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ABSTRACT

We consider relativistic, stationary, axisymmetric, polytropic, unconfined, perfect MHD winds, assuming
their five Lagrangian first integrals to be known. The asymptotic structure consists of field regions bordered
by boundary layers along the polar axis and at null surfaces, such as the equatorial plane, which have the
structure of charged column or sheet pinches supported by plasma or magnetic poloidal pressure. In each
field-region cell, the proper current (defined here as the ratio of the asymptotic poloidal current to the
asymptotic Lorentz factor) remains constant. Our solution is given in the form of matched asymptotic
solutions separately valid outside and inside the boundary layers. A Hamilton-Jacobi equation, or
equivalently a Grad-Shafranov equation, gives the asymptotic structure in the field regions of winds that
carry Poynting flux to infinity. An important consistency relation is found to exist between axial pressure,
axial current, and asymptotic Lorentz factor.We similarly deriveWKB-type analytic solutions for winds that
are kinetic energy–dominated at infinity and whose magnetic surfaces focus to paraboloids. The density on
the axis in the polar boundary column is shown to slowly fall off as a negative power of the logarithm of the
distance to the wind source. The geometry of magnetic surfaces in all parts of the asymptotic domain,
including boundary layers, is explicitly deduced in terms of the first integrals.

Subject headings: ISM: jets and outflows — MHD — stars: winds, outflows

1. INTRODUCTION

Any stationary, axisymmetric, nonrelativistic, rotating,
magnetized wind will collimate at large distances from the
source, under perfect MHD conditions and polytropic
thermodynamics (Heyvaerts & Norman 1989). Chiueh, Li,
& Begelman (1991) showed that these results hold also for
relativistic winds. We have recently extended our general
analysis (Heyvaerts & Norman 2003a) by presenting global
analytic asymptotic solutions for nonrelativistic winds,
valid from the pole to the equator, assuming given first
integrals. This paper extends our general analysis to
relativistic winds.

Flows that bring no Poynting flux to infinity are called
kinetic winds. Their magnetic surfaces asymptote to parabo-
loids (Heyvaerts & Norman 1989; Chiueh et al. 1991). If
Poynting flux reaches infinity, the flow is called a Poynting
jet. The magnetic surfaces then asymptotically approach
cylinders or conical surfaces in which cylindrical ones are
nested. We refer to a magnetic surface as being asymp-
totically conical if both r and z approach infinity on this
magnetic surface, such that z=r approaches a finite value.

We find that the asymptotic structure of relativistic winds
consists of field regions where the Lorentz force vanishes in
the direction normal to magnetic surfaces. These regions are
bounded by null surfaces where the magnetic field vanishes.
In the vicinity of null surfaces, the plasma pressure, or

possibly the poloidal magnetic pressure, is significant. The
vicinity of the polar axis is also a boundary layer region.

Relativistic winds are likely to be present near pulsars,
active galactic nuclei, microquasars, and gamma-ray burst
sources. Their structure was first discussed assuming conical
magnetic surfaces (Michel 1969; Goldreich & Julian
1970). The cross-field force balance has been considered by
Okamoto (1975) and Heinemann & Olbert (1978). It was
then recognized that both nonrelativistic and relativistic
winds focus asymptotically (Blandford & Payne 1982;
Heyvaerts & Norman 1989; Chiueh et al. 1991) and that
MHD forces may contribute to the wind acceleration. It is
possible, however, that a confinement mechanism other
than the action of the hoop stress could be operating
(Spruit, Foglizzo, & Stehle 1997; Luçek & Bell 1997). The
general-relativistic dynamics of MHD winds for given field
geometries has been discussed by Camenzind (1986a,
1986b, 1989) and by Takahashi et al. (1990). Much work
has also been devoted to the determination of the shape of
the magnetic surfaces and to the wind dynamics. These stud-
ies considered the special-relativistic (Ardavan 1979;
Camenzind 1987; Li 1993a, 1993b) as well as the general-
relativistic transfield equations that describe force balance
across field lines (Mobarry & Lovelace 1986; Camenzind
1987; Nitta, Takahashi, & Tomimatsu 1991; Beskin &
Par’ev 1993; Tomimatsu 1994: Koide et al. 2000).

Analytical models, usually involving some form of self-
similarity, have been presented (Contopoulos 1994, 1995;
Contopoulos & Lovelace 1994; Lovelace, Berk, &
Contopoulos 1991). Li, Chiueh, & Begelman (1992)
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extended the self-similar analysis of Blandford & Payne
(1982) to relativistic winds. Their approach, as is the case
here, does not rely on the force-free approximation. Their
self-similarity requirement restricts the rotation profile of
the wind source to be proportional to r�1 and imposes the
wind source to be of an infinite extent and the return current
flow to be an axial singularity. This limits the type of asymp-
totics for this model to circumpolar current–carrying struc-
tures. The parabolic shape obtained by Li et al. (1992) is
made possible by the fact that their wind source subtends
infinite flux (Heyvaerts & Norman 2003a, Appendix C). By
contrast, their approach deals with the criticality and Alfvén
regularity conditions exactly, whereas in our approach it is
only assumed that the set of first integrals is consistent with
these conditions. Because the return current distribution is
most important for determining the degree of collimation,
we regard a non–self-similar approach as preferable for
analyzing the asymptotics of the wind. We also have the
possibility of analyzing a point source of wind that subtends
finite total flux.

Solutions for relativistic force-free flows have been
obtained in cylindrical symmetry, either for given current
profiles (Appl & Camenzind 1993a, 1993b) or for self-
consistent plasma flows both confined (Beskin &Malyshkin
2000) and unconfined (Nitta 1997). Beskin, Kuznetsova, &
Rafikov (1998) construct a solution by expanding in terms
of the inverse of Michel’s magnetization parameter. Cold
relativistic winds have been analyzed by Bogovalov (1999)
for the oblique split-monopole rotator. The questions of the
structure and formation of jets and their connection to disks
have been dealt with numerically in many papers. Axisym-
metric stationary solutions, enforcing regularity at the light
cylinder, have been obtained by Contopoulos, Kazanas, &
Fendt (1999). Axisymmetric two-dimensional force-free sta-
tionary flows emitted by disks have been calculated by
Fendt, Camenzind, & Appl (1995), Fendt & Camenzind
(1996), and Bogovalov & Tsinganos (1999) and in three
dimensions by Krasnopolsky, Li, & Blandford (1999),
Koide, Shibata, & Kudoh (1999), and Nishikawa et al.
(1997). The confinement of a star’s flow by the wind from a
disk has been studied by Bogovalov & Tsinganos (2001).
Levinson & van Putten (1997) studied time-dependent simu-
lations of magnetized relativistic jets. Bogovalov (2001)
finds that in relativistic winds the collimated region may
reduce to a very small region trapping but little flux. Love-
lace and collaborators have considered the jet-disk interac-
tion and have used the force-free approximation to study
the dynamics and focusing of relativistic jets (Lovelace
1976; Lovelace, Wang, & Sultanen 1987; Lovelace et al.
1991; Lovelace, Romanova, & Contopoulos 1993;
Ustyugova et al. 2000). The self-consistent response of the
disk emitting the wind has also been considered in two
dimensions (Bell & Luçek 1995; Kudoh, Matsumoto, &
Shibata 1998; Koide et al. 2002) and in three dimensions
(Matsumoto et al. 1996). Nonstationary behavior and an
avalanche type of accretion flow result.

