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ABSTRACT

With the help of the Laplace-Lagrange solution of the secular perturbation theory in a double-planet
system, we study the occurrence and the stability of apsidal secular resonance between the two planets. The
explicit criteria for predicting whether two planets are in apsidal resonance is derived, which shows that the
occurrence of the apsidal resonance depends only on the mass ratio (m1=m2), semimajor axis ratio (a1=a2),
initial eccentricity ratio (e10=e20), and the initial relative apsidal longitude ($20 �$10) between the two plan-
ets. The probability of two planets falling in apsidal resonance is given in the initial element space. We verify
the criteria with numerical integrations for the HD 12661 system and find they give good predictions except
at the boundary of the criteria or when the planet eccentricities are too large. The nonlinear stability of the
two planets in HD 12661 system are studied by calculating the Lyapunov exponents of their orbits in a
general three-body model. We find that two planets in large-eccentricity orbits could be stable only when they
are in aligned apsidal resonance. When the planets are migrated under the planet-disk interactions, for more
than half of the studied cases, the configurations of the apsidal resonances are preserved. We find the two
planets of the HD 12661 system could be in aligned resonance and thus more stable, provided they have
�2 � �1 � 180�. The applications of the criteria to the other multiple planetary systems are discussed.

Subject heading: celestial mechanics — methods: analytical — methods: numerical —
planetary systems — stars: individual (47 UrsaeMajoris, HD 12661)

1. INTRODUCTION

The detection of extrasolar planetary systems has
revealed fruitful results during the past years. More than
100 extrasolar planets have been inferred by Doppler radial
velocity measurements to the solar-type stars (California
and Carnegie Planet Search);1 among them 10 multiple-
planet systems are confirmed. For a multiple-planet system,
the dynamical stability of the system under planetary
interaction is an important issue concerning the dynamical
evolution as well as the possible existence of a habitable
zone of the system.

There are many effects that can affect the stability of a
multiple-planet system. For the orbits of planets with small
or modest eccentricities and inclinations, mean motion
resonances between planets can sometimes lead to stable
configurations. Another effect is the secular resonance
between the planets. An apsidal resonance occurs when the
relative apsidal longitudes of the two orbits D$ librates
about 0 (aligned resonance) and � (antialigned resonance)
during the evolution. Because of the aligned apsidal reso-
nance, the two planets on elliptic orbits can greatly reduce
the possibility of close encounters; thus, it is believed that
aligned apsidal resonance can stabilize the interacting
planets.

For the 10 multiple planetary systems observed to date
(GJ876, 47 UMa, HD 82943, HD 12661, HD 168443,
HD 37124, HD 38529, HD 74156, � Andromedae, and 55
Cancri), the best-fit orbital parameters inferred from the
radial velocity observations show that six pairs of planets
could be in apsidal resonance: HD 82943 (Goździewski &
Maciejewski 2001), � Andromedae c and d (Chiang,

Tabachnik, & Tremaine 2001), GJ876 (Lee & Peale 2002),
47 UMa (Laughlin, Chambers, & Fischer 2002), HD 12661
(Goździewski & Maciejewski 2003; Lee & Peale 2003), and
55 Cancri b and c (Ji et al. 2003). Ubiquitous as it is, the
apsidal resonance phenomenon is worthy of being studied
in detail. In this paper, we are interested in when the apsidal
resonance occurs and whether it really leads to a stable con-
figuration between planets, since an antialigned resonance
could lead to close encounters between orbits with large
eccentricities.

For the occurrence of apsidal resonance, Laughlin et al.
(2002) give a criterion based on the Laplace-Lagrange solu-
tion of the secular perturbation system. In this paper, the
criterion is represented in a more explicit form in x 2. The
probability that the apsidal resonance happens is also
derived according to the criteria. In x 3, we study the stabil-
ity of orbits in apsidal resonances by calculating the largest
Lyapunov exponents of the orbits with a general three-body
model. The behavior of orbits in migration are studied with
a torqued three-body model. The conclusions and the
applications of the criteria to the other multiple planetary
systems are discussed in the final section.

2. LOCATIONS OF APSIDAL RESONANCE

In this section we derive the explicit criteria under which
the apsidal secular resonance may occur. To that aim, the
linear secular perturbation theory is employed for two inter-
acting planets under the attraction of the host star. For a
planetary system with two planets, hereafter we denote all
the quantities of the host star, the inner and outer planets
with subscripts 0, 1, and 2, respectively. Thus, the three
bodies have masses m0, m1, and m2, respectively, where
m1; m25m0. In the present study we address the coplanar

1 See the California and Carnegie Planet Search, http://exoplanets.org/
planet_table.shtml.
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problem only, so the two planets are on the orbits with
osculating orbital elements ða1; e1; $1; M1Þ and
ða2; e2; $2; M2Þ, respectively, where a, e, $, and M are
the semimajor axis, eccentricity, longitude of pericenter,
and mean anomaly of the orbit, respectively. We adopt the
commonly used unit system, i.e., the mass unit is the solar
mass, the length unit is 1 AU, and the time unit is 1 yr=ð2�Þ.

