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ABSTRACT. We construct the error distribution of Hubble constant ( ) measurements from Huchra’sH0

compilation of 461 measurements of and the WMAP experiment central value km s Mpc . This�1 �1H H p 710 0

error distribution is non-Gaussian, with significantly larger probability in the tails of the distribution than predicted
by a Gaussian distribution. The 95.4% confidence limits are 7.0 j in terms of the quoted errors. It is remarkably
well described by either a widened Student t distribution or a widened double exponential distribution.n p 2
These conclusions are unchanged if we use instead the central value km s Mpc found from a median�1 �1H p 670

statistics analysis of a major subset of measurements used here.H0

1. INTRODUCTION

Measurements of the Hubble constant are a unique data set
for statistical analysis for two reasons. First, Huchra’s com-
pilation3 with over 400 measurements is one of the largest
collection of measurements of a single quantity. Second, the
Hubble constant is now one of the more precisely determined
cosmological parameters (see, e.g., Freedman et al. 2001; Ben-
nett et al. 2003).

It is also of great interest to understand how well the Hubble
constant has been measured, both because it is an important
cosmological parameter and because of the role it plays in
various cosmological tests, most importantly the expansion-
time test (see, e.g., Peebles & Ratra 2003 for a review).

Assuming a value for the Hubble constant—in the body of
this paper we work with km s Mpc , the central�1 �1H p 710

value from the combined WMAP and other data analysis of
Spergel et al. (2003)4—one may use Huchra’s compilation of

(where and are the upper and lower 1 standardu l�j u li�jiH j j0,i i i

deviation error bars) to construct the distribution of errors of
the Hubble constant measurements. This is a plot of the number
of measurements as a function of the number of standard de-
viations ( ) the measurement deviates from the actual valueNj
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hattan, KS 66506.

2 Princeton University Observatory, Peyton Hall, Princeton, NJ 08544.
3 See http://cfa-www.harvard.edu/∼huchra/.
4 In the Appendix, we summarize results from a similar analysis based on

the central value of km s Mpc from the Gott et al. (2001) median�1 �1H p 670

statistics analysis of a major, earlier subset of the measurements consideredH0

here, showing that our conclusions are not sensitive to the precise central value
of assumed in the estimated 10% (2 standard deviation) range now underH0

discussion (see, e.g., Gott et al. 2001).

of . HereH0

H � H0,i 0N p (1)j uji

when , andH ! H0,i 0

H � H0,i 0N p (2)j lji

when .H 1 H0,i 0

In our analysis here, we use measurements from Huchra’s
compilation up to and including measurement 2003.239. De-
leting the four entries from 1924 and 1925 that lack actual
estimates of , we use 461 published estimates of in ourH H0 0

analysis here, 40% more than the 331 used in the analysis of
Gott et al. (2001). Observers often note that there could be
unknown systematic errors; however, authors’ quoted errors
have been used to evaluate the accuracy of estimates, andH0

so it is important to understand the quoted error distribution.
In § 2, we describe our analysis of this collection of 461

measurements, assuming that km s Mpc , the cen-�1 �1H p 710

tral value from the combined WMAP and other data analysis
of Bennett et al. (2003) and Spergel et al. (2003). For com-
parison, to show that the results are robust to small changes
in the true value of , summary results from an analysis basedH0

on the central value of km s Mpc from the Gott�1 �1H p 670

et al. (2001) median statistics study are presented in the Ap-
pendix. We conclude in § 3.

2. ANALYSIS

Figure 1 shows the distribution of deviations of the 461 mea-
surements from the central WMAP value of km s�1H p 710

Mpc , in units of the quoted standard deviation of the mea-�1

surement. This is the error distribution of the measurements;H0

Figure 1a shows the signed error distribution, and Figure 1b
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Fig. 1.—Number of measurements (in half standard deviation bins) away from the central value of km s Mpc estimated by the WMAP Collaboration.�1 �1H p 710

(a) Sign of the deviation; (b) only the magnitude of the deviation. In panel (a), bins with positive (negative) correspond to measurements where is measuredN Hj 0

to be higher (lower) than 71 km s Mpc .�1 �1

shows the absolute magnitude of the errors (the distribution in
Fig. 1b is symmetric about ). These error distributionsFN F p 0j

have significant tails: there are numerous measurements 5 and
even 10 standard deviations away. More precisely, in the signed
error distribution of Figure 1a, 68.3% and 95.4% of the prob-
ability lie in the range and ,�2.4 ≤ N ≤ 1.1 �7.0 ≤ N ≤ 6.7j j

respectively,5 and for the absolute magnitude error distribution
of Figure 1b, the corresponding limits are andFN F ≤ 1.9j

