 0:650:080:11 0:360:100:10 0:0500:0080:008 0:660:070:07 13:90:40:4 <0.32

Weak-h+flat+LSS(low-�8)............. ACBAR+others (1.00) 0:980:070:06 0:0220:0020:002 0:120:020:02 0:710:060:07 0:280:070:07 0:0440:0060:006 0:710:070:07 13:70:40:4 <0.34

Strong data ..................................... ACBAR+others 1:010:030:02 0:990:070:05 0:0230:0030:002 0:120:020:02 0:700:050:05 0:310:050:05 0:0510:0110:011 0:670:050:05 14:10:90:9 <0.49

Strong data+flat ............................. ACBAR+others (1.00) 0:970:050:05 0:0220:0020:002 0:120:010:01 0:700:040:05 0:300:040:04 0:0460:0040:004 0:690:040:04 13:70:20:2 <0.32

Strong data+flat+LSS(low-�8)....... ACBAR+others (1.00) 0:970:050:05 0:0220:0020:002 0:120:010:01 0:710:050:04 0:280:050:05 0:0450:0040:004 0:700:040:04 13:70:20:2 <0.31

Note.—Parameter estimates and errors for several prior combinations with and without ACBAR. Errors are quoted at 1 � (16% and 84% points of the
integral of the likelihood), except for �C, where the 95% upper limit is given. The various priors are described in the text. The top half lists results found with
and without the inclusion of ACBAR data, which shows the small improvements found upon adding ACBAR to the mix. The bottom half shows the effect
of applying stronger priors on the ACBAR+others data set, which naturally leads to dramatic improvements on the parameter estimates. The difference
between the LSS and LSS(low-�8) priors (discussed in the text) does lead to several slight shifts, smaller than the 1 � errors.
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and 4, shows that the impact of adding ACBAR to this mix is
not dramatic. There are modest improvements in some
parameter estimates, most notably�� and�cdm h2.

Not immediately obvious from the figures is the improved
rejection of �� ¼ 0 models. One measure of this is the
improvement in the 3 � lower limit on��, found by integrat-
ing the likelihood curve. This 3 � limit improves from
�� > 0:086 for ‘‘ Others ’’ to �� > 0:136 for ‘‘ ACBAR+
Others ’’; that is, the probability of having a lower value of
�� than these is 0.14%. This depends on the specific range in
h that we are allowing in our weak prior.

The source of this rejection of models near �� ¼ 0 can
be illustrated by examining the �2 of the aggregate data
set to the best-fit models, in both the �� ¼ 0 and the
‘‘ free ’’ �� cases. We find, for the ‘‘ ACBAR+Others ’’
data set (consisting of 116 band powers), �2 ¼ 140 and
�2 ¼ 160 for the best-fit ‘‘ free �� ’’ and �� ¼ 0 models,
respectively. Thus, while both models plotted in Figure 1
appear reasonable to the eye, the fit is significantly better
for the �� ¼ 0:5 model.

Unfortunately, calculating the effective number of
degrees of freedom in this �2 is not straightforward. Taking
beam and calibration uncertainties for each observation as
a total of 16 parameters in the fit added to the seven cosmo-
logical parameters, we know the effective degrees of freedom
(dof) lies in the range 93 < dof < 116. Adopting dof ¼ 100
as a reasonable estimate, the probabilities of finding
�2 > 140 and �2 > 160 are P> ¼ 0:0051 and 0.00013,
respectively. We caution the reader against strict interpreta-
tion of these statistically high �2 in the face of this very het-
erogeneous data set. Instead, we note the significant
improvement in �2 enabled by the addition of a single
parameter in the fit.

Interestingly, the �2 difference of the best-fit models is
roughly consistent with the ratio of the marginalized likeli-
hoods (for the weak-h prior) at the peak of the likelihood
curve near �� ¼ 0:7 and its level at �� ¼ 0. Exact corre-

spondence would be expected if our parameter likelihood
function had aGaussian form.

One would think that the information ACBAR adds at
high l would significantly improve the determinations of !b

because of Silk damping and ns just because of the increased
l-baseline. This is clearly not the case. We have discussed
the damping-tail issue already. The near degeneracies due to
correlations among certain parameter combinations imply
that increased data do not necessarily lead to increased pre-
cision on the cosmological parameters. It is likely that the
lack of improvement in these projections to individual
parameters is due to degeneracies in the parameter space.