2.1. Linear Secular Perturbation Theory Revisited

We start with the linear secular theory following Murray
& Dermott (1999). For the coplanar case, the disturbing
function for the motions of planetsm1 andm2 are given as

R1 ¼ n1a
2
1

1
2A11e

2
1 þ A12e1e2 cosð$1 �$2Þ

� �
;

R2 ¼ n2a
2
2

1
2A22e

2
2 þ A21e1e2 cosð$1 �$2Þ

� �
; ð1Þ

where n1, and n2 are the mean motion of planets m1 and m2,
respectively;Aij are elements of a matrix given by

A11 A12

A21 A22

� �
¼

c1 �c0c1

�c0c2 c2

� �
; ð2Þ

where ck > 0 ðk ¼ 0; 1; 2Þ are functions of a1; a2; m0;
m1; m2, defined as

c0 ¼ b
ð2Þ
3=2ð�Þ=b

ð1Þ
3=2ð�Þ �

5

4
� 1� 1

8
�2

� �
;

c1 ¼
1

4
n1

m2

m0 þm1
�2b

ð1Þ
3=2ð�Þ ;

c2 ¼
1

4
n2

m1

m0 þm2
�b

ð1Þ
3=2ð�Þ ; ð3Þ

with b
ðiÞ
3=2ð�Þ ði ¼ 1; 2Þ being the Laplace coefficients, and

� ¼ a1=a2 < 1. Figure 1 shows the approximation of c0 by
the above formula. Quantitatively, the error of approxima-
tion is less than 1% for � < 0:66 and less than 5% for
� < 0:91. So the approximation is quite good for the study
of the planetary system.Moreover, we define

� ¼ c2
c1

¼ 1

�

n2m1ðm0 þm1Þ
n1m2ðm0 þm2Þ

� q�1=2 ; ð4Þ

with q ¼ m1=m2, and the terms with orders of

Oðm1=m0Þ; Oðm2=m0Þ or higher are neglected in the
above approximation, since m1=m0; m2=m0 � 10�3 in the
planetary systems. Denote g1; g2 as the two eigenvalues of
matrix (2), and the corresponding eigenvectors are

Si

cos �i

sin �i

� �
;

where �i 2 ð��=2; �=2Þ and

cos �i ¼
c0c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1 � giÞ2 þ c20c
2
1

q ;

sin �i ¼
c1 � giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1 � giÞ2 þ c20c
2
1

q ; i ¼ 1; 2 ; ð5Þ

with

g1 ¼ 1
2 ðc1 þ c2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 � c2Þ2 þ 4c20c1c2

q� �
;

g2 ¼ 1
2 ðc1 þ c2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 � c2Þ2 þ 4c20c1c2

q� �
:

ð6Þ

Define

�1 � tan �1 ¼
1

2c0
1� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ2 þ 4c20�

q� �
;

�2 � tan �2 ¼
1

2c0
1� � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ2 þ 4c20�

q� �
: ð7Þ

So �1 < 0 and �2 > 0, or ��=2 < �1 < 0 < �2 < �=2. The
scaling factor Si (i ¼ 1; 2) can be expressed in terms of
initial eccentricities e10, e20 and D$0 ¼ $20 �$10,

S1 ¼
�22e

2
10 � 2�2e10e20 cosD$0 þ e220

� 	1=2
j�1 � �2j cos �1

� F

j�1 � �2j cos �1
;

S2 ¼
�21e

2
10 � 2�1e10e20 cosD$0 þ e220

� 	1=2
j�1 � �2j cos �2

� G

j�1 � �2j cos �2
: ð8Þ

The secular system with disturbing functions (1) is
integrable and the solutions can be written as

e1 ¼
1

j�1 � �2j
F2 þ 2FG cosD þ G2
� 	1=2

;

e2 ¼
1

j�1 � �2j

� �21F
2 þ 2�1�2FG cosD þ �22G

2
� 	1=2

;

e1e2 sinD$ ¼ � 1

�1 � �2
FG sinD ;

e1e2 cosD$ ¼ 1

ð�1 � �2Þ2

� �1F
2 þ ð�1 þ �2ÞFG cosD þ �2G

2
� �

; ð9Þ

where D ¼  2 �  1 ¼ ðg2tþ �2Þ � ðg1tþ �1Þ, with t the

 

Fig. 1.—Approximation of c0 in eq. (3)
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time and �1; �2 given by

sin �1 ¼
1

F
ðh10�2 � h20Þ ; sin �2 ¼ � 1

G
ðh10�1 � h20Þ ;

cos�1 ¼
1

F
ðk10�2 � k20Þ ; cos �2 ¼ � 1

G
ðk10�1 � k20Þ ;