Special analytical solutions valid in more or less extended
regions of space have been obtained. Li (1993a) and
Begelman & Li (1994) give some elements of our general sol-
ution below, although without the complete matching. In
studying the structure of relativistic winds far from the light
cylinder, Tomimatsu (1994) adopted a procedure similar in
spirit to our present work. Tomimatsu & Takahashi (2003),
in an elegant asymptotic analysis, find similar slow

logarithmic wind and jet acceleration. Nitta (1995) devel-
oped a particular solution in the limit of winds with a very
large mass flux to magnetic flux ratio and rigid rotation. He
matched a solution valid in a cylindrical polar region, in
which a strong current flows, with a conical solution in the
nearby region. The force balance in the axial region is
between the centrifugal force and the hoop stress, implying
that this region is not much broader than the light cylinder.
Some of our general asymptotic solutions also have such a
mixed structure, although the force balance near the axis is
different. Okamoto (1999) insists on the importance of
obtaining solutions consistent with current closure and has
shown that this implies that, in regions where the electric
current returns to the wind source, magnetic lines should
bend toward the equator instead of bending toward the axis
(Beskin & Okamoto 2000; Okamoto 2000). The solutions
presented below, although their poloidal lines curve toward
the polar axis in most of the plasma volume, comply with
this requirement.

It is the aim of this paper to provide a general analytical
asymptotic solution for special-relativistic jets, assuming
the five first integrals of the motion to be known. It is organ-
ized as follows: x 2 recalls the basics of special-relativistic,
stationary, axisymmetric, rotating MHD winds. Section 3
deals with the field regions. The asymptotic form of the
transfield equation in field regions is established and
reduced to a simple Hamilton-Jacobi equation, which we
solve in x 4. The solution in the polar boundary layer is then
obtained in x 5, assuming that it encompasses little flux. Our
solution applies both to Poynting jets and to kinetic winds
by means of a WKB approximation. We match the field sol-
ution to that which applies to the polar boundary layer. This
specifies how the proper current around the polar axis varies
with distance to the wind source. The case of a polar boun-
dary layer supported by the poloidal magnetic pressure is
also considered for completeness. In x 6 we similarly obtain
and match to the field region a solution valid in the vicinity
of a null magnetic surface, namely, the equatorial plane of a
magnetic structure with a dipolar type of symmetry. In x 7
the shape of the magnetic surfaces is calculated, both in field
regions and in boundary layers, for both cases of asymptotic
regime. Conclusions regarding the general properties of
relativistic rotatingMHDwinds are presented in x 8.

2. AXISYMMETRIC STATIONARY RELATIVISTIC
MHD FLOWS

2.1. Notation and Definitions

We now review relativistic MHD winds and establish our
notations. We use cylindrical coordinates (r, h, z). Unit
vectors of the associated local frame of reference are er, e�,
and ez. The notation R denotes the spherical radius. The
unit normal vector to the poloidal field lines, oriented
toward the polar axis, is n, and the unit tangent vector to
them, oriented toward increasing z, is t. This vector makes
an angle  with its projection on the equatorial plane. Any
vector field can be split into a poloidal (subscript P) and a
toroidal (subscript h) part. Because of axisymmetry, the po-
loidal magnetic field BP can be expressed in terms of a
magnetic flux function aðr; zÞ such that

BP ¼ � 1

r

@a

@z
er þ

1

r

@a

@r
ez : ð1Þ

A magnetic surface is generated by rotating a field line
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about the polar axis. It is a surface of constant value of
aðr; zÞ. The magnetic flux through it is 2�a. The flow,
described here in the framework of special relativity, has a
local Lorentz factor � defined by

� ¼ 1�
v2� þ v2P

c2

� ��1=2

: ð2Þ

We denote by � the proper rest-mass density, measured in
the rest frame of the fluid. The momentum per unit proper
mass is

u ¼ �v : ð3Þ

2.2. First Integrals

A polytropic law is assumed, by which the proper gas
pressure is related to the proper density by

P ¼ QðaÞ�� ; ð4Þ

where Q is constant following the fluid motion and C is the
polytropic index. This relation may represent adiabatic or
more complex thermodynamics. We define the function

� ¼ 1þ �

�� 1

Q���1

c2
; ð5Þ

which is also equal to 1þ
R
dP=�c2 calculated at constant

polytropic entropy Q. Denoting by �e the electric charge
density, by j the electric current density, and byM� the mass
of the central object, the special-relativistic equation of
motion can be written as (Goldreich & Julian 1970; Li
1993a)

��ðv x

D

Þð��vÞ ¼ �

D

Pþ j � B þ �eE þ ��

D

��
GM�
R

� �
:

ð6Þ

The relativistic form of the laws of mass conservation, iso-
rotation, angular momentum conservation, and Bernoulli
are obtained as in the nonrelativistic case and involve sur-
face functions E, �, L, �, andQ. The equations that express
these four laws are

��vP ¼ �ðaÞBP ; ð7Þ

� v� � r�ðaÞ½ � ¼ �ðaÞB�
�

; ð8Þ

��rv� �
rB�

l0�ðaÞ
¼ LðaÞ ; ð9Þ

�� c2 � GM�
R

� �
� r�ðaÞB�

l0�ðaÞ
¼ EðaÞ : ð10Þ

Note that E includes the rest-mass energy. The polytropic
factor Q is a surface function because, by stationarity, flow
surfaces are also magnetic surfaces. The rotation rate of the
magnetic field, �ðaÞ, which appears in equations (8) and
(10), is defined in terms of the electric field by

E ¼ ��ðaÞ

D

a : ð11Þ

When BP is directed away from the wind source, � is posi-
tive. Since the sense of the magnetic field is immaterial, it
can be assumed that this is so at the positive polar axis. For

positive �, a increases from pole to equator. We assume �
to be always positive.

2.3. Bernoulli Equation

The toroidal variables may be eliminated by using
equations (8) and (9). This gives

rB� ¼ l0��
L� �r2��

l0�
2� � �

; ð12Þ

��v� ¼
L

r
þ �

r

L� �r2��

l0�
2� � �

: ð13Þ

We denote by I the quantity

I ¼ � rB�
l0

: ð14Þ

The minus sign in equation (14) has been included to make I
positive when � and � are. The physical total poloidal cur-
rent is JP ¼ �2�I . Nevertheless, we conveniently refer to I
as the poloidal current. Since � depends on v�, the elimina-
tion of the toroidal variables in equations (12) and (13) is
not yet complete. These expressions can however be substi-
tuted in the Bernoulli equation (10), which can then be
solved to obtain an expression of �� in terms of poloidal var-
iables. This eventually gives the toroidal variables in terms
of poloidal ones as

rB� ¼ �l0�
Lðc2 � GM�=RÞ � r2�E

ðc2 � GM�=RÞð1� l0�
2�=�Þ � r2�2

; ð15Þ

rv� ¼ r2� 1þ l0�
2�

�

r2�E � Lðc2 � GM�=RÞ
r2�Eð1� l0�

2�=�Þ � Lr2�2

� �
: ð16Þ

For smooth continuous solutions, these expressions must be
regular where their denominator vanishes, which implies
that when

� ¼ l0�
2�

c2 � GM�=R
c2 � GM�=R� �2r2

; ð17Þ

the position ðr; zÞmust be such that

r2 ¼ L

�

c2 � GM�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p

E
: ð18Þ

Another way to express the special density that appears in
equation (17) is to insert in it the expression (18) for the cor-
responding radius, thus obtaining a relation between the
value assumed by � at this special point and the first
integrals:

