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ABSTRACT

Cosmological models with different types of dark energy are becoming viable alternatives for standard
models with the cosmological constant, yet such models are more difficult to analyze and to simulate. We
present analytical approximations and discuss ways of making simulations for two families of models, which
cover a wide range of possibilities and include models with both slow- and fast-changing ratio w ¼ p=�. More
specifically, we give analytical expressions for the evolution of the matter density parameter �mðzÞ and the
virial density contrast Dc at any redshift z. The latter is used to identify halos and to find their virial masses.
We also provide an approximation for the linear growth factor of linear fluctuations between redshift z ¼ 40
and 0. This is needed to set the normalization of the spectrum of fluctuations. Finally, we discuss the expected
behavior of the halo mass function and its time evolution.

Subject headings: cosmology: theory — dark matter — galaxies: clusters: general —
methods: analytical — methods: numerical

1. INTRODUCTION

Observations of high-redshift supernovae (Perlmutter
et al. 1999; Riess et al. 1998), as well as the analysis of fluctu-
ations of the cosmic microwave background combined with
data on the large-scale structure of galactic distribution
(e.g., Balbi et al. 2000; Tegmark, Zaldarriaga, & Hamilton
2001; Netterfield et al. 2002; Pogosyan, Bond, & Contaldi
2003; Spergel et al. 2003), indicate that there is a significant
component of smooth energy with large negative pressure,
characterized by a parameter w � p=�d� 0:5. This compo-
nent is dubbed dark energy (DE). The nature of DE is open
for debate, with candidates ranging from a cosmological
constant � to a slowly evolving scalar field � to even more
exotic physics of extra dimensions (e.g., Dvali & Turner
2003).

One of the most appealing ideas for DE is a self-
interacting scalar field, which evolves with time (Ratra &
Peebles 1988, hereafter RP; Wetterich 1988). We call this
dynamical DE. The advantage of the dynamical DE models
as compared to the �-dominated cold dark matter (�CDM)
models is that DE naturally yields an accelerated expansion,
easing the problem of fine tuning. The observational signa-
tures of dynamical DE should be carefully investigated in
order to determine which measures can be used to discrimi-
nate �CDM from dynamical DE and among different
dynamical DE models. In this paper we focus on the two
most popular variants of dynamical DE. RP studied DE
models, which cause a rather slow evolution of w. Models
based on simple potentials in supergravity (SUGRA) result
in a faster evolving w (Brax &Martin 1999, 2000). Together,
RP and SUGRA potentials cover a large spectrum of
evolving w. The potentials are written as

Vð�Þ ¼ �4þ�

��
ðRPÞ ; ð1Þ

Vð�Þ ¼ �4þ�

��
exp 4�G�2

� �
ðSUGRAÞ : ð2Þ

Here � is an energy scale, currently set in the range 102–1010

GeV, relevant for fundamental interaction physics. The
potentials depend also on the exponent �. Once the param-
eters � and � are assigned, the DE density parameter �DE

follows. Here, however, we prefer to use � and �DE as
independent parameters.

Dynamical DE has kinetic and potential components,
_��2=2 and Vð�Þ, respectively. Those factors define the energy
density �DE and the pressure pDE. In general, the ratio of the
pressure and the density,

w ¼ pDE

�DE
¼

_��2=2� Vð�Þ
_��2=2þ Vð�Þ

; ð3Þ

changes with time and is typically negative when the
potential V is sufficiently large, as one expects to occur in
the recent epoch.

In order to simplify the situation, the dynamical DE is
often replaced with models with constant w 6¼ �1. This can
be considered as a formal generalization of the equation of
state of vacuum energy density for which w � �1. These
models result in accelerated expansion if w exceeds ��1

3.
The main advantage of constant w is to yield models easier
to deal with than the dynamical DE. Although finding a
physical justification for models with constant w 6¼ �1 is
more difficult than for the cosmological constant (see, how-
ever, Caldwell 2002), these models are still useful as toy
models, allowing one to inspect the effects of an acceleration
that is slower than with the vacuum energy (for a recent
review, see Peebles &Ratra 2003).