ð10Þ

where hi0 ¼ ei0 sin$i0, ki0 ¼ ei0 cos$i0, ði ¼ 1; 2Þ. From
equation (9), it is easy to verify that the evolution of e1, e2
obeys an integral,

e21
A12

þ
e22
A21

¼ D ; ð11Þ

where D is a constant that depends only on the initial
parameters. Moreover, from equations (8) and (9), the max-
imum of e1 and minimum of e2 occur at cosD ¼ 1 (as
�1 < 0), with values

e1max ¼
F þ G

j�1 � �2j
; e2min ¼ j�1F þ �2Gj

j�1 � �2j
: ð12Þ

The minimum of e1 and maximum of e2 occur at
cosD ¼ �1, with

e1min ¼ jF � Gj
j�1 � �2j

; e2max ¼
�2G � �1F

j�1 � �2j
: ð13Þ

Thus, we can obtain the maximum excursions of e1 and e2
for any given e10; e20;D$0 as follows:

De1 ¼
ðF þ GÞ � jF � Gj

j�1 � �2j
;

De2 ¼
ð�2G � �1FÞ � j�1F þ �2Gj

j�1 � �2j
: ð14Þ

2.2. The Explicit Criteria

With the help of the last equation of (9), the criterion in
Laughlin et al. (2002) for the apsidal resonance can be
expressed as

S ¼ ð�1 þ �2ÞFG
�1F2 þ �2G2










 < 1 : ð15Þ

Since when S < 1, the values of D$ cannot reach �=2 or
3�=2 (thus, cosD$ 6¼ 0), it must librate about 0 or �. On the
contrary, when S > 1, it is possible that D$ will reach �=2
or 3�=2; thus, it will circulate in ½0; 2��.

Equation (15) is equivalent to, after some algebra
manipulations,

F

G
> max 1; � �1

�2

� �
; or 0 <

F

G
< min 1; � �1

�2

� �
; ð16Þ

In view of equation (8), the above relations are equivalent to

e20
e10

<
2�1�2
�1 þ �2

cosD$0 ; ð17Þ

or

e20
e10

>
�1 þ �2

2

1

cosD$0
> 0 : ð18Þ

By substituting equations (3), (4), and (7) into the above
expressions, we finally obtain

e20
e10

< � 5

2

q�3=2 1� 1=8ð Þ�2
� �
1� q�1=2

cosD$0 ; ð19Þ

or,

e20
e10

>
2

5

1� q�1=2

� 1� 1=8ð Þ�2½ �
1

cosD$0
> 0 : ð20Þ

These are the explicit criteria for the occurrence of the
apsidal secular resonance. Equations (17) and (18) are
obtained with the linear secular perturbation theory, while
to get equations (19) and (20), we use the approximations of
c0 and � in equations (3) and (4).

We call the libration region defined in equation (19) the
down-libration region and that defined in equation (20) the
up-libration region. Whether the down-libration or up-
libration is the aligned or antialigned resonance depends on
the sign of ð1� q�1=2Þ. For q�1=2 < 1, down-libration
occurs only when �=2 < D$0 < 3�=2 (thus, it is the antia-
ligned resonance) and up-libration occurs when D$0 < �=2,
D$0 > 3�=2 (the aligned resonance). This is the case in the
HD 12661 system. If q�1=2 > 1, the conclusions are
reversed, which is the case in the 47 UMa system. For the
critical case q�1=2 ¼ 1, according to equations (19) and (20),
all the orbits are in libration except those with
D$0 ¼ �=2; 3�=2. Figure 2 shows a typical phase space and
the evolution of an orbit in the linear secular perturbation
system (1). The jumps of D$ are due to the crossing of the
origin in the ðei cos$i; ei sin$iÞ plane. Figure 3 shows the
resonance region in the e20-D$0 plane defined by equations
(19) and (20) with different e10. The parameters � and q are
taken from the planetary systems HD 12661 and 47 UMa
(listed in Tables 1 and 2). The boxes around the present con-
figuration dots show the uncertainties of the elements (also
listed in Tables 1–2).

There are two limiting cases for criteria (19) and (20):

1. �! 0.—The minimum e20 for up-libration and maxi-
mum e20 for down-libration can be obtained by setting
cosD$ ¼ 1 in equations (19) and (20). When �! 0, the
minimum e20 for up-libration tends to very large and maxi-
mum e20 for down-libration tends to zero. So when the two
planets are far away, the libration regions in the e20-D$0

plane can be negligibly small.
2. ei0 ! 0.—This happens when one of the planets is in a

nearly circular orbit, and it is just the case discussed in
Malhotra (2002), namely, for two planets initially in nearly
circular orbits, an impulse perturbation may impart a finite
eccentricity to one planet’s orbit.