, respectively. An alternative characterization of theFN F ≤ 7.0j

tails of this distribution is provided by the fraction of data
within the and 2 ranges, which for the distributionFN F p 1j

shown in Figure 1b is 48% and 69%, respectively. These are
impressively high (nearly half the observed values are within
1 standard deviation of 71 km s Mpc ) but still clearly at�1 �1

odds with what is expected for a Gaussian distribution.
It is of interest to quantify how well the data of Figure 1

are fitted by various simple distribution functions and to de-
termine the parameters of these functions that result in the best
fit to the data. To do this, we proceed as follows. For our

5 The unbinned data used to derive Fig. 1a have a mean of �0.53, median
�0.38, standard deviation 2.9, skewness 0.66, and kurtosis 9.6.

purposes it is useful to maximize the number of data points in
each bin as well as the number of bins. This is perhaps best
accomplished by using 21 bins (close to the square root of
461), labeled by integer j that runs from 1 to 21, and adjusting
the widths of the bins, , to ensure equal expected prob-DFN Fj j

ability (for the assumed distribution function) in each bin. Thus,
for an assumed distribution (such as a Gaussian), we construct
21 bins such that the expected number of data points in each
bin would be 21.95. Then we compare with the number of data
points observed in each of the 21 bins and do a x2 analysis,
as discussed in the next paragraph. (Since the number expected
in each bin is large compared to unity, a x2 analysis is justified.)
With this prescription, the data binning depends on the assumed
probability distribution function (in this paper, we pre-P(FN F)j

sent results only from the fit to the symmetric absolute error
distribution, e.g., that in Fig. 1b).

To estimate goodness of fit, we use the assumed probability
distribution function to compute the expected number of mea-
surements in each bin j, , where is the totalNP(FN F ) N p 461j j

number of measurements. Since there are a finite number of
measurements in each bin, they should be Poisson-distributed
with mean value for the jth bin. For the PoissonNP(FN F )j j
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Fig. 2.—Binned data (solid lines) and best-fit Gaussian probability distribution functions (dotted lines) for km s Mpc estimated by the WMAP�1 �1H p 710

Collaboration, all normalized to unit area. The binning and therefore the data histogram shapes depend on the assumed probability distribution function (see text).
Panel (a) shows a Gaussian distribution with scale factor such that corresponds to 1 standard deviation; panel (b) allows S to vary as x2 isS p 1 FN F p 1j

minimized, and the best-fit value of is shown. For ease of visualization, the extreme ends of the left- and rightmost bins (solid lines) have been broughtS p 2.0
in from to , with the heights adjusted to ensure that the probabilities in the bins are unchanged. The dotted horizontal and vertical linesFN F p � FN F p 10j j

demarcate the predicted probability for these last bins for the assumed Gaussian distribution.

TABLE 1
Goodness-of-Fit Numerical Values

Function

km s Mpc�1 �1H p 710 km s Mpc�1 �1H p 670

Scalea b2xn nb

Probability
(%)c Scalea b2xn nb

Probability
(%)c

Gaussian . . . . . . . . . . . . . . . . . 1 19.8 20 !0.1 1 15.0 20 !0.1
Gaussian . . . . . . . . . . . . . . . . . 1.8 2.63 19 !0.1 1.7 1.92 19 0.94
Cauchy . . . . . . . . . . . . . . . . . . . 1 1.42 20 9.9 1 1.10 20 35
Cauchy . . . . . . . . . . . . . . . . . . . 1.1 1.46 19 8.7 1.0 1.15 19 29

Student’s t . . . . . . . .n p 2 1 2.58 19 !0.1 1 1.56 19 5.7
Student’s t . . . . . . . .n p 2 1.3 0.717 18 80 1.2 0.326 18 99.7

Double exponential . . . . . . 1 7.12 20 !0.1 1 5.11 20 !0.1
Double exponential . . . . . . 1.5 0.501 19 96 1.6 0.325 19 99.7

a Scale (factor) corresponds to the case when corresponds to 1 standard deviation for aS p 1 FN F p 1j

Gaussian distribution, otherwise the width of the distribution is allowed to vary with the scale factor as x2 is
minimized.

b is the x2 per degree of freedom, where n is the number of degrees of freedom.2xn

c Probability that a random sample of data points drawn from the assumed distribution yields a value of
greater than or equal to the observed value for n degrees of freedom. The computation assumes that the2xn

bins are uncorrelated, which is not necessarily true, so the probabilities should not be taken at face value but
merely as qualitative indicators of goodness of fit.