In this paper we show how complications with the
dynamical DE can be overcome if one uses suitable
approximations, which we provide. Besides allowing an
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easier treatment of the dynamical DE, these expressions also
allow us to compare the dynamical DE with the models with
constant w. One of the results of this comparison is that dif-
ferences between constant w and dynamical DE are signifi-
cant, being comparable to those between �CDM and
constant w (differences between constant and variable w can
be important also when data concern a narrower redshift
range; then they are not of the same order as those with
�CDM, but in spite of that, neglecting them can cause a
significant bias; an example is the analysis of Type Ia
supernova data performed by Podariu &Ratra 2000).

The results given in this paper are based on a modified
version of the CMBFAST code. The modifications include
effects due to the change in the rate of the expansion of the
universe and fluctuations of the scalar field. Although these
fluctuations rapidly fade, soon after they enter the horizon,
their effect on cosmic microwave background anisotropies
and polarization is quite significant, while they also cause
(smaller) modifications to the transfer function on large
scales.

In addition, we also estimate the growth of linear and
nonlinear fluctuations of nonrelativistic matter only.
Previously, our algorithms were used by Mainini, Macciò,
& Bonometto (2003, hereafterMMB03).

Making use of these algorithms, in this paper we work
out (1) analytical approximations of the dependence of the
matter density parameter �m on the redshift z, (2) modifica-
tions to runN-body simulations of the clustering of dynami-
cal DE models, and (3) analytical approximations for the
virial density contrast Dc at any redshift z. Expressions
derived from the linear theory can also be used to compare
the observables deduced for dynamical DE and for constant
w. We argue that these approximations make an analysis of
the dynamical DE as simple as for models with constant w.

2. THE VIRIAL DENSITY CONTRAST

We start with finding the evolution of the density contrast
in the top-hat approximation for models with DE. Consid-
ering a spherical fluctuation greatly simplifies the analytical
and numerical treatment of the nonlinear problem. Much
work has been done in this line, starting with Gunn & Gott
(1972), Gott & Rees (1975), and Peebles (1980), who studied
the spherical collapse in standard CDM (SCDM) models.
Lahav et al. (1991), Eke, Cole, & Frenk (1996), Brian &
Norman (1998), and others generalized the results to the
case of �CDM. If the initial density contrast of a spherical
perturbation is Di ¼ 1þ �i, and its initial radius is Ri, then
the radius of the perturbation R ¼ rRi at later times can be
found using the equation

€rr

r
¼ �H2

i

�m;iDi

2r3
þ �r;i

�
ai
a

�4

þ ð1þ 3wÞ�DE

2�cr;i

" #
; ð4Þ

where all quantities with subscript i refer to the initial time.
In particular, �m;i and �r;i are the density parameters for
nonrelativistic and relativistic matter at that time. To inte-
grate this equation, the time dependence of �DE and w must
also be worked out (see eq. [3]). In turn, this requires the
integration of the equation of motion

€��þ 3
_aa

a

� �
_��þ @V

@�
¼ 0 ; ð5Þ

yielding � and _�� to be used in equation (3), and the
Friedmann equation, yielding _aa=a (see also x 4 here below).
Initial conditions to solve equation (5) are set in the
radiation-dominated era, using the tracker solution. After
slowing down relative to the scale factor aðtÞ, the perturba-
tion eventually stops at turnaround time tta, when its radius
is Rta. The radius R formally goes to zero at �2tta, corre-
sponding to redshift zcol. The value of zcol depends on the
amplitude of the initial fluctuation �i. Instead of �i, it is,
however, convenient to use the amplitude �c as estimated by
the linear theory at zcol. For SCDM the value of this density
contrast is

��c ’ 1:68 ð6Þ

and does not depend on zcol (see, e.g., Coles & Lucchin
1995). For other models, �c does depend on zcol.

In the contraction stages fluctuations heat up, and unless
kinetic energy can be successfully radiated away, contrac-
tion will stop when virial equilibrium is attained and its size
is Rv. Requiring energy conservation and virial equilibrium,
we obtain the algebraic cubic equation

x3 � 1þ yðataÞ
2yðacolÞ

xþ 1

4yðacolÞ
¼ 0 ; ð7Þ

where x ¼ Rv=Rta and

yðaÞ ¼ 1� �mðaÞ
Di�mðaÞ

Rta

Ri

� �3�
ai
a

�3

: ð8Þ

Note that the actual radius of the final virialized halo is
often larger than Rv, owing to deviations from spherical
growth in the real world (Macciò, Murante, & Bonometto
2003). Still, Rv is a good starting point for statistical
analysis. Multiplying equation (7) by 2y and then taking
y ¼ 0 (i.e., �m � 1: SCDM), we recover x ¼ 1

2. In general,
the root x lies slightly below this value.

Figure 1 shows the linear and nonlinear growth of a
density contrast for SCDM, �CDM, and RP models
normalized to have zcol ¼ 0. Similar plots can be made for
any redshift of collapse. The figure can be used to find the
initial amplitude Di at any given redshift zi and the value of
�c for a perturbation collapsing at present.