�

�ð�Þ ¼ l0�
2 E

E � L�
: ð19Þ

A complete elimination of toroidal variables from equation
(10) can be achieved as follows. A first expression for � is
obtained by substituting equation (12) in equation (10). An
independent relation for � results from its definition in
equation (2), using equations (7) and (13). Eliminating �
between these two relations, an equation for �, or any other
poloidal variable, is obtained. For given values of the first
integrals, this relation, the relativistic Bernoulli equation,
can be used to find this poloidal variable as a function of
position along the magnetic surface a. Let us denote by D
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the variable

D ¼ �

l0�
2�ð�Þ ð20Þ

and by g the function

g ¼ GM�
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p : ð21Þ

Simple algebra shows that the relativistic Bernoulli equation
can be then written as

c2ð1� gÞ �D c2ð1� gÞ � r2�2
� �� 	2

�2 þ B2
P

l20�
2c2D2

� �

¼ E �DðE � L�Þ½ �2þ c2

r2�2

� DðE � L�Þ r
2�2

c2
� L�ð1� gÞ

� �2
: ð22Þ

This equation is satisfied at the relativistic Alfvén point, as
can be shown from equations (18)–(19). Again, a smooth
solution of equation (22) requires that the first integrals
satisfy regularity conditions by passing critical points.

2.4. Transfield Equation

The transfield equation is the projection of the equation
of motion on the normal to magnetic surfaces. It can be
obtained by using methods similar to those used in the
classical case (Heyvaerts &Norman 2003a), giving

��

�r

@

@z

�

�r

@a

@z
þ @

@r

�

�r

@a

@r

� �
� 1

l0�r

@

@z

1

r

@a

@z
þ @

@r

1

r

@a

@r

� �

þ �2

l0�c
2

@2a

@z2
þ 1

r

@

@r
r
@a

@r
þ �0

�
jraj2

� �

¼ �E0ðaÞ �Q0ðaÞ���1

�� 1
� �

�� 1

u2P
c2

D

a x

D

ðQ���1Þ
jraj2

þ �0

�

l0�
2�

r2
L� ��r2�

l0�
2� � �

� �2

� �

r2�
ðL0 � ��r2�0Þ L� ��r2�

l0�
2� � �

� �
� LL0

r2�
: ð23Þ

We find that, in comparison with the nonrelativistic
transfield equation, equation (23) has an additional second-
order term proportional to �2=c2 on its left-hand side that
represents the cross-field component of the electric force.
The gas pressure terms on the right-hand side differ slightly
from those obtained by Li (1993a), who defined the function
� as being 1þ

R
dP=�c2. We prefer the definition (5) that

coincides with that of Li when the entropyQðaÞ is independ-
ent of a. Toroidal variables, still implicit in �, can be elimi-
nated entirely by using the expression for the Lorentz factor
in terms of poloidal variables (see x 2.3). The curvature of
poloidal field lines is given by

ðt x

D

Þt ¼ n
d 

ds
: ð24Þ

Using the relation

ð

D

� BPÞ x e� ¼ n x

D

jBPj � jBPj
d 

ds
; ð25Þ

the following equation, equivalent to equation (23), is
obtained:

�2�2 1� �

l0�
2�

1� �2r2

c2

� �� �
v2P

d 

ds

¼ �

�

D

a

jraj
x

D ra2

2l0r
2
þQ��

� �
� ��

D

a

jraj
x

D

��
GM�
R

� �

� �2�2
v2�
r

1

jraj
@a

@r
þ �

�r2

D

a

jraj

x

D r2B2
�

2l0
� �2r2

c2
jraj2

2l0

 !
: ð26Þ

The forces associated with the terms on the right-hand side
are the same as for classical dynamics, except for the very
last one, which is part of the projection of the electric force
normal to the magnetic surface. Another part of this electric
force appears as a term proportional to �2r2=c2 on the
left-hand side of equation (26).

2.5. Force-free Limit

The force-free limit applies in the case of very large mag-
netization. It corresponds to a limit in which the inertia �
approaches zero. By equation (7) this implies that �
approaches zero such that �=� remains finite. In this limit,
� given by equation (5) reduces to unity, and l0�

2�=�5 1.
Equations (19), (9), and (10) then imply that the energy is all
in Poynting form. Because the ordering between � and the
critical density l0�

2 is opposite in the asymptotic limit, the
latter is entirely out of the scope of the force-free approxima-
tion. The asymptotic limit applies to a state of the flow
reached in regions much further away from the wind source
than the limit down to which the force-free approximation is
valid. Nevertheless, the asymptotic regime is such that the
component of the Lorentz force perpendicular to magnetic
surfaces vanishes, except at boundary layers. There is no con-
tradiction here (Nitta 1995). This asymptotic property occurs
because the least negligible asymptotic forces normal to the
field are electromagnetic. This property does not result from
any a priori assumed dominance of electromagnetic forces
over all the other forces present. The vanishing of the normal
component of the electromagnetic force simply results from
the wind dynamics. Between any near-source region in which
force-free conditions apply (because of strongmagnetization)
and the asymptotic domain (in which the component of the
electromagnetic force perpendicular to the field vanishes as a
consequence of the dynamics), an intermediate non–force-
free region must exist. In this intermediate non–force-free
region, currents cross magnetic surfaces and plasma is accel-
erated. The conservation of poloidal current on a magnetic
surface (which, under force-free conditions, applies near the
wind source) does not retain validity continuously out to
the asymptotic domain.

It is instructive to analyze how the inertialess limit turns
the transfield equation (23) into the well-known force-free
relativistic wind equation. In the inertialess limit, equation
(9), multiplied by �, reduces to �rB� ¼ l0�L ¼ l0IðaÞ,
where, as � approaches zero, �L approaches the finite limit
IðaÞ, which means that the poloidal current follows mag-
netic surfaces in the force-free regions and the associated
Lorentz force has no component along the magnetic field.
Multiplying equation (10) by � and taking the limit of van-
ishing � leads to�r�B� ¼ l0�E ¼ P, where it is meant that
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l0�E approaches a finite limit P as � approaches zero. This
implies that the energy flux is all in Poynting form. This rela-
tion can be restated as �E ¼ I�. The point r defined by
equation (18) reduces in this case to the light cylinder radius
r ¼ c=�. In the force-free limit, equation (23) should be
expanded in � and � to an appropriate order, to take
account of the cancellation of the dominant terms. The
inertial terms on the left-hand side of equation (23) become
negligible. The pressure terms disappear from its right-hand
side, and �L approximately equals I. One is eventually left
with the well-known force-free pulsar wind equation
(Beskin, Gurevich, & Istomin 1993):

1� �2r2

c2

� �
@2a

@z2
þ @2a

@r2

� �
� 1þ �2r2

c2

� �
1

r

@a

@r

� r2��0

c2
jraj2 þ l20II

0ðaÞ ¼ 0 : ð27Þ

3. FIELD REGIONS

3.1. Transfield Equation

Let us compare the terms on the right-hand side of
equation (23) in the large-r limit. The gravity term and the
centrifugal force term, which declines as 1=r3, become negli-
gible, and the pressure term becomes very small, so that �
approaches unity. The electric force remains of the same
order as the hoop stress, though. The asymptotic form of
the relativistic transfield equation is then