Such degeneracies are well known and have been dis-
cussed at length in the literature; see Efstathiou & Bond
(1999) for an extensive treatment of some of the most perni-
cious of these. For example, one of these (the ‘‘ geometric
degeneracy ’’) leads to nearly identical angular power spec-
tra for particular combinations of (��, �k, �m, h) while
leaving !b and !cdm fixed. The breaking of this geometric
degeneracy is the reason estimates of ��, and to a lesser
extent �cdm h2, improve so dramatically as stronger priors
on h are applied. Other less exact degeneracies, such as one
between amplitude ns and �C, lead to similar broadenings of
these projected likelihood curves.

By choosing our database parameters well (e.g., using the
physical densities !b and !cdm rather than the densities rela-
tive to critical) we have minimized the effects of some poten-
tial degeneracies. By exploring the parameter eigenmodes
we can escape the limitations of the canonical parameters
and determine the true power of any combination of data
sets. This process is in fact quite familiar to most cosmolo-
gists; the Type Ia supernova results are often considered to
limit the parameter ‘‘ eigenmode ’’��-�M .

Table 3 lists the best-determined five (of seven total)
eigenmodes for the ‘‘ ACBAR+Others ’’ and ‘‘ Others ’’
analyses. The coefficients describing those modes and the
errors on the eigenvalues are determined by ensemble

TABLE 3

Eigenmodes

Eigenmode

(1)

Error

(2)

�C
(3)

D!cdm=!cdm

(4)

D!b=!b

(5)

��

(6)

�k

(7)

ns
(8)

C10

(9)

Others =Archeops+Boomerang+CBI+DASI+DMR+Maxima+VSA

1.............................. 0.012 �0.233 0.082 �0.084 0.111 �0.724 0.604 0.174

2.............................. 0.017 �0.210 �0.223 �0.007 �0.238 0.607 0.676 0.155

3.............................. 0.046 0.432 0.236 �0.751 0.146 0.111 0.231 �0.327

4.............................. 0.091 0.107 0.700 0.521 0.315 0.196 0.244 �0.171

5.............................. 0.126 0.421 0.007 0.260 �0.750 �0.231 0.157 �0.340

ACBAR+Others

1.............................. 0.010 �0.140 0.133 �0.051 0.194 �0.889 0.344 0.123

2.............................. 0.015 �0.264 �0.155 �0.026 �0.238 0.320 0.843 0.189

3.............................. 0.043 0.489 0.339 �0.673 0.070 0.081 0.259 �0.338

4.............................. 0.063 0.368 0.279 0.362 �0.780 �0.198 0.050 �0.078

5.............................. 0.088 0.012 0.630 0.541 0.451 0.223 0.206 �0.123

Note.—Eigenmodes and the uncertainties on their determination, for the ‘‘ Others ’’ analysis (top set) and the
‘‘ ACBAR+Others ’’ analysis (bottom set). Only the top five (of seven) are listed. Col. (1) labels the eigenmodes in rank order
of uncertainty; these uncertainties, and the eigenvectors chosen, are derived from weak�h prior ensemble averages over the
database as described in the text. Col. (2) lists the uncertainty on each eigenmode, while cols. (3)–(9) list the coefficients of the
eigenmode rotation matrix Rak, applied to the basis set of parameters labeled at the top of the columns. There is significant
improvement, especially for the fifth eigenmode, upon adding ACBAR to the data set; note that it becomes the fourth
eigenmode of ‘‘ ACBAR+Others ’’ and shows a factor of 2 improvement.
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averages of the likelihood derivatives over the parameter
database. We introduce the probability-weighted ensemble
average of a parameter ya,

hyai ¼
Z

yaPpriorðyÞLðyÞ dy ; ð11Þ

and the probability-weighted ensemble average of the differ-
entials

h�ya�ybi ¼
Z

�ya�ybPpriorðyÞLðyÞ dy ; ð12Þ

where �ya � ya � hyai.
The eigenmodes themselves (�k) and their errors (��

k) are
given by the application of a rotation matrix R to the
parameter vector y,

�k ¼
X
a

Rak�ya ; ð13Þ

h�ya�ybi ¼
X
k

Rakð��
kÞ

2Rbk : ð14Þ

In this eigenmode analysis, we have used the fractional devi-
ations �!b=h!bi and �!cdm=h!cdmi as parameters, rather
than !b and !cdm, to set their deviation magnitudes on more
equal footing with those of the other parameters.