When e10 ! 0, criterion (20) is always fulfilled if
��=2 < D$0 < �=2 for q�1=2 < 1 or �=2 < D$0 < 3�=2 for
q�1=2 > 1. The boundary curves are the limits of those with
e10 tending to zero in Figure 3a or 3b, with both the mini-
mum e20 for up-libration and the maximum e20 for down-
libration tending to zero. Thus, half of the e20-D$0 plane is
the possible resonance region with up-libration. Thus, the
probability of these two planets captured into apsidal reso-
nance tends to 50%. This conclusion agrees with that of
Malhotra (2002). It is possible that these two planets are
captured in antialigned apsidal resonance, which depends
on the sign of 1� q�1=2. Similarly, when e20 ! 0, criterion
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(19) is always fulfilled; thus, half of the e20-D$0 plane is a
possible resonance region with down-libration, and the
probability of the two planets being in apsidal resonance
(either aligned or antialigned resonance) tends to 50%.

To compare the above libration regions obtained by the
criteria with those calculated from the secular perturbation
system, we integrate the orbits of the secular perturbation
system for the HD 12661 system. Figure 4 shows the dia-
grams of orbits in e2-D$ plane; the initial values of the
studied orbits have e10 ¼ 0:1, with D$0 ¼ 0 for Figure 3a
and D$0 ¼ � for Figure 3b. According to criteria (19) and
(20), e20 > 0:022 for the aligned resonance at D$0 ¼ 0, and
e20 < 0:375 for the antialigned resonance at D$0 ¼ �, which
coincide with the values given from the secular perturbation
system.

Figure 5 shows the contours of the excursions of e1, e2
for different e20 and D$0. As we can see, generally the
orbits in apsidal resonance have relatively smaller De1,
De2, especially the turning points of the contour curves
lie in one of the libration boundary curves. Thus from
the linear secular perturbation theory, the orbits in apsi-

dal resonance, either in aligned resonance or antialigned
resonance, are more stable than those in nonresonance
regions.

2.3. Area of the Libration Region

From the above criteria, we can calculate the probabil-
ity that the two planets fall in apsidal resonance in the
space of initial orbital elements . We define the probabil-
ity as the area of the libration region in the e20-D$0

plane for a given e10. For the down-libration case,
according to equation (19), it is possible that the peak
value of the e20-D$0 curve can be above unit for larger
e10 (as the e10 ¼ 0:35 case in Fig. 3a, and the e10 ¼ 0:50
case in Fig. 3b). We set D$d as the half-width of the
down-libration region where the boundary curve reaches
e20 ¼ 1. Figures 3a and 3b show D$d for the e10 ¼ 0:35
and e10 ¼ 0:50 curves, respectively. Define

Qd ¼ 5

2

e10q�3=2 1� 1=8ð Þ�2½ �
j1� q�1=2j

; ð21Þ

Fig. 2a Fig. 2b

Fig. 2.—Critical case of HD 12661 with the observed a1 and q but with a2 ¼ a1q2 � 1:76 AU. (a) The phase plane e2-D$; the orbits in the diagram have the
same constantD as that of e10 ¼ 0:35; e20 ¼ 0:20. (b) Variation of e1, e2, D$with time for an orbit with D$0 ¼ �=2:

 

 

 

Fig. 3a

 

 
 

Fig. 3b

Fig. 3.—Libration region in the e20-D$0 plane defined by eqs. (19) and (20) with different e10 for � and q equal to (a) the planetary system HD 12661 and
(b) 47 Uma. The black dots show the present configuration of the two planets in both systems, around which the boxes show the uncertainties of the orbital
elements in Tables 1 and 2. The values D$a; D$b are the lower integration limits in eqs. (23) and (26), respectively, and D$d ; D$u are defined in eqs. (22) and
(25), respectively.
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then

D$d ¼
arccosð1=QdÞ ; if Qd > 1

0 ; if Qd � 1

�
; ð22Þ

and the area ratio of the down-libration area to the
total area of e20-D$0 plane is

Pd ¼ 1

�
D$d þ

Z D$aþ�=2�D$d

D$a

Qd cosD$ dD$

 !

¼ 1

�
½D$d þQdð1� sinD$dÞ� ; ð23Þ

where the lower integration limit is the beginning point
of the down-libration region in the D$0-axis (D$a ¼
�=2 for q�1=2 < 1 and D$a ¼ 3�=2 for q�1=2 > 1). Fig-
ures 3a and 3b show the D$a for the e10 ¼ 0:35 and
e10 ¼ 0:50 curves, respectively. As one can see, the area
ratio for the down-libration increases linearly with e10
when e10 is small, since in the interval one has D$d ¼ 0
in equation (23). However, for larger e10, the increase of
area ratio is no longer linear since D$d 6¼ 0.