1272 CHEN, GOTT, & RATRA

2003 PASP, 115:1269–1279

Fig. 3.—Binned data (solid lines) and best-fit Cauchy probability distribution functions (dotted lines) for km s Mpc estimated by the WMAP�1 �1H p 710

Collaboration, all normalized to unit area. See Fig. 2 legend for more details. Panel (a) shows a Cauchy distribution with scale factor ; panel (b) allows SS p 1
to vary as x2 is minimized, and the best-fit value of is shown. The dotted horizontal and vertical lines demarcate the predicted probability for the lastS p 1.1
bins for the assumed Cauchy distribution.

distribution, the variance is equal to the mean, hence the2jj

total x2 is

21 2[M(FN F ) � NP(FN F )]j j j j2x p , (3)�
NP(FN F )jp1 j j

where is the observed number of measurements inM(FN F )j j

each bin. We tabulate the reduced x2, , where n is2 2x p x /nn

the number of degrees of freedom, i.e., the number of bins (21)
less the number of constraints and fitting parameters. Given

and n, one may compute the probability that the assumed2xn

distribution well describes the spread of the measurements. In
the computation of this probability, we assume that the bins
are uncorrelated, which is not necessarily true (since lower
rungs of the distance ladder introduce correlations in subsets
of the measurements). It is therefore wise to place quantitative
emphasis on just the values and use the corresponding prob-2xn

abilities as simply a qualitative indicator of goodness of fit.
We consider four probability distribution functions and as

mentioned above focus on the absolute magnitude error dis-

tribution, as in Figure 1b, so all distributions we consider will
be centered at . One constraint that must be satisfiedFN F p 0j

is that the total number of measurements must sum to 461.
Since we consider 21 bins and normalize to fit the total number
of measurements, a probability distribution function with no
free parameters will have degrees of freedom.n p 20

Even though we have noted the existence of extended tails
in the error distributions of Figure 1, it is natural—perhaps
Pavlovian—to first consider the Gaussian distribution, initially
with width chosen so that corresponds to 1 standardFN F p 1j

deviation, and then with a scale factor to vary the width of the
distribution. That is, we take as probability distribution function
the Gaussian expression

1 2P(FN F) p exp �FN F /2 (4)( )j j�2p

for the case where is equivalent to 1 standard de-FN F p 1j

viation, and then we consider the function , where SP(FN F/S)j

is a scale factor that is adjusted to minimize x2. (We allow S
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Fig. 4.—Binned data (solid lines) and best-fit Student t probability distribution functions (dotted lines) for km s Mpc estimated by the�1 �1n p 2 H p 710

WMAP Collaboration, all normalized to unit area. See Fig. 2 legend for more details. Panel (a) shows a distribution with scale factor ; panel (b) allows SS p 1
to vary as x2 is minimized, and the best-fit value of is shown. The dotted horizontal and vertical lines demarcate the predicted probability for the lastS p 1.3
bins for the assumed distribution.

to vary over the range 0.5–3 in steps of 0.1 when computing
x2.) In the first case, there are no additional free parameters,
so ; the scale factor S is an additional free parametern p 20
in the second case, so here we have degrees of freedom.n p 19
Figure 2 shows the measurement error histograms and the best-
fit Gaussians, both normalized to unit area. Numerical values
are listed in Table 1. These show that if km s�1H p 710

Mpc , then the measurement error distributions are extremely�1

poorly fitted by a Gaussian, even if the Gaussian width is
allowed to be a free parameter. Interestingly, if the width is
allowed to float while minimizing x2, it favors 1.8; i.e., the
assumed distribution favors identifying with 1 stan-FN F p 1.8j

dard deviation, almost double the value one would naively infer
from the measurement errors, thus perhaps indicating that in
this Gaussian case it might not be unreasonable to roughly
double the quoted error bars, consistent with our earlier dis-
cussion of extended tails. This situation might profitably be
contrasted with what happened in the early days of cosmic
microwave background spatial anisotropy measurements,
where a number of models fitted the measurements extremely
well, perhaps indicating that the error bars had been over-

estimated (Ganga, Ratra, & Sugiyama 1996). In any case, it is
very unlikely that the measurement errors are described byH0

a Gaussian distribution. (Note that the probability is a little
higher for the km s Mpc case, but even here a�1 �1H p 670