Inspection of the table shows that while the eigenmodes
for ‘‘ Others ’’ and ‘‘ ACBAR+Others ’’ are not identical,
they are very similar. In most cases they are dominated by
contributions from one or two cosmological parameters,
but in all cases there are significant components from sev-
eral parameters. The table shows much more clearly the
impact of adding ACBAR to the data set; all of the eigen-
value uncertainties improve, but the greatest improvement
is in the fifth eigenmode, which becomes the fourth one
when ACBAR is added. It is dominated by the cosmological
constant.

6. CONSTRAINTS ON �8 FROM THE SUNYAEV-
ZEL’DOVICH EFFECT

The ACBAR results provide the first data above l ¼ 2000
at 150 GHz. The recent CBI Deep Field results (Mason
et al. 2003), at 30 GHz, have indicated a possible excess over
the expected primary anisotropy signal at l > 2000. The
most promising candidate for the source of the excess is
the SZE due to the scattering of CMB off hot electrons in
the intracluster medium (see Birkinshaw 1999 for a recent
review). The CBI results have been interpreted in the con-
text of the SZE with tentative constraints being obtained on
the value of �8 (Bond et al. 2002b; Komatsu & Seljak 2002;
Holder 2002). The BIMA array (Dawson et al. 2002), oper-
ating at 30 GHz, has also reported detection of power at
higher l, which also has been attributed to the SZE by
Komatsu & Seljak (2002).

Parameter fitting using secondary effects such as the SZE
must be approached with caution. Both numerical and ana-
lytical predictions for the SZE power spectrum suffer from a
number of uncertainties. The results of different simula-
tions, although in general agreement, show significant dif-
ferences in both the amplitude and shape of the predicted
spectrum. Analytical models suffer from uncertainties inher-
ent in modeling the profile of the clusters. In addition, cool-
ing and heating effects in the clusters are not yet well
understood, and most simulations and analytical models do

not take these effects into account. Simulations have shown
that for modest deviations about the concordance �-CDM
model, the SZE angular power spectrum scales as
CSZ

l � ð�b hÞ2�7
8. Despite uncertainties in the physics of

cluster models, especially the role of energy injection, and
the relatively large errors on the observations, this very
strong dependence of the SZE spectrum on �8 enables the
derivation of significant constraints on �8 from current
data.

We choose to model the SZE using two angular power
spectrum templates. The first is obtained from large
smoothed particle hydrodynamics (SPH) simulations of
�-CDM (Bond et al. 2002a; Wadsley, Stadel, & Quinn
2003). The second is obtained from an analytical model (see
Zhang, Pen, & Wang 2002; Bond et al. 2002b for details).
Both templates were scaled to a fiducial value of
�b h ¼ 0:035.

Although the power in the primary spectrum is falling
rapidly compared with the rising contribution of the SZE at
l > 2000, interpretation of the low-noise ACBAR band
powers around the crossover region is sensitive to the con-
tribution of the primary signal together with the secondary.
Rather than consider a full range of parameter space, we
select a simple model for the primary spectrum, a best-fit
flat model for the ‘‘ ACBAR+Others ’’ data combination
(�b ¼ 0:047, �cdm ¼ 0:253, �� ¼ 0:7, h ¼ 0:69, ns ¼ 0:975,
and �C ¼ 0:2). The primary model was normalized with the
best-fit amplitude obtained from the fits. However, uncer-
tainties in the model parameters affect the overall amplitude
of the primary spectrum at scales l � 2000 on which the
primary and secondary signals are comparable. We chose to
parameterize the freedom in the primary and secondary
spectra by two effective parameters, an amplitude in the
primary power spectrum qeff2K and a scaling factor for the
SZE �SZ

8 . Uncertainty in the primary parameter qeff2K repre-
sents the uncertainties in a number of dominant effects given
by the combination of parameters: �8, �C, and ns, as shown
in x 5. Most significantly, it also incorporates the effect of
systematic uncertainties such as an overall calibration and
beam uncertainty in the data. The secondary amplitude
parameter �SZ

8 describes the scaling of the SZE spectrum
and can be related to �8 via �

SZ
8 � ð�b h=0:035Þ0:29�8.