�2v2P 1þ �r2�2

l0�
2

� �
d 

ds
¼ 1

�
D

a

jraj
x

"
D ra2

2l0r
2
þQ��

� �

þ 1

r2

D r2B2
�

2l0
� �2r2

c2
jraj2

2l0

 !#
: ð28Þ

Equation (10) shows that, on a given magnetic surface, rB�
is bounded at large distances, and equations (12) and (7)
show that �r2 and rjraj are also bounded. When they
approach finite limits, the hoop stress term in equation (28)
decreases as 1=r, as does the electric force. Both the poloidal
magnetic pressure and the gas pressure decrease more rap-
idly with r. It has been shown (Heyvaerts & Norman 1989)
that the inertia force associated with the curvature of the
poloidal motion on the left-hand side of equation (28) must
decrease faster than 1=r. It becomes negligible compared to
the hoop stress and electric force. The asymptotic form of
the transfield equation becomes

D

a x

D

r2B2
� � r2B2

P

�2r2

c2

� �
¼ 0 : ð29Þ

Equation (29) generalizes to the relativistic case our earlier
nonrelativistic result (Heyvaerts & Norman 1989, 2003a;
Chiueh et al. 1991). Adding to the left-hand side of equation
(29) that negligible part of the electric force which is propor-
tional to the curvature of poloidal field lines, we find

D

a x j � B þ �eEð Þ ¼ 0 : ð30Þ

Thus, the component of the electromagnetic force normal
to the magnetic surface asymptotically vanishes on flared
surfaces. This does not imply a strictly force-free situation
since equation (30) is asymptotically satisfied by the

vanishing of each of its terms separately and holds only per-
pendicular to field lines. We refer to regions where equation
(29) holds true as field regions of the asymptotic domain. The
pressure force becomes significant near the polar axis and
near neutral magnetic surfaces, where the electromagnetic
force vanishes. Equation (29) can be integrated following
orthogonal trajectories to magnetic surfaces. Let b label one
such orthogonal trajectory. We define b as being the
distance to the origin of the point where this orthogonal
trajectory meets the polar axis. The integrated form of
equation (29) is

r2B2
� �

�2r2

c2
jraj2 ¼ l20K1ðbÞ ; ð31Þ

K1 is independent of a. Using equation (11) and noting that
B�4BP in the large-r limit, equation (31) can also be written
as

r2ðc2B2 � E2Þ ¼ l20c
2K1ðbÞ : ð32Þ

The scalar invariant of the electromagnetic field ðc2B2 � E2Þ
appears on the left-hand side of this equation. From the
asymptotic form of equations (7) and (12), the toroidal field
can be expressed in terms of poloidal variables as

rB� ¼ � �1�r2�

�
¼ � �

j�j
�rj

D

aj
v1

: ð33Þ

When used in equation (31) this gives

l20K1ðbÞ ¼ r2B2
� 1� v21

c2

� �
: ð34Þ

Then,K1ðbÞ is positive and can be written as

K1ðbÞ ¼ K2ðbÞ ; ð35Þ

KðbÞ has the dimension of an electric current. In the non-
relativistic case the quantity that becomes independent of a
in field regions is the total poloidal electric current I. Equa-
tion (34) indicates that the situation is different in a relativis-
tic plasma flow;K and I are related by (Chiueh et al. 1991)

Iða; bÞ ¼ �1ða; bÞKðbÞ : ð36Þ

This defines K as an algebraic quantity having the sign of I
(see eqs. [14] and [33]). Since the azimuthal velocity asymp-
totically approaches zero, the terminal Lorentz factor �1ðaÞ
refers to the terminal poloidal velocity v1ðaÞ. The Bernoulli
equation (10) becomes in the same limit

�1c2 ¼ E � I�

�
: ð37Þ

Equations (36) and (37) provide expressions for the current
I and the momentum �1v1 in terms of KðbÞ and the first
integrals:

Iða; bÞ ¼ KðbÞ �ðaÞEðaÞ
�ðaÞc2 þ KðbÞ�ðaÞ ; ð38Þ

�1v1 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðc2 þ K�=�Þ2

q
c2 þ K�=�

; ð39Þ

K is the poloidal current observed in a rest frame where the
poloidal motion vanishes. This can be seen by transforming
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from the laboratory frame to a frame moving with the fluid
at the poloidal velocity v1 along the direction of the poloi-
dal field. The azimuthal magnetic field is given by equation
(33) and the electric field by equation (11);K is equal to

K ¼ � rB�
l0�1

¼ þ �

j�j
r�j

D

aj
l0�1v1

: ð40Þ

In the moving fluid rest frame, the electric field vanishes,
while the azimuthal magnetic field is

B�;fluid ¼ B�
�1

¼ � l0K

r
: ð41Þ

The arc length element r d� remains invariant in the
transformation, so that

r d�B�;fluid ¼ �l0K d� : ð42Þ

This shows that K is negatively proportional to the current
enclosed by a circle of radius r carried by the fluid motion.
We refer toK as the proper current.

3.2. Current-carrying Boundary Layers and Electric Circuit

Equation (28) shows that the electromagnetic force is pro-
portional to K

D

K. Since K vanishes with I, this force yields
to pressure at boundary layers around null surfaces and
near the polar axis. However, since the pressure is weak, the
thickness of the boundary layers must be small. Using
equation (33), equation (28) reduces to

1

�
ð

D

a x

D

Þ Q��

 �

¼ � 1

�r2
ð

D

a x

D

Þ
r2B2

�

2l0
� r2�2

2l0c
2
jraj2

� �

¼ ��

�
ð

D

a x

D

Þ r�jraj
l0�1v1

� �
: ð43Þ

The proper current K then has the following profile along
an orthogonal trajectory: from zero at the polar axis, it
quickly rises to a nonzero value at the edge of the circum-
polar boundary layer, then stays constant and steeply
returns to zero through a boundary layer about the next null
surface. The current system closes exactly in cells bordered
by null surfaces. Equation (106) of x 6.3 shows that K2

resumes its original value after crossing the boundary layer
about a null surface; K only changes sign. In the field region
of the next cell, K remains constant, again returning quickly
to zero at the next null surface.

3.3. Asymptotic Grad-Shafranov Equation

Equation (29) can be transformed to give

@

@z

�

�r

@a

@z

� �
þ @

@r

�

�r

@a

@r

� �
þ n x

D�j

D

aj
�r

� �
¼ �j

D

aj
�r

d 

ds
:

ð44Þ

Since in the asymptotic domain r d =ds becomes negligibly
small, the term on the right-hand side of equation (44) can
be neglected compared to any one of those on its left-hand
side. Expanding second-order operators and using equation
(7), this leads, similarly to the nonrelativistic case, to the
following equation for aðr; zÞ:

Da ¼

D

a x

D

ln rjrajð Þ½ � ; ð45Þ

which can also be restated as

div

�
n

r

�
¼ 0 : ð46Þ

Multiplying equation (45) by r2 and denoting

D

a x

D

jraj2
¼ @

@a
; ð47Þ

it can also be transformed into

r2Da ¼ @

@a

r2jraj2

2

 !
: ð48Þ

Using equations (31), (33), and (35), this can finally be
restated as a Grad-Shafranov equation:

r2Da ¼ @

@a

l20K
2ðbÞ�21ðaÞv21ðaÞ

2�2ðaÞ

� �
: ð49Þ

The boundary conditions to equation (49) are that a ¼ 0
along the polar axis and that a ¼ A on the equatorial plane.
When KðbÞ is constant and nonzero, these conditions imply
that a depends on the latitudinal angle  only. In this case,
equation (49) becomes an ordinary differential equation for
að Þ, which reduces to the form of equation (55) below.