Gaussian distribution is a very poor fit.)
The fact that the error distribution of Hubble constant mea-

surements is non-Gaussian does not necessarily imply an under-
lying non-Gaussianity in the measurement errors. Rather, the
distribution tells us something about the observers’ ability to
correctly estimate systematic and statistical uncertainties.

Figure 2 indicates that the distribution of Hubble constant
measurement errors has a more extended tail than is predicted
by a Gaussian probability distribution. Perhaps the most well-
known distribution with an extended tail is the Cauchy, or
Lorentzian, or Breit-Wigner distribution,

1 1
P(FN F) p ; (5)j 2p 1 � FN Fj

we also consider the case , where the scale factor SP(FN F/S)j

is allowed to vary while x2 is minimized. Figure 3 shows the
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Fig. 5.—Binned data (solid lines) and best-fit double exponential probability distribution functions (dotted lines) for km s Mpc estimated by the�1 �1H p 710

WMAP Collaboration, all normalized to unit area. See Fig. 2 legend for more details. Panel (a) shows a distribution with scale factor ; panel (b) allows SS p 1
to vary as x2 is minimized, and the best-fit value of is shown. The dotted horizontal and vertical lines demarcate the predicted probability for the lastS p 1.5
bins for the assumed double exponential distribution.

data and best-fit Cauchy distributions, and numerical values
are listed in Table 1. Unlike the Gaussian case, the Cauchy
distribution cannot be rejected; it is acceptable at 9.9% or 8.7%
depending on whether S is fixed to unity or allowed to vary
(and it does significantly better at km s Mpc ).�1 �1H p 670

However, it is clear from Figure 3 that the Cauchy distribution
has greater probability in the extended tails than does the Hub-
ble constant measurements error distribution. The Cauchy dis-
tribution has a similar central peak, with a 50% chance that

, but a 95.4% chance that instead of 7.0FN F ! 1 FN F ! 13.8j j

as observed. It would therefore be beneficial to search for a
distribution that has broader tails than the Gaussian one but
narrower than the Cauchy case.

A Cauchy distribution with would result if the errorsS p 1
were Gaussian distributed and observers took measurements
free of systematic errors, divided their data into two parts, used
each half to produce two independent estimates of the Hubble
constant, and , and produced a mean estimateH H H p1 2 m

with an error estimate (standard deviation of the(H � H )/21 2

mean) of . If and are drawn from anj p FH � H F/2 H Hm 1 2 1 2

underlying Gaussian distribution centered on the true value

, then is distributed like a Cauchy distributionH (H � H )/jt m t m

with . That gives a 50% chance that is within 1 ofS p 1 H jm m

the true value and a 95% chance that is within 12.7 ofH jm m

the true value. The large tails result because in a Gaussian
distribution there is an appreciable chance that FH � H F/21 2

will be significantly less than the true j for the distribution. In
this scenario, the observer is really using the self-consistency
of her observations to set the error bars. If one measures the
distance to two galaxies using Cepheids and gets two values for
the Hubble constant that are close to each other, one may well
be tempted to think that one’s method has the high degree of
accuracy implied by the observed value of .j p FH � H F/2m 1 2

Indeed, if one estimated the errors by other means (estimated
uncertainties in measuring the observed quantities required
to measure the Hubble constant, along with standard prop-
agation of errors) and one got an error significantly larger
than , then one might be suspicious that one shouldFH � H F/21 2

be so lucky as to obtain such a small value of .FH � H F/21 2

Yet rarely, such lucky coincidences do occur, and it is precisely
these cases that cause the large tails in the Cauchy distribution.
The Cauchy distribution with is acceptable at 9.9% butS p 1
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TABLE 2
LimitsFN Fj