Using the final value of D, we obtain the virial density
contrast:

Dc ¼ �mD : ð9Þ

In the linear and nonlinear cases, deviations from the
SCDM behavior often compensate each other, and the final
values of �c are just slightly model-dependent (see Fig. 2 and
MMB03 for more details). The spread among the virial den-
sity contrasts, Dc, is large, as indicated by Figure 3, which
shows Dc as a function of �m for different models. The evo-
lution of Dc with redshift is also very model-dependent, as
shown by Figure 4. We provide an approximation, which is
valid at any redshift z, provided that we know the matter
density parameter�m at that redshift:

Dc ¼ 178 �mð Þlð�m;�Þ : ð10Þ

Here lð�m; �Þ ¼ aþ bð�mÞc with c ¼ 1 for RP and 2 for
SUGRA. Parameters a and b are given by

a ¼ a1�þ a2 ; b ¼ b1�þ b2 ; ð11Þ
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where

� ¼ logð�=GeVÞ ð12Þ

and the coefficients are given in Table 1.

Figure 5 shows the dependence on � of the differences
jDnum

c =Dan
c � 1j at z ¼ 0, for models with h ¼ 0:7 and

different values of �, as a function of �m. (Here Dnum
c is

obtained from the full numerical treatment, while Dan
c is the

expression [10].) Discrepancies stay below 0.5% for any
�md0:15. However, for large �, the approximation is even
better:d0.2% for any�m.

Fig. 1.—Normalized linear (bottom curves) and nonlinear (top curves)
amplitude of density fluctuations for SCDM (dotted curves), �CDM
(dashed curves), and RP (solid curves) models. The amplitude of fluctuation
was normalized to collapse the perturbation at zcol ¼ 0. Similar plots can be
given for a collapse at any other redshift. The density contrast D ¼ Dc=�m,
andw0 is the value ofw at z ¼ 0.

Fig. 2.—Dependence of �c on the matter density parameter �m at z ¼ 0
for four RP (�=GeV ¼ 102, 104, 106, and 108) and two SUGRA models
(�=GeV ¼ 102 and 108). The value of � increases from the top to the
bottom curves.

Fig. 3.—Dependence of �m on Dc for different cosmologies. The RP and
SUGRA models, at z ¼ 0, have a pressure/density ratio w0 ¼ w for the
constant-wmodels shown. The solid curve is for�CDM.

Fig. 4.—Redshift dependence of Dc for different cosmologies. The RP
and SUGRAmodels, at z ¼ 0, have a pressure/density ratio w0 ¼ w for the
constant-wmodels shown. The solid curves are for SCDM (upper horizontal
line) and�CDM.
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3. THE MASS FUNCTION AND THE LINEAR
GROWTH FACTORS FOR DYNAMICAL DE

We use both the Press-Schechter (1974, hereafter PS) and
the Sheth-Tormen (1999, 2002, hereafter ST) approxima-
tions for the mass function of dark matter halos. The value
of �c defines the bias factor � ¼ �c=�M for the massM. Here
�M is the rms density fluctuation on this scale. The bias
factor then enters the expression

f ð�Þ� d log � ¼ M

�m
nhðMÞM d logM ; ð13Þ

with either

f ð�Þ� ¼
ffiffiffi
2

�

r
� exp � �2

2

� �
ðPSÞ ; ð14Þ

or

f ð�Þ� ¼ A
�
1þ �0ð Þ�2q� ffiffiffi

2

�

r
�0 exp

� �0ð Þ2

2

" #
ðSTÞ ; ð15Þ

with a small complication in the ST case: here �0 ¼
ffiffiffi
a

p
� with

a ¼ 0:707, while the constants q ¼ 0:3 and A ¼ 0:3222.
Using equation (13) we obtain the differential mass function
nhðMÞ in the PS and ST approximations, once the distribu-
tion on bias is given. Here, as usual, we assume a Gaussian

f ð�Þ. Equations (13)–(15) can then be integrated to obtain
the halo mass function nhð> M; zÞ at any redshift z.