4. SOLUTION IN FIELD REGIONS

4.1. Hamilton-Jacobi Equation

Using equations (33) and (39), equation (31) can be
restated as

rjraj ¼
l0jKðbÞjc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðaÞ � c2 þ KðbÞ�ðaÞ=�ðaÞ½ �2

q
�ðaÞ c2 þ KðbÞ�ðaÞ=�ðaÞ½ �

� f ða; bÞ : ð50Þ

Let � be the curvilinear abscissa along an orthogonal trajec-
tory to magnetic surfaces, conventionally increasing from
pole to equator. An equivalent form of equation (50) is

d�

r
¼

c2 þ KðbÞ�ðaÞ=�ðaÞ
� �

�ðaÞda

l0jKðbÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðaÞ � c2 þ KðbÞ�ðaÞ=�ðaÞ½ �2

q : ð51Þ

When KðbÞ approaches a finite constant K1 at large
distances, equation (50) can be further transformed, by
defining SðaÞ ¼

R a
0 da

0=f ða0Þ, into the following Hamilton-
Jacobi equation:

jrSj ¼ 1

r
; ð52Þ

the solution of which can be constructed by ray tracing, as
in the nonrelativistic case (Heyvaerts & Norman 2003a).
The boundary conditions at the equator have been shown to
select a solution in which orthogonal trajectories to mag-
netic surfaces are circles centered at the origin. This is only
an asymptotic, approximate result, as is equation (52) itself.

4.2. WKBJ Approximation

When KðbÞ declines to zero at large distances, the wind
becomes asymptotically kinetic energy–dominated. The
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function f ða; bÞ of equation (50) asymptotically vanishes in
this case. Equation (50) then does not give rjraj as a func-
tion of a only. If, however, the decline of KðbÞ with distance
is very slow, the WKBJ approximation allows us to neglect
this variation. Orthogonal trajectories then remain quasi-
circular. In the vicinity of the orthogonal trajectory of
radius b, the flux surfaces are approximated by a series of
nested conical surfaces locally represented by

z ¼ r tanð ða; bÞÞ : ð53Þ

The angle  ða; bÞ is assumed to slowly vary with b.

4.3. Solution in Field Regions

Equation (50) is now considered in the WKBJ approxi-
mation and in the geometry described by equation (53). We
find

jraj ¼ cos 

rj@ =@aj : ð54Þ

This gives the following differential equation for  at given
b:

d 

cos 
¼ �

�ðaÞda c2 þ KðbÞ�ðaÞ=�ðaÞ
� �

l0KðbÞc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðaÞ � c2 þ KðbÞ�ðaÞ=�ðaÞ½ �2

q ;

ð55Þ

which integrates to

tan ða; bÞ ¼ tan ða1; bÞ

þ sinh

Z a1

a

1

l0Kc

�ða0Þda0 c2 þ K�ða0Þ=�ða0Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c2 þ K�ða0Þ=�ða0Þ½ �2

q
0
B@

1
CA ; ð56Þ

where a1 is a reference flux in the cell under consideration
and, again, K depends weakly on b. If the cell begins at the
equator, a1 can be taken as the flux variable A of the equa-
torial surface, and tanð ðA; bÞÞ ¼ 0. This neglects the small
flux in the equatorial boundary layer, if the latter is a null
surface. These results are similar to those obtained for non-
relativistic winds by Heyvaerts & Norman (2003a) and for
relativistic winds by Nitta (1995).

4.4. Flux Distribution in Cylindrical Regions of the Field

When KðbÞ approaches a finite limit K1, there may exist
regions of the free field where magnetic surfaces become
cylindrical. Their radius is given by equation (51), which in
this geometry gives

r1ðaÞ ¼ r1ða2Þ

� exp

Z a

a2

�ða0Þda0 c2 þ K1�ða0Þ=�ða0Þ½ �

l0cK1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c2 þ K1�ða0Þ=�ða0Þ½ �2

q
0
B@

1
CA ;

ð57Þ

where a2 is a reference flux in the cylindrical field region.
Equations (56) and (57) give approximately identical results
when tan becomes very large.

At this point the solution in the free field is described by
equation (56). To make this solution complete, we must

solve equation (43) in boundary layers and determine how
the circumpolar proper currentKðbÞ depends on b.

5. THE POLAR BOUNDARY LAYER

5.1. Solution in the Polar Boundary Layer

Plasma pressure, or possibly poloidal magnetic pressure,
must be taken into account in the vicinity of the polar axis.
Since the poloidal magnetic pressure decreases faster with
increasing r than the plasma pressure, the latter dominates,
unless the polytropic entropy Q vanishes. The transfield
force balance near the pole is between the hoop stress, the
electric force, and the pressure gradient. Using equation
(33), equation (43) takes the form

ð

D

a x

D

Þ �

�� 1
Q���1

� �
þ �

�
ð

D

a x

D

Þ �r2�

l0�

� �
¼ 0 : ð58Þ

Assume that Q, �, and � can be taken as constants in the
boundary layer. This is valid for small K (Heyvaerts &
Norman 2003a). Equation (58) then integrates to

�

�� 1
Q0�

��1 þ �r2�2
0

l0�
2
0

¼ K2ðbÞ : ð59Þ

The integration constant K2ðbÞ can be identified by con-
sidering the left-hand side of equation (59) on the polar axis,
where the density is �0ðbÞ, so that

K2ðbÞ ¼
�

�� 1
Q0�

��1
0 ðbÞ : ð60Þ

Alternatively, K2ðbÞ can be identified by considering the
left-hand side of equation (59) at large axial distances, where
the pressure becomes negligible. Using equations (1), (7),
(33), and (31), this gives

K2ðbÞ ¼
�0

�0
KðbÞ ; ð61Þ

where KðbÞ is the proper current, defined by equation (35).
Equation (59) can be solved for r in terms of the parameter

x ¼ �

�0ðbÞ
: ð62Þ

This results in equation (63). Using this expression for  in
terms of x in equation (54) to express a as a function of x, a
parametric representation of the flux distribution in the
polar boundary layer is obtained:

cos2  ¼ �

�� 1

Q0l0�
2
0�

��2
0 ðbÞ

�2
0b

2

1

x
� 1

x2��

� �
; ð63Þ

a ¼ �0ðbÞv0ðbÞ
�Q0�

��1
0 ðbÞ

2ð�� 1Þ
l0�0

�2
0

� ln
1

x

� �
� 2� �

�� 1
1� x��1

 �� �

: ð64Þ

The Lorentz factor and velocity �0ðbÞ and v0ðbÞ refer to their
values at the polar axis at a distance b from the source.
Equations (10) and (5) give �0 as

�0 c2 þ �

�� 1
Q0�

��1
0 ðbÞ

� �
¼ E0 ; ð65Þ
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fromwhich we get

�0v0 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c2 þ �= �� 1ð Þ½ �Q0�

��1
0 ðbÞ

� 	2q
c2 þ �= �� 1ð Þ½ �Q0�

��1
0 ðbÞ

: ð66Þ

5.2. Matching the Polar Boundary Layer Solution
to the Outer Solution

The inner limit (a5A) of the outer solution (eq. [56])
must now be asymptotically matched to the outer limit
(x5 1) of the inner solution (eqs. [63]–[64]). These equations
provide, for x5 1, the following expression for  ða; bÞ:

cos2  ða; bÞ ¼
�Q0l0�

2
0�

��2
0

ð�� 1Þ�2
0b

2
exp

 
2að�� 1Þ�2

0

�Q0l0�0�
��1
0

�
c2 þ �= �� 1ð Þ½ �Q0�

��1
0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c2 þ �= �� 1ð Þ½ �Q0�

��1
0

� 	2q
!
;