We select points with l > 1500 for fitting and use the off-
set lognormal approximation as described in x 3. The target
model is now ZT

B ¼ lnðCB þ g�C
SZ
B þ xBÞ, for which the

primary and SZE spectra have been filtered by the appropri-
ate window functions for each band power and g� is the fre-
quency-dependent scaling of the SZE (a factor of �4 in
power lower at 150 GHz compared with 30 GHz). The
primary model is scaled by qeff2K over the range (0.1, 1.8), and
the secondary model is scaled by �SZ

8 over the range (0.5,
1.4). At each point in the grid, we calculate the quantity
�2 lnL for the model.

To test the consistency of the three experiments within
the {qeff2K, �

SZ
8 } framework, we compute the �2 for the nine

band powers with qeff2K and �SZ
8 set to their best-fit values,

resulting in 7 dof. For the Gaussian case we find that
�2 ¼ 9:81, and with non-Gaussian corrections, discussed
below, �2 ¼ 7:07.

To assign a realistic uncertainty to the amplitude of the
primary models, we add a Gaussian prior in the amplitude
qeff2K with a width of 20% rms. This is chosen to reflect the
uncertainty in the amplitude of the best-fit models obtained
in the parameter fits described in x 5. As an example, the
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ACBAR data fix the amplitude of our template model with
an rms of 17%, while the CBI Deep Field data fix the same
model with an rms of 21%. We check that our results are
robust to a change in the width of the prior by fitting with a
10% and a 40% rms width. The marginalized, best-fit value,
and upper errors for �SZ

8 reported below, change by only
0.1%, while the lower error changes by 1% on average.

Weak gravitational lensing redistributes the power of
CMB anisotropies, particularly for l > 2000 (Seljak 1996;
Cooray 2001a). To gauge the potential effect of lensing on
the CBI and ACBAR band powers, we use CMBFAST
(Seljak & Zaldarriaga 1996) to compare the power spectra
of the best-fit flat model with and without lensing. For each
band we calculate the difference in power

DC
gl
B ¼

I ½’BlðCgl
l � ClÞ�

Ið’BlÞ
; ð15Þ

where Cl is the predicted spectrum for the best-fit flat model

and C
gl
l is the predicted spectrum for the same model with

lensing.We then compare DCgl
B with the measurement errors

in each band by taking the ratio

�Cgl
B ¼ DC

gl
B

ðF�1=2ÞBB
; ð16Þ

where ðF�1=2ÞBB ! f
�1=2
B for ACBAR. From lowest to

highest l-band, �Cgl
B ¼ ð0:05, 0.02, 0:01Þ for ACBAR and

(0.01, 0.01, 0.01) for CBI. Although lensing shifts more
power at high l in proportion to the Cl , the redistribution of
total power is greater at l � 2000.We find that the difference
in power from lensing is very small compared with the mea-
surement errors for ACBAR and CBI. The effects of lensing
should be smaller still for BIMA because the primary CMB
power is further damped for high l. We therefore choose to
ignore the effects of lensing.

In Figure 5 we show contour plots of the �2 grids in the
(qeff2K, �

SZ
8 ) plane. We subtract the �2 value at the minimum

Fig. 5.—1, 2, and 3 � contours for various combinations of data sets in the ðqeff2K; �
SZ
8 Þ plane.Left, Fits obtained using the SPH template; right, equivalent for

the analytical model. The combination of the three data sets (bottom, black contours) shows a 2 � detection of the SZE component. The dashed parallel lines
show the width of the Gaussian prior imposed on qeff2K.We use a lognormal distribution for the BIMA band powers.
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from the grids, and the (2.3, 6.17, 11.8) contours give an
indication of where the 1, 2, and 3 � levels would fall if the
likelihoods were Gaussian. We show results for both
template models used in the analysis. The contours show
that the data are only weakly dependent on the qeff2K ampli-
tude with a slight movement to higher �SZ

8 for low qeff2K as
expected for ACBAR and CBI data. This reflects the fact
that the only bands sensitive to the primary amplitude are
the lowest l-bands included from the ACBAR and CBI
data. The high-l BIMA data are fully degenerate in the
amplitude of the primary, as expected, and the contours in
the qeff2K direction simply reflect the Gaussian prior. A combi-
nation of the three data sets gives constraints at the 2 � level
in �SZ

8 , with the contours showing a slight tilt in the expected
direction with respect to qeff2K.