Such a computation must use appropriate values for �c
and �M ; the latter are computed by integrating the power
spectrum PðkÞ. Its shape depends on the specific choice of
dynamical DE, as our modified CMBFAST program
shows. However, the dependence is very mild for wave-
lengths smaller than the galaxy cluster scale. On the con-
trary, as can be seen also from Figure 1, the linear growth
factor depends on the DE nature in quite a significant way.
Figure 6 presents the z-dependence of the growth factor for
z up to 40 and for a number of different models.

In particular, Figure 6 shows that at redshift z � 2 the dif-
ference between �CDM and a model with constant
w ¼ �0:86 is equal to or even smaller than the very differ-
ence between this constant-w model and the SUGRA
model, yielding the same ratio w at z ¼ 0. However, the lat-
ter difference becomes comparable to the former one
already at ze0:5. A constant-w approximation seems to
perform better for RP models, but this can be mostly
ascribed to the fact that the ratio w at z ¼ 0 is smaller for
these models. Their distance from �CDM is therefore
greater, and the difference between them and constant-w
models appears comparatively smaller. However, also in
this case, using constant w instead of RP at z � 4 is surely
misleading.

The linear growth factor shown in Figure 6 is very impor-
tant for setting the initial conditions of N-body simulations
because linear growth factors are required for the normal-
ization of the power spectrum at the initial redshift zin of
simulations. For these reasons we also give an analytical
approximation that reproduces fairly well the behavior of
the linear growth factors at z ¼ 40 for different values
of�mðz ¼ 0Þ and �:

�c
�ðz ¼ 40Þ ¼ Aþ B�þ C�2 : ð16Þ

The values of the coefficients A, B, and C are presented in
Table 2 for the RP and SUGRA models, respectively. At

TABLE 1

Interpolation Coefficients for Dc

Model a1 a2 b1 b2

RP .................. �1.45� 10�2 0.186 �0.011 0.22

SUGRA.......... �2.25� 10�3 0.3545 �0.01875 �0.1225

Fig. 5.—Fractional discrepancy between numerical and analytical
results on Dc.

Fig. 6.—Linear growth factor for various models
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z ¼ 40, the discrepancies between �m and unity already
range around 2%–3%. If a simulation must be started at
larger z, extrapolating the linear growth factor by assuming
that � / a at z > 40 implies an error smaller than such a per-
centage. This can still be improved by assuming that
� / a�

q
m , with q ’ 0:4. The dependence of q on the model

and on the energy scale � fixes the second decimal of q and
allows a precision better than 0.01%, which is out of the
scope of this analysis.

Mass functions nð> M; zÞ, obtained according to equa-
tions (13)–(15), are compared with simulations in the
accompanying paper (Klypin et al. 2003). Similar mass
functions, obtained from the PS expressions, were used in
MMB03 to estimate the expected observable differences
between models with different dynamical DE.

4. EVOLUTION OF THE MATTER
DENSITY PARAMETER

In the RP and SUGRA models, at variance from models
with w ¼ const, no analytical expression of �mðaÞ is readily
available. An accurate approximate expression of �m for
various redshifts and for different models is useful for
various purposes. In particular, it can be used in conjunc-
tion with equations (10) and (11) to find the value of Dc at
z 6¼ 0.

We found the following fitting formula:

�mðaÞ ¼ 1� 1� �m;0

ð1þ zÞ�ðz; �Þ
; ð17Þ

where�m;0 is the matter density parameter at z ¼ 0, while
�ðz; �Þ ¼ aþ bzc þ d=ð1þ zÞ with d ¼ 0 for the RP
models. Parameters a, b, c, and d have the same structure as
equation (11). The coefficients are given in Table 3.