Similarly, for the up-libration resonance, if we set D$u as
the half-width of the up-libration region when the boundary

curve meets e20 ¼ 1 (see Fig. 3) and define

Qu ¼
2

5

e10 1� q�1=2j j
� 1� 1=8ð Þ�2½ � ; ð24Þ

we see

D$u ¼ arccosðQuÞ ; ð25Þ

and the area ratio of the up-libration area to the total area
of e20-D$0 plane is

Pu ¼
1

�
D$u �

Z D$bþD$u

D$b

Qu
1

cosD$
dD$

� �

¼ 1

�
D$u �Qu ln

1þ sinD$u

cosD$u

� �� �
; ð26Þ

where the lower integration limit D$b is the center of the
up-libration region (D$b ¼ 0 for q�1=2 < 1 and D$b ¼ �
for q�1=2 > 1; see Fig. 3).

In the early evolution of planetary systems, both q and �
may vary because of planetary formation and migration.
We fix e10 ¼ 0:35 for the HD 12661 systems and see the var-
iation of libration area ratio with � or q. Figure 6 shows the
variation of libration area ratios with � and q. In Figure 6a,

TABLE 2

Orbital Parameters
a
for 47 UMa (1.03M	) System

Parameter 47 UMa b 47UMa c

Planet massMsin i (MJup)... 2.54 0.76

Period P (days)................... 1089.0 (2.9) 2594 (90)

Tp (JD) (days) .................... 2,450,356.0 (33.6) 2,451,363.5 (495.3)

Semimajor axis a (AU) ....... 2.09 3.73

Eccentricity e ..................... 0.061 (0.014) 0.005 (0.115)

Argument of

pericenter ! (deg) ........... 171.8 (15.2) 127.0 (55.8)

a Data from Fischer et al. 2002.

Fig. 4a Fig. 4b

Fig. 4.—Orbital diagrams of planet systemHD 12661 with initial values (a) e10 ¼ 0:1, D$0 ¼ 0 and (b) e10 ¼ 0:1, D$0 ¼ �

TABLE 1

Orbital Parameters
a
for HD 12661(1.07M	) System

Parameter HD 12661 b HD 12661 c

Planet massMsin i (MJup)....... 2.30 1.57

PeriodP (days)....................... 263.6 (1.2) 1444.5 (12.5)

Tp (JD) (days) ........................ 2,449,941.9 (6.2) 2,449,733.6 (49.0)

Semimajor axis a (AU)........... 0.82 2.56

Eccentricity e ......................... 0.35 (0.03) 0.20 (0.04)

Argument of

pericenter ! (deg) ............... 293.1 (5.0) 162.4 (18.5)

a Data fromFischer et al. 2003.
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q � 1:46 is fixed as the observed value. One can see the
ratios increase with � before they reach the maximum (unit)
at �max ¼ q�2 � 0:47, which is the critical case, and then
decrease. In Figure 6b, � � 0:32 is fixed as the observed
values. Again the curves reach the maximum at
q ¼ ��1=2 � 1:76, the critical case.

3. STABILITY OR ORBITS IN RESONANCE

Since the linear secular perturbation theory is an approxi-
mation to the real three-body system, the above criteria
obtained from the linear perturbation theory has its limita-
tion. To apply the linear criteria to the predicting of the
apsidal secular resonance, we integrate the orbits in a gen-
eral three-body (coplanar) system, where the longitudes of
the ascending nodes and the inclinations of the two planet
orbits are assumed to be zero (�1 ¼ �2 ¼ 0, i1 ¼ i2 ¼ 0) in
the paper. We adopt the Runge-Kutta-Fehlberg integrator
RKF7(8) with adaptive step sizes to integrate the orbits.
Generally the step is alternated between 0.00625 and 0.0125

yr, so there are 80–160 steps in a period of planet orbit with
a semimajor axis of 1 AU, and the final error of the
Hamiltonian of the three-body system after 10 Myr
evolution is less than 10�9.

We define an index to indicate whether an orbit is in libra-
tion region or not. We choose a serial of discrete time during
the evolution of orbits (for example, every 12.5 yr) and give
an index In for each time, so that In ¼ 0 if at that time
��=2 < D$ < �=2, and In ¼ 1 if �=2 < D$ < 3�=2. Then
the average values of In over very large n, denoted by Inh i,
shows roughly the character of the orbit during the studied
period of time according to

Index ¼ Inh i �

0 aligned libration

0:5 circulation

1 antialigned libration

others mixed

8>>><
>>>:

: ð27Þ

Figure 7 shows the index for the HD 12661 planet system
for 10� 51 orbits in the interval ½0; 0:5� � ½0; �� of the

Fig. 5.—Contours of De1;De2 defined by eq. (14) in the initial e20-D$0 plane with e10 ¼ 0:35. The dotted lines are the boundary of the libration region
defined in eqs. (19) and (20).

Fig. 6a
Fig. 6b

Fig. 6.—Variations of the libration area ratios with � and q for the planet system HD 12661. (a) The observed q � 1:46 is fixed, and (b) the observed
� � 0:32 fixed. In both diagrams e10 ¼ 0:35 is fixed. The black dot in each plot shows the location of observed configuration.
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e20-D$0 plane (the same for the following calculations), the
initial eccentricity is e10 ¼ 0:10 in Figure 7a and e10 ¼ 0:35
in Figure 7b. As one can see, most of the orbits in the libra-
tion region predicted by linear criteria (19) and (20) are in
the real libration region when e20 is small. The discrepancies
between the linear system and the three-body one mainly
occur for larger values of e20 and the boundary between the
libration and circulation region.