One major obstacle in using a secondary effect such as the
SZE to fit parameters is the non-Gaussian nature of the
signal from nonlinear structures such as clusters. In general,
the non-Gaussianity will increase the sample variance of the
underlying signal. Treating the data as Gaussian can there-
fore result in an overestimate of the significance of the con-
straint. This effect has been investigated using numerical
simulations of the SZE (White, Hernquist, & Springel 2002;
Zhang et al. 2002) and also by calculating the contribution
to the covariance by the fourth-order, trispectrum term Tll0

(Cooray 2001b; Komatsu & Seljak 2002). In general, the
sample variance is found to be a factor of �3 higher than
the Gaussian equivalent, with some dependence on l and
also on the width of the bands being considered (l-l0 correla-
tions are also altered by the non-Gaussianity). In order to
include this effect in the errors and correlations we scale the
inverse Fisher matrix of the band powers as

�FF�1
BB0 � f

ng
B F�1

BB0f
ng
B0 ; ð17Þ

where f
ng
B is the scaling factor. Here we chose f

ng
B such that

the sample variance component of the error is a factor of 3
larger than the expected Gaussian case, which can be
approximately evaluated as

DCl �
ffiffiffi
2

p
Clffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fskyDBð2lb þ 1Þ
p : ð18Þ

Figure 6 shows the effect of the correction on (qeff2K,�
SZ
8 ).

In general, the correction changes from experiment to
experiment and from band to band because of the different
sample variance component in the uncertainty of each band.
It is therefore important to include this effect in the analysis
since it can have a substantial effect on the structure of the
contours as opposed to a simple rescaling of the confidence
limits. We find that the correction has significant effects on
the allowed region, particularly at the 2–3 � level.

To obtain best estimates on the value of �SZ
8 , we marginal-

ize over the qeff2K direction to recover the one-dimensional
likelihood in �SZ

8 . We show the resulting likelihoods in
Figure 7 for both analytical and SPH templates. Both
results include the non-Gaussian correction discussed
above. The 2 � region and median values shown as error
bars are obtained by calculating the 2.5%, 97.5%, and 50%
integrals of the likelihoods, respectively. The results for
both templates with 2 � error estimates are summarized in
Table 4. We find that fitting with the SPH template results
in values for �SZ

8 about 6% higher than when the analytical
model is used. This effect is due to the SPH model having a

Fig. 6.—Effect of adding a correction for the increased sample variance
of the data due to the non-Gaussian scatter. Fits are obtained using the
SPH template. Both contours are for the combination ACBAR+CBI+
BIMA. The effect is significant, particularly at the 2–3 � level.

Fig. 7.—Marginalized likelihoods for the ACBAR+CBI+BIMA combi-
nation. The results of fits using both the SPH (dashed curve) and analytical
(solid curve) models are shown. Both cases include non-Gaussian correc-
tions. The 2 � upper and lower bounds andmedian values were obtained by
computing the 2.5%, 97.5%, and 50% integrals of the likelihoods, respec-
tively. We find that the SPH model prefers slightly higher values for �SZ8 .
This is due to the fact that the SPH spectra show less power than the
analytical models on large scales. [See the electronic edition of the Journal
for a color version of this figure.]
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lower amplitude at larger scales than the analytical model
(Fig. 8).

In Figure 8 we show the primary and SZE templates
used, scaled to the best-fit value of �SZ

8 ¼ 0:98 (at 30 and
150 GHz) for the analytical case shown in Figure 7. The
total primary+SZE (analytical) model is also shown,
together with the SPH template scaled to the same parame-
ters. We see that the method can obtain a good fit between
the data and primary+SZE model at both observing fre-
quencies. Figure 8 also shows the non-Gaussian corrections
to each band power error.