Function

km s Mpc�1 �1H p 710 km s Mpc�1 �1H p 670

Scalea 68.3%b 95.4%b Scalea 68.3%b 95.4%b

Gaussian . . . . . . . . . . . . . . . . . 1 1.0 2.0 1 1.0 2.0
Gaussian . . . . . . . . . . . . . . . . . 1.8 1.8 3.6 1.7 1.7 3.4
Cauchy . . . . . . . . . . . . . . . . . . . 1 1.8 14 1 1.8 14
Cauchy . . . . . . . . . . . . . . . . . . . 1.1 2.0 15 1.0 1.8 14

Student’s t . . . . . . . .n p 2 1 1.3 4.5 1 1.3 4.5
Student’s t . . . . . . . .n p 2 1.3 1.7 5.9 1.2 1.6 5.4

Double exponential . . . . . . 1 1.2 3.1 1 1.2 3.1
Double exponential . . . . . . 1.5 1.7 4.6 1.6 1.8 4.9
Observed . . . . . . . . . . . . . . . . . 1.9 7.0 1.7 7.5

a Scale (factor) corresponds to the case when correspondsS p 1 FN F p 1j

to 1 standard deviation for a Gaussian distribution, otherwise the width of the
distribution is allowed to vary with the scale factor as x2 is minimized. For a
given distribution, the derived limits depend only on the value of S.

b Upper limits that include 68.3% and 95.4% of the probability.FN Fj

TABLE 3
Expected Fraction of Data Points with ≤ 1 and ≤ 2FN F FN Fj j

Function

km s Mpc�1 �1H p 710 km s Mpc�1 �1H p 670

Scalea bFN F ≤ 1j
bFN F ≤ 2j Scalea bFN F ≤ 1j

bFN F ≤ 2j

Gaussian . . . . . . . . . . . . . . . . . 1 0.68 0.95 1 0.68 0.95
Gaussian . . . . . . . . . . . . . . . . . 1.8 0.42 0.73 1.7 0.44 0.76
Cauchy . . . . . . . . . . . . . . . . . . . 1 0.50 0.71 1 0.50 0.71
Cauchy . . . . . . . . . . . . . . . . . . . 1.1 0.47 0.68 1.0 0.50 0.71

Student’s t . . . . . . . .n p 2 1 0.58 0.82 1 0.58 0.82
Student’s t . . . . . . . .n p 2 1.3 0.48 0.74 1.2 0.51 0.76

Double exponential . . . . . . 1 0.63 0.87 1 0.63 0.87
Double exponential . . . . . . 1.5 0.49 0.74 1.6 0.47 0.71
Observed . . . . . . . . . . . . . . . . . 0.48 0.69 0.51 0.72

a Scale (factor) corresponds to the case when corresponds to 1 standard deviationS p 1 FN F p 1j

for a Gaussian distribution, otherwise the width of the distribution is allowed to vary with the scale
factor as x2 is minimized. For a given distribution, the derived limits depend only on the value of S.

b Fraction of data points with or .FN F ≤ 1 FN F ≤ 2j j

is not a good fit, and there are other distributions that are better
fits. As we have noted, a Cauchy distribution with wouldS p 1
result from a true Gaussian distribution if the observer divided
his data into two parts, used the data themselves to set error
bars, and made the mistake of assuming the errors should be
distributed according to a Gaussian distribution rather than the
Student t distribution (which for the case of two data points is
the Student t distribution, or the Cauchy distribution).n p 1
This prompts us to investigate the general Student t
distributions.

Student’s t distribution is

[ ]G (n � 1)/2 1
P (FN F) p , (6)n j 2 (n�1)/2� ( )1 � FN F /npn G(n/2) j

where n is positive and G is the Gamma function. We also
consider the distribution , where the scale factor S isP (FN F/S)n j

allowed to vary while x2 is minimized. When , Student’sn r �

t distribution becomes the Gaussian distribution and for n p
it is the Cauchy distribution. For , Student’s t dis-1 1 ! n ! �

tribution has narrower tails than the Cauchy case but broader
ones than the Gaussian distribution, just as wanted. We have
fitted Student’s t distribution to the measurement errors dataH0

while allowing n to take on integer values between 2 and 6
(and sometimes going up to 30), so in this case we have one
additional parameter and hence 1 less degree of freedom. We
find that always minimizes the value of x2 and so shown p 2
this case in Figure 4 and Table 1. From Table 1 we see that if
the scale factor S is held at unity, Student’s t distribution is an
unlikely fit to the data, especially if km s Mpc .�1 �1H p 710

However, if S is allowed to vary as x2 is minimized, Student’s
t distribution with is an excellent fit to the mea-n p 2 H0

surements error distribution, and Figure 4b shows that there is
very good agreement between the expected and measured
counts in the last bin.