Next we want to see whether the orbits, either in apsidal
resonance or not, have different stability in the general
coplanar three-body model. The stability of an orbit in a
Hamiltonian system is related with the topology (regular or
chaotic) of the phase space, so we calculate the largest
Lyapunov characteristic exponent (LCE) to indicate
whether the corresponding orbit is in a regular or chaotic
region. The LCE at finite time �ðtÞ is calculated for few
orbits up to t ¼ 10 Myr (denoted as �7), and for most orbits
up to t ¼ 1 Myr (denoted by �6). Figure 8 shows the LCEs

of four orbits in the four different kinds of region in the
phase space. For curve a, �ðtÞ decrease linearly with t; thus,
the orbit corresponding to curve a has zero LCE and is in a
regular region. Curve b shows a very small but nonzero
LCE, so the orbit corresponding to curve b is in a very weak
chaotic region. Both curves a and b have �6 � 10�5 yr�1,
�7 � 10�6 yr�1. Curve c tends to a constant value, with
�6 � �7 � 10�4 yr�1, so the orbit corresponding to curve c
should be in a strong chaotic region. The orbit correspond-
ing to curve d is unstable with the outer planet escape before
107 Myr, and �ðtÞ for such an orbit is generally great than
10�2 yr�1 before escape. Thus, by calculating �6 (in units of
yr�1), we can identify at least three different kinds of orbits:

�6 2
ð10�5; 10�4� regular or weak chaos

ð10�4; 10�2� strong chaos

ð10�2; 10�1� unstable

8><
>: : ð28Þ

We calculate �6 for the HD 12661 system with initial
eccentricity e10 ¼ 0:10 in one run and e10 ¼ 0:35 in another
run, and the other initial parameters are taken as the
observed values. Figure 9 shows the results. The boundary
curves for the corresponding e10 are also plotted in the dia-
gram. We find for small e10 that the orbits, whether in
aligned resonance, antialigned resonance, or nonresonance
regions, do not show much difference about the LCEs.
Thus, in this case, whether or not an orbit is in apsidal reso-
nance does not strongly affect its stability. However, for
larger initial e10, orbits in aligned resonance seem to be
more, stable since they have much lower LCE as compared
with those in the antialigned resonance or circulation
regions with same e20. This example shows that for larger
e10 and e20, planets in aligned resonance regions would be
relatively more stable. From Figure 9b, we can also see the
present configuration of HD 12661b and HD 12661c is in
the boundary of a chaotic region, if D$0 is set to 130=7,
which is symmetric with the observed value of �130=7. This
conclusion has been obtained by Kiseleva-Eggleton et al.
(2002).

Finally, we study the role of apsidal resonance on the
stability of the orbits when the planets are migrating. In the

Fig. 7a Fig. 7b

Fig. 7.—Libration regions in the e20-D$0 plane in the general three-body system for the HD 12661 system. The solid curves show the boundary defined in
eqs. (19) and (20). The initial eccentricity is (a) e10 ¼ 0:10 and (b) e10 ¼ 0:35.

  

Fig. 8.—LCE �ðtÞ for (curve a) the 47 UMa system with the observed
orbital parameters listed in Table 2; curve b: the HD 12661 system with the
observed orbital parameters listed in Table 1; curve c: same parameters as
in curve b, except e20 ¼ 0:20, $10 ¼ 0, and $20 ¼ 0:6�; curve d: same
parameters as in curve b, except e20 ¼ 0:35,$10 ¼ 0,$20 ¼ 0:7�; the outer
planet escapes at time t � 2:1� 105 yr.
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early stage of planet evolution, the protoplanets and the
stellar disk might be coexisting and interacting; thus, planet
migration might happen because of nebular tides (see, e.g.,
Ward 1997). We adopt the torqued three-body model as in
Laughlin et al. (2002), and for the sake of simplicity we con-
sider the case in which only the outer planet experiences an
azimuthal torque due to the planet-disk interaction. We
take the azimuthal acceleration as f2 ¼ �2� 10�6 AU2 yr�1