It is important to note that if there is a nonnegligible SZE
component to the observed power, it may affect the

parameter fits, which assume only a primary contribution.
However, the relative contribution to the ACBAR band
powers is very small, only approximately 15% in the last
three bands. We do not expect this to have any significant
impact on the parameter estimates derived in this work. As
future observations increase the accuracy in this region of
the spectrum, a fully consistent approach to parameter
fitting will have to be adopted. Such an approach would
simultaneously account for primary and secondary
anisotropy, fitting for all parameters.

7. CONCLUSIONS

The ACBAR data, the most sensitive to date in the damp-
ing-tail region, are in good agreement with predictions of
flat �-CDM models with adiabatic initial perturbations.
Considering the ACBAR data, together with other recent
CMB results, we find that the addition of a single parameter
to the model, ��, dramatically improves the best fit, with an
improvement of D�2 ¼ 20 upon adding that one parameter.
When very weak cosmological priors are used (�m > 0:1,
age >10 Gyr, 0:45 < h < 0:90), the 3 � lower limit on the
cosmological constant rises to�� > 0:136 upon inclusion of
the ACBAR data.

We find that the addition of ACBAR data to the current
CMB set does not lead to substantial improvements in the 1
� estimates of the canonical cosmological parameters. How-
ever, in an eigenmode analysis, the addition of ACBAR
data does improve the rotated parameter uncertainties, indi-
cating that in this case the lack of improved errors on the
pure cosmological parameters is probably dominated by
degeneracies between those parameters. The volume of
parameter space consistent with the CMB data is reduced
by a significant factor (�3 times) by including the ACBAR
data.

We fit an SZE component to the data using ACBAR and
other measurements at high l. Our estimates for the value of
the effective quantity �SZ

8 ¼ ð�b h=0:035Þ0:29�8 show an
improvement over previous estimates using only CBI
and BIMA observations. The combination of the three
observations results in a 2 � detection.

Our fits show that at a fiducial value of �b h ¼ 0:035 the
central values for �8 are consistently higher than other esti-
mates obtained using cluster data, weak-lensing surveys,
and primary CMB observations (see Bond et al. 2002b for a
recent survey of �8-estimates). However, the results overlap
with most other estimates at the 2 � level. As an indication,
our LSS prior, a smoothed top hat on the combination
�8�

0:56
m , translates roughly into a smoothed top hat of

�8 ¼ 0:92þ0:21
�0:15 at �m ¼ 0:3. Any statistical inconsistency,

therefore, appears to be mild. Furthermore, systematic
uncertainties in the estimates have not yet been taken into
account. The difference displayed by the numerically and
analytically based results of about 10% is indicative of the
agreement between the two methods for predicting the SZE
power spectrum (Komatsu & Seljak 2002). In addition,
entropy injection may have a significant effect on the SZE
power spectrum. These effects would change the shape of
the SZE template and have a direct impact on our determi-
nation of �8. Nevertheless, we conclude that in the context
of the phenomenological models adopted in this work, the
data are consistent with an SZE component at �8 values
near the high end of independent estimates.

TABLE 4

�SZ8 Estimates

Data SPH Analytic

ACBAR..................................... 1:040:170:48 1:120:180:56

ACBAR+CBI+BIMA.............. 0:940:140:38 0:920:140:37

Note.—Results for the phenomenological fits to an
SZE component. The table shows �SZ8 estimates with
statistical 2 � errors, for both SPH and analytical models.
Non-Gaussian corrections are included.

Fig. 8.—Best-fit primary+SZE model amplitudes. Top, SZE model
scaled to an observing frequency of 30 GHz, which corresponds to the
BIMA and CBI observations (four rightmost points and two leftmost
points, respectively); bottom, same but for 150 GHz, corresponding to the
ACBAR results. The solid lines show the analytical model at each
frequency and the total primary+SZ. The dotted line shows the fiducial
spectrum used to model the primary contribution at l > 1000. The dashed
line shows the SPH spectrum used as a template shape. The SZ contribu-
tions are scaled to a value of �SZ8 ¼ 0:92 to show the amplitude at the best-
fit value obtained from the ACBAR+CBI+BIMA combination using the
analytic model as template (with non-Gaussian corrections). The extended
error bars for each point show the corrections due to the increase in sample
variance expected from the non-Gaussian signal.
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