The final probability density distribution we consider is the
double exponential or Laplace distribution,

1 �FN FjP(FN F) p e . (7)j 2

This falls off less rapidly than the Gaussian distribution but
faster than the Cauchy distribution. The sample median is the
best estimator for the mean of this distribution (Eadie et al.
1971). The results of the fit are shown in Figure 5 and listed
in Table 1. As in the case for Student’s t distribution with

, when S is held fixed at unity the double exponential isn p 2
an unacceptable fit to the measurements error distribution,H0

but when S is allowed to vary it is an excellent fit to the data.
In the first paragraph of this section, we noted that in Figure

1b, 68.3% and 95.4% of the probability lie in the range
and , respectively, and the andFN F ≤ 1.9 FN F ≤ 7.0 FN F ≤ 1j j j

ranges include 48% and 69% of the data points, re-FN F ≤ 2j

spectively. (See the Appendix for the corresponding numbers
for the km s Mpc case.) Tables 2 and 3 show the�1 �1H p 670
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Fig. 6.—Number of measurements (in half standard deviation bins) away from the central value of km s Mpc estimated using median statistics�1 �1H p 670

on a major subset of the 461 measurements used in this paper. Panel (a) shows the sign of the deviation, while panel (b) shows only the magnitude of the deviation.

related limits for the various probability density distributions
we consider in this paper. These numerical values provide an-
other indication of the non-Gaussianity of the Hubble constant
measurement error distribution.

3. CONCLUSION

Our analysis of a perhaps unique (because of its size) data
set, the measurement errors of all available estimates of the
Hubble constant, makes for some interesting conclusions. If all
observers have done perfect jobs at estimating their errors and
the true errors were Gaussian, as might be expected, then the
distributions in Figure 1 should be Gaussian with standard
deviation of unity.

First, and perhaps not totally unexpectedly, the errors in the
Hubble constant are not Gaussianly distributed, even if the scale
factor S is allowed to vary when minimizing x2. At the min-
imum value of x2, , suggesting that it might be reasonableS ∼ 2
to roughly double the magnitude of measurement error bars.H0

Early observers using inferior equipment or techniques would
have larger errors, but knowing that their methods were un-
certain should have established larger error bars. As methods
improved, the measurements become more accurate, but the

stated error bars become smaller. Early or late observers are
at no relative disadvantage relative to others. Indeed, each ob-
server has freedom to state her error bars and has a priori an
equal chance of having the true value occur within 1 standard
deviation of their result. Overoptimism would produce error
bars that were too small, while overconservatism would pro-
duce error bars that were too large. Which occurs in practice?
The results here suggest that astronomers were overoptimistic
by almost a factor of 2. Why? In some case there were sys-
tematic errors of which the observers were simply unaware
(such as mistaking H ii regions for bright stars). In other cases,
standard candles were not as standard as imagined, leaving
some steps in the distance ladder wrong by more than people
thought. Also, using self-consistency in the data as a check on
the errors can lead to large tails because it occasionally induces
one to be overoptimistic (the Student t effect). And the real
data may have non-Gaussian tails (say, in the luminosity of
standard candles). In general, overconservatism (the urge to be
right) always competes with overoptimism (the urge to have
more interesting limits). In the case of the Hubble constant,
astronomers were overoptimistic. In a history of science con-
text, it might be of interest to more closely examine the most
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Fig. 7.—Binned data (solid lines) and best-fit Student t probability distribution functions (dotted lines) for km s Mpc estimated using median�1 �1n p 2 H p 670

statistics, all normalized to unit area. See Fig. 2 legend for more details. Panel (a) shows a distribution with scale factor ; panel (b) allows S to vary as x2S p 1
is minimized, and the best-fit value of is shown. The dotted horizontal and vertical lines demarcate the predicted probability for the last bins for theS p 1.2
assumed distribution.

deviant measurements of Figure 1, those that have largerFN Fj
than, say, 7, to understand why these are so deviant, but this
is not our purpose here.