Figure 7 shows the errors of approximation
j�num

m =�an
m � 1j as a function of the redshift z for two RP

and two SUGRAmodels with�m ¼ 0:3 and h ¼ 0:7.
All that is needed to find the relation between the scale

factor a and time in any flat dynamical DE model is such an
expression. In fact, let us remember that

_aa

a
¼ H0

ffiffiffiffiffiffiffiffiffi
�ðaÞ
�cr;0

s
; ð18Þ

with

�ðaÞ ¼ �m;0

a3
þ �r;0

a4
þ

_��2

2
þ Vð�Þ : ð19Þ

At low z, we can omit the contribution of the radiation
density. Therefore, at any time,

�� ¼
_��2

2
þ Vð�Þ ¼ �crðaÞ 1� �mðaÞ½ �

¼ �mðaÞ
1� �mðaÞ
�mðaÞ

; ð20Þ

provided that we are dealing with amodel such that the total
density is equal to the critical density �crðaÞ. Then, the

TABLE 2

Coefficients for the Linear Growth Factor

Parameter �m=0.2 �m= 0.3 �m=0.4

SUGRA

A ............................ 25.6 28.5 30.7

B ............................ �0.237 �0.26 �0.274

C ............................ 0 0 0

RP

A ............................ 21.3 25.1 28.2

B ............................ �0.755 �0.783 �0.698

C ............................ �0.0125 �0.0155 �0.0155

TABLE 3

Coefficients for �m(z)

Parameter �m=0.2 �m=0.3 �m= 0.4

RP

a1 ................... �5.638� 10�3 �2.119� 10�2 �3.365� 10�2

a2 ................... �0.813 �0.259 0.207

b1 ................... �2.460� 10�2 �1.833� 10�2 �1.384� 10�2

b2 ................... 1.382 0.975 0.628

c1.................... �5.960� 10�3 �6.975� 10�3 �8.394� 10�3

c2.................... 8.460� 10�2 9.771� 10�2 0.119

SUGRA

a1 ................... �8.466� 10�3 �9.161� 10�3 �2.035� 10�2

a2 ................... 1.383 1.415 1.427

b1 ................... �1.386� 10�2 �1.753� 10�2 �1.336� 10�2

b2 ................... �8.521� 10�3 �6.890� 10�3 �1.289� 10�2

c1.................... �3.935� 10�2 �4.421� 10�2 �4.203� 10�2

c2.................... 0.710 0.688 0.682

d1 ................... 2.088� 10�2 1.875� 10�2 2.212� 10�2

d2 ................... �0.883 �0.621 �0.416

Fig. 7.—Fractional discrepancies between the approximated expression
(17) and numerical data.
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Friedmann equation reads

_aa

a

� �2

¼ 8�

3
G�mðaÞ 1þ 1� �mðaÞ

�mðaÞ

� 	

¼ 8�

3
G

�m;0

a3�mðaÞ
; ð21Þ

so that

_aa

a
¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m;0

a3�mðaÞ

s
: ð22Þ

This formula is valid regardless of the equation of state of
DE. In models with constant w, the density �DE / a�3ð1þwÞ,
and therefore, owing to equation (21),

�mðaÞ ¼ 1þ a�3w ��1
m;0 � 1

� �� ��1
: ð23Þ

Expressions (17)–(23), yielding �mðaÞ, as well as equation
(22), yielding �cr, can be used in N-body programs to deter-
mine the trajectories of particles in an expanding universe.
In fact, once we know �m and �cr, we can integrate the
Poisson equation r2� ¼ �4�Ga2�cr�m�m, yielding the
peculiar potential � due to the density fluctuations �m,
obtained from the particle distribution. Then the equations
of motion of each particle,

dp

da
¼ � _aarx� ;

dx

da
¼ p

a2 _aa
ð24Þ

(see, e.g., Peebles 1980; here p � av), can be integrated using
_aa given by equation (22), and we obtain the evolution of par-
ticle positions as a function of the scale factor a. TheN-body
Adaptive Refinement Tree (ART) code (Kravtsov, Klypin,
& Khokhlov 1997), used in the accompanying paper
(Klypin et al. 2003) to discuss the evolution of models with
dynamical DE and DE with constant w, has been modified
on these bases.

Figure 8 compares the expansion law aapxðtÞ, obtained
using equations (17) and (18), with the numerical behavior
anumðtÞ. Discrepancies seldom exceed 0.4% and are mostly
well below 0.1%. For any practical purposes, the errors are
negligible.

5. DISCUSSION

Observational effects of DE have been considered by
various authors, but often models with a constant w are
used. Besides being simpler, constant-w models give a feel-
ing that results are generic in the sense that they do not
depend on the nature of the underlying DE. For instance,
Wang & Steinhardt (1998), Steinhardt, Zlatev, & Wang
(1999), Zlatev, Wang, & Steinhardt (1999), and Lokas
(2002) derived the Dc-dependence on �m and w in the
constant-w approximation. Schuecker et al. (2003) extended
the results to large negative w-values to include the case of
phantom energy (Caldwell 2002; Schulz &White 2001).