ð67Þ

where �0 depends on b. In the vicinity of the polar axis,
tan is large. For very small cos , the first term on the
right-hand side of equation (56) is negligible, and this
relation can be written as

cos ¼ 1

cosh�
; ð68Þ

where the hyperbolic argument �ða; bÞ is

�ða; bÞ ¼ 1

l0cKðbÞ

�
Z a1

a

c2 þ KðbÞ�ða0Þ=�ða0Þ½ ��ða0Þda0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c2 þ KðbÞ�ða0Þ=�ða0Þ½ �2

q : ð69Þ

The apparent weak dependence of � on a1 is absorbed by
the neglected first term on the right-hand side of equation
(56). The relation (71) is thus essentially independent of a1.
For definiteness, a1 can be taken, in the case of dipolar
symmetry, as the equatorial value A of a. For very small
values of a,

�ða; bÞ � 1

l0cK

(Z a1

0

c2 þ K�ða0Þ=�ða0Þ½ ��ða0Þda0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c2 þ K�ða0Þ=�ða0Þ½ �2

q

� ðc2 þ K�0=�0Þ�0affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � ðc2 þ K�0=�0Þ2

q
)
: ð70Þ

From equations (68) and (70) the inner limit of the outer
solution can be written

cos2  

4
¼ exp

 
� 2

l0cK

"Z a1

0

ðc2 þ K�=�Þ�da0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðc2 þ K�=�Þ2

q

� a�0ðc2 þ K�0=�0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � ðc2 þ K�0=�0Þ2

q
#!

: ð71Þ

For brevity the dependence of K on b and of the first
integrals on the integration variable a0 has been omitted.

5.3. Bennet Pinch Relation

For the solutions (67) and (71) to smoothly match, it is
necessary that the arguments of their exponential functions
of a coincide. This implies

�

�� 1
Q0�

��1
0 ðbÞ ¼ KðbÞ�0

�0
: ð72Þ

This is again equations (60)–(61). Equation (72) is a Bennet
pinch relation between the proper current and the plasma
pressure on the axis. The proper current K is related by
equation (36) to the asymptotic poloidal current and
Lorentz factor.

5.4. Polar Boundary Layer Proper Current,
Density, and Radius

For a smooth asymptotic matching of equations (67) and
(71) the factors in front of their exponential functions of a
must also coincide. Let us note

s2 ¼ �

�� 1
Q0�

��1
0 : ð73Þ

The velocity s is of order of the sound speed at the axis. It
depends on �0ðbÞ. Taking equation (72) into account, this
matching condition can be written as

�Q0l0�
2
0�

��2
0

ð�� 1Þ�2
0b

2
¼ 4 exp

 
� 2�0

cl0�0s2

�
Z a1

0

c2 þ s2 �ða0Þ�0=�ða0Þ�0½ �f g�ða0Þda0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c2 þ s2 �ða0Þ�0=�ða0Þ�0½ �f g2

q
!
: ð74Þ

Equation (74) determines �0ðbÞ (on which s2 depends by
eq. [73]). Let us define a length l, a dimensionless measure of
the axial density n0, and a reference magnetic flux a0 by

l2 ¼ �

�� 1

Q0ðl0�2
0Þ

��1

�2
0

; ð75Þ

n0ðbÞ ¼
�0ðbÞ
l0�

2
0

; ð76Þ

a0 ¼ 1
2 cl0�0l

2 : ð77Þ

Let us also introduce the notation

	 ¼
Z a1

0

c2 þ s2 �ða0Þ�0=�ða0Þ�0½ �

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c2 þ s2 �ða0Þ�0=�ða0Þ�0½ �f g2

q
��ða0Þda0

�0a0
: ð78Þ

The integral 	 depends on n0ðbÞ, since, by equation (73), s2

does. The logarithm of equation (74) provides the following
equation for n0ðbÞ:

	ðn0ðbÞÞ
n��1
0 ðbÞ

¼ ð2� �Þ ln n0ðbÞð Þ þ ln
4b2

l2

� �
: ð79Þ

Since n0ðbÞ is small and b=l large, a solution can be
obtained by iteration, giving, in the simplest degree of
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approximation,

n��1
0 ðbÞ ¼ 	ððn0ðbÞÞ

2 ln 2b=lð Þ : ð80Þ

The solutions of equations (79) or (80) are controlled by the
growth of the logarithmic term on their right-hand sides.
They can be satisfied for large values of b in two different
ways, according to whether the proper current KðbÞ
approaches a finite value or decreases to zero. If KðbÞ
approaches a finite value, equation (72) indicates that the
axial density becomes independent of distance. The loga-
rithmic term in the denominator of equation (80) must then
be compensated by a divergence of the numerator term,
	ðn0ðbÞÞ. As b increases, KðbÞ, related to n0ðbÞ by eq. (72),
should approach a limit that causes the integral 	ðn0Þ to
diverge. This implies that K should approach the flat abso-
lute minimum Ksup of the function �ðE � c2Þ=�. If this
function does not have such a minimum, a solution with a
finite limit for KðbÞ cannot be found and KðbÞ should
actually approach zero. Because the square root on the
right-hand side of equation (78) must remain definite for
any a, Ksup can only be approached from below. When
K ¼ Ksup, all the energy flux is in Poynting form.

If KðbÞ declines to zero at large distances, 	 approaches a
limit 	0 independent of b. Equation (80) then shows that
�0ðbÞ scales as ½lnðb=lÞ��1= ��1ð Þ and KðbÞ, given by equation
(72), slowly decreases as ½lnðb=lÞ��1:

KðbÞ ¼ �0c

l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c4

q Z A

0

da0
�ða0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c4

q
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c4

p
2
4

3
5 1

ln b=lð Þ :

ð81Þ

This slow decrease of KðbÞ justifies a posteriori the adopted
WKBJ procedure. The hyperbolic argument � of equation
(69) becomes, in this case (taking a1 equal to the equatorial
value of the flux,A),

�ða; bÞ ¼
Z A

a

c�ða0Þda0

l0KðbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c4

p ¼ kðaÞ ln b

l

� �
; ð82Þ

where

kðaÞ ¼

RA
a da0 �ða0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c4

q .
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c4

ph i
RA
0 da0 �ða0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c4

q .
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c4

ph i : ð83Þ

The solution (63) shows that the core radius of the jet at a
distance b from the source is

r20ðbÞ ¼
�

�� 1

Q0l0�
2
0�

��2
0 ðbÞ

�2
0

: ð84Þ

At this point the solution near the pole and in the field
region extending in the polarmost cell is completely
determined.

It is important to note the very slow decline of the proper
current and associated Poynting flux that equation (81)
implies. The ratio � of the Poynting flux to the other forms
of energy flux is given by equation (10):

� ¼ � r�ðaÞB�
l0� EðaÞ þ r�ðaÞB�=l0�½ � : ð85Þ

From equations (14) and (38) it results that

� ¼ KðbÞ�ðaÞ
�ðaÞc2 : ð86Þ

Equation (81) then explicitly indicates how � decreases in a
kinetic wind with distance b to the wind source, i.e.,

� ¼ A�0�ðaÞ

l0c�ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c4

q
"Z A

0

da0

A

�ða0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c4

q
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c4

p
#

�
"

1

ln b=lð Þ

#
: ð87Þ

The convergence of the flow to a completely kinetic energy–
dominated state is obviously very slow. Chiueh, Li, &
Begelman (1998) stress the fact that such a slow decline is a
difficulty for understanding the Crab pulsar wind, which
has a very large terminal Lorentz factor and a �-parameter
as low as 10�2 to 10�3. We come back in the next paper of
this series (Heyvaerts & Norman 2003b) to the implications
of such a slow decline and show that, even though the math-
ematical asymptotics implies a very low �, actual winds may
not have converged to this state during their finite lifetime,
so that � could remain finite when they reach, for example, a
terminating shock. We do not propose in this paper any
specific solution to the question raised by Chiueh et al.
(1998) concerning the properties of the Crab pulsar wind.
Such an explanation may have to be found, as Chiueh et al.
(1998) suggest, in nonideal effects close to the light cylinder
not considered here.