The Hubble constant measurement history suggests that to
be really sure (95.4%), you have to go to 7 j. This may explain
why some people are cautious upon hearing of a 3 standard
deviation result. It is not that they believe the errors but want
to be more sure than 99.7%. It is that they suspect there is a
large chance (∼50%) that the error bars may have been un-
derestimated by a factor of 2 or 3, and the chance it is really
correct is consequently really significantly less than 99.7%.

Second, an Student t distribution, with –1.3,n p 2 S ∼ 1.2
or a double exponential distribution, with –1.6, are ex-S ∼ 1.5
cellent fits to the measurement errors distribution, withH0

km s Mpc having a somewhat higher probability�1 �1H p 670

than km s Mpc .�1 �1H p 710

The Hubble constant measurement history gives an inter-
esting example where we can access how trustworthy quoted
errors might be in fundamental measurements. It would be in-
teresting to study comparative examples from other fields. In
particular, it would be interesting to know whether the n p 2
Student t distribution or the double exponential distribution also
provides a good description of the measurement errors of other
quantities.

We are grateful to J. Huchra for the compilation of H0 mea-
surements and acknowledge useful discussions with A.
Kosowsky. G. C. and B. R. acknowledge support from NSF
CAREER grant AST 98-75031 and DOE EPSCoR grant
DE-FG02-00ER45824. J. R. G. acknowledges support from
NSF grant AST 99-00772.
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Fig. 8.—Binned data (solid lines) and best-fit double exponential probability distribution functions (dotted lines) for km s Mpc estimated using�1 �1H p 670

median statistics, all normalized to unit area. See Fig. 2 legend for more details. Panel (a) shows a distribution with scale factor ; panel (b) allows S toS p 1
vary as x2 is minimized, and the best-fit value of is shown. The dotted horizontal and vertical lines demarcate the predicted probability for the last binsS p 1.5
for the assumed distribution.

APPENDIX

H0 p 67 km s�1 Mpc�1

In the main body of the paper, we assumed kmH p 710

s Mpc , the central value from the WMAP analysis. The�1 �1

WMAP error bars are km s Mpc (Bennett et al. 2003);�4 �1 �1H0 �3

is pinned down to only about 10% at 2 standard deviationsH0

(Gott et al. 2001), so it is reasonable to find out how our
conclusions depend on the value of . In this appendix, we useH0

km s Mpc , the central value from the Gott et al.�1 �1H p 670

(2001) median statistics analysis of a subset (331 measurements
prior to mid-1999) of the 461 measurements used here.6 Figure

6 The additional 130 measurements (an increase of 40%) shift the median
value to km s Mpc (using all 461 measurements); the small shift�1 �1H p 680

in the median after a 40% increase in the number of measurements considered
is great tribute to its robustness. See Gott et al. (2001), Podariu et al. (2001),
Avelino, Martins, & Pinto (2002), and Chen & Ratra (2003) for other cos-
mological applications of median statistics.

6 shows the measurement error distribution for the case whenH0

km s Mpc . This distribution has a somewhat less�1 �1H p 670

prominent central peak than the km s Mpc case.�1 �1H p 710

In the signed error distribution of Figure 6a, 68.3% and 95.4%
of the probability lie in the range and�1.8 ≤ N ≤ 1.7j

, respectively,7 while for the absolute magnitude�5.7 ≤ N ≤ 7.9j

error distribution of Figure 6b, the corresponding limits are
and , respectively. In Figure 6b, theFN F ≤ 1.7 FN F ≤ 7.5j j

and ranges include 51% and 72% of the dataFN F ≤ 1 FN F ≤ 2j j

points, respectively. Again, these are at odds with what is
expected for a Gaussian distribution.

Table 1 also lists the numerical fitting results for the

7 The unbinned data used to derive Fig. 6a have a mean of 0.10, median
0.070, standard deviation 2.8, skewness 1.8, and kurtosis 16.
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km s Mpc case. As in the case when�1 �1H p 67 H p 710 0

km s Mpc , here again the Student t distribution and�1 �1 n p 2
the double exponential distribution provide excellent fits to the

error histogram when the scale factor S is allowed to varyH0

when minimizing x2. These two distributions are shown in
Figures 7 and 8. It might be significant that the kmH p 670

s Mpc case always has a lower x2 than the km�1 �1 H p 710

s Mpc case, indicating perhaps that the median statistics�1 �1

value determined from a large fraction of the data is more
robust—time will tell. In any case, a comparison of the entries
in Table 1 shows that the results presented here are robust with
respect to small changes in the value of .H0
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