Unfortunately, results depend on what is assumed for the
DE. Figure 3 shows the dependence of Dc on w for models
with�m ¼ 0:3 and h ¼ 0:7 for three cases: DE as the cosmo-
logical constant, constant w 6¼ �1, and dynamical DE with
RP or SUGRA potentials. The difference between constant
w and dynamical DE is as large as the difference between
�CDM and constant w. In other words, if we need to con-

sider models more sophisticated than �CDM, it is not
enough to discuss only constant w 6¼ �1. Figure 9 illustrates
that the growth factor for dynamical DE cannot be approxi-
mated by a model with constant w. It seems clear that the
universe ‘‘ knows ’’ the underlying physics, and predictions
depend on the shape of the potential of the scalar field
responsible for the DE.

In principle, finding astrophysical quantities that depend
on microphysics is far from being unwelcome. Accordingly,
the detailed dependence of astrophysical observables on
microphysical parameters deserves to be inspected. Let us

Fig. 8.—Fractional discrepancies between the analytical and numerical
integrations of eq. (18) to obtain aðtÞ.

Fig. 9.—Redshift dependence ofw for four RP and four SUGRAmodels
(� ¼ 1, 3, 5, and 7); � decreases from the top to the bottom curves.

No. 1, 2003 MODELING DYNAMICAL DARK ENERGY 29



outline, in particular, that Figure 3 applies to observations
at z ¼ 0, while the effects of dynamical DE are also expected
at higher z. In fact, in Figure 4 we show the z-dependence of
Dc for three sets of models characterized by the same values
of w at z ¼ 0. The figure shows that the differences between
values of Dc increase from z ¼ 0 toward intermediate red-
shifts, to go back to SCDM values at high redshifts, when
ordinary matter gradually approaches critical density.

Intermediate redshifts, however, are the most relevant for
present and future observations. Figure 10 shows that, at
these redshifts, the dependence on the nature of DE arises
from actual changes of w. Therefore, apart from any consid-
eration concerning fundamental physics, Dc-values at high z
obtained within the constant-w approximation risk the
creation of bias.

Our aim is to facilitate the usage of dynamical DE. We
provide the following tools: (1) an approximation for
�mðaÞ, (2) an interpolating expression for Dc, valid at any
redshift for given �mðaÞ, (3) an analytical expression for the
rate of change of the expansion parameter needed for
running N-body simulations and hydrosimulations, and (4)
a plot of the linear growth factor, for a number of dynamical
DE models, and an analytical approximation for it, to be
used to set the initial conditions ofN-body simulations.

Using these formulae, we modified the ART code, which
is used in the accompanying paper (Klypin et al. 2003). In a
similar way, other programs dealing with N-body inter-
actions or hydrodynamics can be appropriately modified.
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Schuecker, P., Caldwell, R. R., Böhringer, H., Collins, C. A., & Guzzo, L.,
&Weinberg, N. N. 2003, A&A, 402, 53

Schulz, A. E., &White, M. 2001, Phys. Rev. D, 64, 043514
Sheth, R. K., & Tormen, G. 1999,MNRAS, 308, 119
———. 2002,MNRAS, 329, 61 (ST)
Spergel, D. N., et al. 2003, ApJS, 148, 175
Steinhardt, P. J., Wang, L., & Zlatev, I. 1999, Phys. Rev. D, 59, 123504
Tegmark, M., Zaldarriaga, M., & Hamilton, A. J. 2001, Phys. Rev. D, 63,
43007

Wang, L., & Steinhardt, P. J. 1998, ApJ, 508, 483
Wetterich, C. 1988, Nucl. Phys. B, 302, 668
Zlatev, I., Wang L., & Steinhardt, P. J. 1999, Phys. Rev. Lett., 82, 896

Fig. 10.—Linear growth factor for models with w ¼ const (solid curve)
compared with the linear growth factor for the RP and SUGRA models
(dashed and dot-dashed curves, respectively). The RP and SUGRA results
are plotted as a function of the value of w that they have at either z ¼ 0 or
z ¼ 40 (long-dashed and short-dashed lines, respectively). The logarithmic
energy scale � for both models ranges here from 2 to 10. The plot illustrates
that the growth factor for dynamical DE cannot be easily approximated by
anymodel with constantw.
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