(which is smaller than that used in Laughlin et al. 2002,
because here we are concerned with the qualitative evolu-
tions only) and study both the forward (t > 0) and back-
ward (t < 0) evolutions of orbits under this acceleration.
We calculate the orbits for the HD 12661 system with initial
e10 ¼ 0:35, andM10;M20 are randomly chosen. All the other
initial parameters of orbits are taken from Table 1. The evo-
lution time span is 50,000 yr. In concurrence with Laughlin
et al. (2002), we find that in all the studies cases (both for-

ward and backward), the semimajor axis of the inner planet
does not have secular changes. Figure 10a shows the index
for the orbits during the evolution, and Figure 10b shows
the a2 at the final time for the forward case. Some of the
orbits that were initially in apsidal resonance region become
mixed, although, according to Figure 6a, the libration
regions are enlarged because of the increase of � (from 0.32
to approximately 0.41) by planet migration. For orbits in
the aligned resonance, they are more stable and have smaller
final a2, while for orbits in antialigned resonance with larger
e20, or in circulation region, they tend to be more unstable
because of close encounters and thus have larger final a2,
and most of them will escape soon in the following evolu-
tions. Figure 11 shows the backward case. We find the con-
clusions are more or less similar. Although the libration
regions shrink because of the decrease of � by the planet
migration (from 0.32 to approximately 0.23) in this case, the

 

Fig. 9a

 

Fig. 9b

Fig. 9.—LCE �6 for the HD 12661 system. The initial eccentricity is (a) e10 ¼ 0:10, (b) e10 ¼ 0:35. The solid curves show the boundary defined in eqs. (19)
and (20). The black dot in (b) shows the location of observed configuration with D$0 ¼ 130=7, around which the box shows the uncertainties of the orbital
elements.

Fig. 10a

 

Fig. 10b

Fig. 10.—(a) Index of libration region and (b) the relative semimajor axis of the two planets in the HD 12661 system under azimuthal acceleration
f2 ¼ �2� 10�6 AU2 yr�1. The initial eccentricity is e10 ¼ 0:35 andM10; M20 are randomly chosen. The time evolution is t ¼ 50; 000 yr.
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configurations of apsidal resonance are generally preserved
during the migration. Thus, most of planet systems that are
observed in apsidal resonance now might be in resonance
before the migration begins. Again, the orbits in aligned res-
onance seem to be more stable in the sense of having modest
final a2, which may be the result of fewer close encounters
between the two planets.

4. CONCLUSIONS AND DISCUSSIONS

In this paper,we have studied the occurrence as well as the
stability of the apsidal resonance. The apsidal resonance
occurs when the equations (19) and (20) are fulfilled. We find
the occurrence of apsidal resonance depends only on the
mass ratio q ¼ m1=m2, the semimajor axis ratio � ¼ a1=a2
(in secular systems, a1; a2 are constants), initial eccentricity
ratio e10=e20, and the relative apsidal longitude$20 �$10 of
the two planets. The criteria are based on the Laplace-
Lagrange secular solution of linear perturbation theory.
Based on these criteria, the ratio of librating to nonlibrating
orbits in the e20-D$0 plane can be obtained analytically,
which is given in equations (23) and (26). We also find for
two planets on the orbits with large eccentricities that they
can be in a stable configuration only when they are in aligned
apsidal resonance. When the planets are migrated under the
planet-disk interactions, more than half of the studied orbits
preserves the configurations of apsidal resonance.

The linear secular perturbation theory is applicable only
when the two planets are not in a lower order mean motion
resonance. In lower order resonances, the variations of $1

and $2 are not guided by the secular dynamics, but by the
resonance angles. For example, for the j : ðk � jÞ resonance,
if the two resonance angles �1 ¼ j	1 þ ðk � jÞ	� k$1,
�2 ¼ j	1 þ ðk � jÞ	� k$2 librate around 0 or �, then the
relative longitude of pericenter D$ ¼ ð�1 � �2Þ=k must
librate around either 0 or �. Thus, we think in this case, the
lower order mean motion resonance and the apsidal reso-
nance are not independent, and the former guides the
dynamics. In the case that only �1 librates, we believe that
the apsidal resonance is very unlikely to occur, since in this

case $1 is guided by �1; thus, it cannot have variations
similar to$2.

Beaugé, Ferraz-Mello, & Michtchenko (2002) find that
there may exist some asymmetric stationary solutions in the
mean motion resonance region, where both the resonant
angles and D$ are constants with values different from 0 or
�. We think such kinds of solutions are due to the mean
motion resonance and can exist only in the resonance
regions, since such kinds of apsidal resonance solutions with
D$ librating about constants with values different from 0 or
� cannot be found in the linear secular perturbation system.

For the 10 known multiple-planet systems (see Table 8 of
Fischer et al. 2003 for a list of the elements), the situation of
whether apsidal resonance happens between their planets
can be classified roughly into three groups (see Table 3 for
the extensions of D$0 when apsidal resonance would occur
for the observed q; �; e20=e10):

(1) Planets both in apsidal resonance and mean motion
resonance.—55 Cancri b and c (Fig. 12a), GJ876 b and c,
and HD 82943 b and c are in apsidal resonance, since they
are at the mean resonances 3 : 1, 2 : 1, and 2 : 1, respectively.
In fact, HD 82943 b and c can be in apsidal resonances
without in the mean motion resonance, while GJ876 b and c
are near the boundary of libration according to the linear
secular dynamics (Fig. 13a).