5.5. Force-free Polar Boundary Layers

In the exceptional case when the poloidal magnetic
pressure dominates over plasma pressure in the asymptotic
circumpolar region, the transfield mechanical balance equa-
tion takes the form of equation (28), neglecting the poloidal
curvature term and pressure. In cylindrical geometry, this
gives (Appl & Camenzind 1993a, 1993b)

dB2
P

dr
þ 1

r2
d

dr
r2B2

� �
�2r4

c2
B2
P

� �
¼ 0 : ð88Þ

Under negligible gas pressure, � ¼ 1. Equations (7), (10),
and (12) provide BP in terms of B�:

B2
P ¼

c2B2
�

r2�2
1� c4

ðE þ r�B�=l0�Þ
2

" #
: ð89Þ

Equation (88) can then be restated as an equation for I
defined by equation (14):

d

dr

I2

r4�2
1� c4

ðE � I�=�Þ2

" #( )

þ 1

r2
d

dr

I2c2

ðE � I�=�Þ2

" #
¼ 0 : ð90Þ

Assuming the first integrals to be constant in the polar
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boundary layer, which implies that I5�E=� (Heyvaerts &
Norman 2003a), equation (90) simplifies to

E2
0 � c4

c2�2
0

d

dr

I2

r4

� �
þ 1

r2
dI2

dr
¼ 0 ; ð91Þ

the solution of which is

I ¼ I1ðbÞ
c2�2

0r
2

c2�2
0r

2 þ ðE2
0 � c4Þ

: ð92Þ

The characteristic thickness r0 of the axial pinch is then

r20 ¼
E2
0 � c4

c2�2
0

: ð93Þ

Equation (92) establishes a relation between the total
electric current I1ðbÞ flowing through the polar boundary
layer and the limit of ðI=r2Þ as follows:

lim
r!0

I

r2

� �
¼ I1ðbÞ

c2�2
0

E2
0 � c4

: ð94Þ

For small I1ðbÞ the density and magnetic field on the axis
are given by

�0ðbÞ ¼
l0�

2
0c

2

E0�0
lim
r!0

I

r2

� �
; ð95Þ

B2
P0ðbÞ ¼

l20c
2

�2
0

E2
0 � c4

E2
0

lim
r!0

I

r2

� �� �2
: ð96Þ

When the first integrals are almost constant in the boundary
layer,K1ðbÞ is, from equation (36),

K1ðbÞ ¼ c2I1ðbÞ
E0

: ð97Þ

Using equations (95), (96), and (97), equation (94) reduces
to

B2
P0ðbÞ

l0�0ðbÞ
¼ �0K1ðbÞ

�0
: ð98Þ

For jets having a force-free polar boundary layer, this equa-
tion replaces equation (72). Compared to equation (72),
which applies to gas pressure–supported polar boundary
layers, the axial Alfvén velocity has replaced in equation
(98) the axial sound speed.

6. NULL-SURFACE BOUNDARY LAYERS

6.1. Divergence ofMass-to-Magnetic Flux Ratio
at Null Surfaces

At a null surface of flux parameter an, the mass-
to-magnetic flux ratio �ðaÞ, defined by equation (7),
diverges if there is a mass flux on this null surface. It has
been shown in Heyvaerts & Norman (2003a) that near an
the function �ðaÞ behaves as

�ðaÞ � 1

jan � aj
 ; ð99Þ

where 
 is positive and strictly less than unity. In the case,

assumed below, of a field of a dipolar type of symmetry, the
null surfaces reduce to only the equatorial plane. We now
outline the solution near the equator.

6.2. Solution in the Equatorial Boundary Layer

The structure of the flow is given by equation (58). We
assume that the first integrals Q and � are almost constant
in the boundary layer, with valuesQe and �e, but we cannot
assume this for �, because of its divergence. Taking into
account the vanishing of

D

a x

D

r at the equator, equation
(58) becomes

D

a x

D

Qe�
� þ �2

e�2R2

2l0�
2

� �
¼ 0 ; ð100Þ

R enters equation (100) as a parameter since

D

a x

D

R
vanishes. Equation (100) integrates to

Qe�
� þ �2�2

eR2

2l0�
2

¼ Qe�
�
e ðRÞ ; ð101Þ

�eðRÞ being the equatorial density at the distance R. The
distribution of magnetic flux in the equatorial sheet can be
found in terms of the parameter

X ¼ �

�eðRÞ
: ð102Þ

From equation (101), � can be expressed at a given R as a
function ofX by

1

l0�
2ðaÞ ¼

2Qe���2
e ðRÞ

�2
eR2

1

X 2
� 1

X 2��

� �
: ð103Þ

This implicitly determines aðXÞ since � is supposedly known
as a function a. The distribution of flux with latitude angle
 , at almost constant R, is inferred using equation (7).
Equations (54), (103), and (10) yield the following
differential equation for  at givenR:

Rd ¼ ��ðaÞda
RX�ec

Ee

ðE2 � E2
e Þ1=2

;

with

Ee ¼ c2 þQe�
��1
e

2� �

�� 1
X��1 þ 2

X

� �
: ð104Þ

Although not given here,  ðXÞ can be determined by quad-
ratures by using equation (103), which for known and
locally invertible �ðaÞ provides a as a function ofX.

6.3. Matching the Equatorial Boundary Layer Solution to
the Field

In the equatorial boundary layer, the solution is
expressed by equations (102), (103), and (104). This
boundary layer solution must asymptotically match the
field-region solution, expressed in differential form by
equation (55). The outer regions of the boundary layer cor-
respond to small values of X. In this limit, X can be
eliminated by using equation (103), so that equation (104)
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reduces to

d ¼ � �

j�j
�edaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l0QeR2��e
p

�
c2 þ �e=l0j�jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0QeR2��e

p
cE2 � c2 þ �e=l0j�jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0QeR2��e

p� � : ð105Þ

Matching requires that equations (55) and (105) become
identical, implying

l0KðRÞ ¼ �

j�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0QeR2��e ðRÞ

q
: ð106Þ

This expresses the balance between the gas pressure force
and the electromagnetic force across the equatorial
boundary layer. When the proper current KðRÞ approaches
a finite limit as R grows to infinity, the equatorial density
decreases as

�eðRÞ � R�2=� : ð107Þ

For kinetic winds, KðRÞ decreases as ½lnðR=lÞ��1. The
equatorial density then declines with distance as

�eðRÞ � R lnðR=lÞ½ ��2=� : ð108Þ

7. SHAPE OF THE MAGNETIC SURFACES

We have now obtained a complete solution in the asymp-
totic domain, both in field regions, near the pole, and near
null magnetic surfaces. The dependence of KðbÞ on b is
obtained from equations (72) and (79). We now possess all
the information needed to calculate the shape of magnetic
surfaces in any region of the asymptotic domain.