(2) Planets in apsidal resonances far away from lower order
mean motion resonances.—HD 12661 b and c, 47 UMa b
and c, and �And c and d (Fig. 12b) are in this type. They are
in apsidal resonance without the existence of any strong
mean resonances. Moreover, HD 12661 b and c seem to be
in antialigned apsidal resonance, which is within the
boundary of a chaotic region.

(3) Planets not in apsidal resonance either because of the
negligible small libration region in the e20-D$0 plane or
without suitable D$0.—The two planets in HD 38529,
HD 168443, and HD 74156 are not in apsidal resonance,
since the libration regions in the e20-D$0 plane are negligi-
bly small for the observed q, �, and e2=e1 (Table 3). HD
37124 b and c have a large aligned libration area for the
present parameters, and their eccentricities are not small,

Fig. 11a

 

Fig. 11b

Fig. 11.—(a) Index of libration region and (b) the relative semimajor axis of two planets HD 12661 systems under azimuthal acceleration
f2 ¼ �2� 10�6 AU2 yr�1. The initial eccentricity is e10 ¼ 0:35 andM10; M20 are randomly chosen. The evolution time is t ¼ �50; 000 yr.
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but they are not in resonance because of the present values
of D$0 if�b ¼ �c ¼ 0 is assumed (Fig. 13b).

However, because of the unknown of the inclinations and
the longitude of ascending nodes in the orbital fit from the
observation data, it is still too early to make conclusions for
some planet systems as to whether the planets are in apsidal
resonances. For example, HD 12661 b and c are believed to
be in the antialigned libration now. This is achieved by
assuming �1 ¼ �2 ¼ 0, and they are on the boundary of a
chaotic region. Alternative choices of �i (i ¼ 1; 2) might
change the conclusion. Especially if we chose �1 � �2 �
180�, the two planets will be in the aligned apsidal
resonance, which is stable according to Figure 9b. Similarly,
HD 37124 b and c could be in apsidal resonance if suitable
parameters� are observed.

Similar secular resonance might also happen because of
nearly the same averaging precessing rate of the ascending
nodes between the two planets in mutually inclined orbits.
Since the inclination perturbations are isolated from the
eccentricity ones in linear secular perturbation theory, we
address this problem in a separate paper (Zhou & Sun 2004,
in preparation).
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TABLE 3

Extensions of D$0 in Apsidal Resonance for the Observed Systems

Planet Pair q ¼ m1=m2 � ¼ a1=a2 e10=e20

Aligned D$0

(deg)

AntialignedD$0

(deg)

�And b–c...................... 0.358 0.0720 0.037 (�79.3, 79.3) . . .a

�And b–d ..................... 0.181 0.0228 0.040 (�47.0, 47.0) . . .

�And c–d...................... 0.507 0.317 1.08 (�9.0, 9.0) . . .

55 Cnc b–c..................... 4.15 0.477 0.073 . . . (96.8, 263.2)

55 Cnc b–d .................... 0.225 0.021 0.107 . . . . . .

55 Cnc c–d..................... 0.054 0.044 1.46 . . . . . .

GJ876 c–b ..................... 0.296 0.628 2.70 . . . (144.0, 216.0)

47 UMab b–c................. 3.34 0.560 12.2 (�87.9, 87.9) . . .
HD 37124 b–c ............... 0.860 0.184 0.250 (�69.8, 69.8) . . .

HD 12661 b–c ............... 1.46 0.320 1.75 (�67.8, 67.8) (98.6, 261.4)

HD 82943 c–b ............... 0.540 0.628 1.32 (�59.7, 59.7) (132.8, 227.2)

HD 168443 b–c ............. 0.450 0.103 2.65 . . . . . .
HD 38529 b–c ............... 0.061 0.035 0.806 . . . . . .

HD 74156c b–c .............. 0.208 0.080 1.625 . . . . . .

a Here ellipses mean no possible librationD$0.
b Data from Fischer et al. 2002.
c Data fromCalifornia and Carnegie Planet Search (see footnote 1).

Fig. 12a Fig. 12b

Fig. 12.—Libration region in the initial e20-D$0 plane defined by eqs. (19) and (20) for the two triple-planet systems (a) 55 Cancri ($b ¼ 99�,$c ¼ 61�, and
$d ¼ 201�); (b) �Andromedae ($b ¼ 73�,$c ¼ 250�, and$d ¼ 260�). Invisible boundary curves are out of the range of e20. The filled circles show the present
configuration of the two planets. Other orbital elements are taken from Fischer et al. (2003).
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Fig. 13a
Fig. 13b

Fig. 13.—Libration region in the initial e20-D$0 plane defined by eqs. (19) and (20) for the planetary system (a) GJ876 ($b ¼ 330�,$c ¼ 333�), HD 82943
($b ¼ 96�, $c ¼ 138�); (b) HD 37124 ($b ¼ 60�, $c ¼ 259�). The filled circles show the present configuration of the two planets. Other orbital elements are
taken fromFischer et al. (2003).
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