7.1. Magnetic Surfaces in Field Regions of Poynting Jets

The magnetic surfaces of Poynting jets near the polar axis
are cylinders. Their radius is given by equation (57) (with
eqs. [84] and [72]) if they are in the free field and by equa-
tions (63)–(64) if they are in the polar boundary layer. The
outermost magnetic surfaces in such flows are conical.
The angle  defined by equation (53) becomes independent
of b and is given by equation (56). How cylindrical and
conical regions smoothly merge one into the other is to be
discussed in a forthcoming paper (Heyvaerts & Norman
2003b). The shape of magnetic surfaces in the equatorial
boundary layer of Poynting jets is discussed in x 7.4.

7.2. Magnetic Surfaces in Field Regions of KineticWinds

The shape of poloidal field lines in kinetic winds is
described by the differential system

dr ¼ cos ða; bÞdb ;
dz ¼ sin ða; bÞdb ; ð109Þ

with  ða; bÞ given by equation (56), supplemented by equa-
tion (81) or (82). In the case where  is close to �=2, we
obtain

r

l
¼ 1

1� kðaÞ
2z

l

� �1�kðaÞ
; ð110Þ

where kðaÞ is defined by equation (83). The magnetic
surfaces are a collection of nested power-law paraboloids of
variable exponent qðaÞ ¼ 1� kðaÞ, as represented in
Figure 1. The shape of magnetic surfaces for which the

approximation  � �=2 is invalid can be treated as in
Heyvaerts &Norman (2003a), with a similar result.

7.3. Magnetic Surfaces in the Polar Boundary Layer

The solution deep inside the polar boundary layer of
kinetic winds is obtained from equations (63)–(64) in the
limit of x close to unity. The axial density �0ðbÞ is given by
equation (79) with the factor 	 now being equal to

	0 ¼
Z A

0

�ða0Þc2

�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ða0Þ � c4

p da0

a0
: ð111Þ

Equation (63) can be written as

r2

l2
¼ 1

n2��
0 ðbÞ

1

x
� 1

x2��

� �
; ð112Þ

while equation (64) provides the value of the parameter x in
terms of a by

ln
1

x

� �
� 2� �

�� 1
1� x��1

 �

¼ a

a0

c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 � c4

q > 1

n��1
0 ðbÞ

: ð113Þ

From equation (80), the dimensionless axial density is in this
case given by

1

n��1
0 ðbÞ

¼ ln 4b2=l2ð Þ
	0

: ð114Þ

When x is close to unity, it can be eliminated between
equations (112) and (113), taking b to be almost equal to z.
This gives the shape of magnetic surfaces in this region as

r

l
¼

ffiffiffiffiffi
a

a0

r
c

E2
0 � c4


 �1=4 2

	0

� �1=2ð��1Þ
ln

2z

l

� �� �1=2ð��1Þ
:

ð115Þ
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Fig. 1.—Magnetic field structure for kinetic winds in the asymptotic field
region, from eq. (110). The functions EðaÞ and �ðaÞ have been taken as
constant, which implies that qðaÞ ¼ a=A. On the pole qð0Þ ¼ 0, and at the
equator qðAÞ ¼ 1. The field lines in each quadrant correspond to
a=A ¼ 0:2, 0.4, 0.6, 0.8, and 0.9. An interpolation formula has been used
to connect the asymptotic solution to a split-monopole field at the origin.
The scale for r and z is arbitrary.
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7.4. Magnetic Surfaces in the Equatorial Boundary Layer

The information on the shape of magnetic surfaces in the
equatorial boundary layer is contained in the parametric
solution provided by equations (103)–(104), the equatorial
density �eðRÞ being related to KðRÞ by equation (106). The
latter approaches a nonvanishing constant for Poynting jets
and decreases logarithmically for kinetic winds. It can
therefore be written as

KðRÞ ¼ Jm
lnðR=lÞ½ �m ; ð116Þ

where m ¼ 0 for Poynting jets and m ¼ 1 for kinetic winds.
The factor Jm is different in the two cases. Equation (106)
then gives the associated equatorial density. For small X,
equations (103)–(104) give the results for the field region. In
this limit, � can be explicitly obtained from equation (103)
in terms ofX, and equation (105) integrates to

z

R
¼
Z A

a

�

j�j
�edaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l0QeR2��e ðRÞ
p

� c2 þ �e=l0j�jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0QeR2��e ðRÞ

p
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ½c2 þ �e=l0j�jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0QeR2��e ðRÞ

p
�2

q :

ð117Þ

For Poynting jets, KðRÞ approaches a finite constant as
does R2��e ðRÞ (from eq. [106]). Consequently, the magnetic
surfaces become conical at the outskirts of the equatorial
boundary layer. For kinetic winds, KðRÞ decreases
logarithmically and the equatorial density declines as
½R lnðR=lÞ��2=�. Equation (117) shows that in the equatorial
boundary layer z is proportional to ðA� aÞR lnðR=lÞ. The
magnetic surfaces at the outskirts of the equatorial boun-
dary layer become slightly convex paraboloids. By contrast,
deep inside the equatorial boundary layer, gas pressure
dominates, X is close to unity, and equations (103) and
(104) give

z ¼
Z A

a

�ðaÞda
R�eðRÞ

c2 þ �= �� 1ð Þ½ �Qe��e ðRÞ

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � c2 þ �= �� 1ð Þ½ �Qe�

�
e ðRÞf g2

q :

ð118Þ

In this region, zðRÞ scales, at fixed a, as z � R 2��ð Þ=�½ � for
Poynting jets and as z � R 2��ð Þ=�½ �½lnðR=lÞ�2=� for kinetic
winds. Magnetic surfaces are concave; i.e., they bend
toward the equator. This result is quite consistent with the
properties of such flows discussed by Okamoto (1999, 2000,
2001) and Beskin & Okamoto (2000). It does not contradict
our earlier results that the poloidal field lines cannot asymp-
totically bend toward the equator (Heyvaerts & Norman
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Fig. 2.—Behavior of kinetic winds near the polar axis. The panels showmagnetic field structure (central frame), the normalized density (eq. [76]) at the polar
axis vs. the distance along the polar axis (top right), the total proper current integrated about the polar axis vs. the distance along the polar axis (bottom right),
the ratio of the density to its polar value at the same z across the polar pinch (top left), and the integrated proper current across the polar axis (bottom left).
The latter two quantities are plotted for some arbitrarily chosen z0. In the central frame, a ¼ a0 	0=2ð Þ3=2 (eq. [115]). The slightly parabolic shape of the field
lines is not clearly visible on the scale of the plot. The right-panel curves are from eqs. (72), (75)–(77), and (80) with 	0 given by eq. (78) for negligibly small
values ofK1. The left-panel curves are from eqs. (62)–(64), (33), (34), (75)–(77), and (80).
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1989). Actually, any such poloidal line eventually escapes
the equatorial boundary layer region at a finite distance,
rejoining the field region where it becomes convex, bending
away from the equator. It can be shown that when poloidal
field lines exit the equatorial boundary layer, they do so at
an angle to the equatorial plane that decreases with dis-
tance. The proof is similar to the nonrelativistic case
(Heyvaerts &Norman 2003a).

8. CONCLUSIONS

Our main results are summarized as follows:

1. We have derived a global solution for the asymptotic
structure of relativistic, stationary, axisymmetric, poly-
tropic, unconfined, perfect MHD winds, assuming their five
Lagrangian first integrals to be known as a function of the
flux parameter a. Current-carrying boundary layers along
the polar axis and at null magnetic surfaces are features of
this solution, which is given in the form of matched asymp-
totic solutions separately valid inside and outside these
boundary layers.
The asymptotic structure consists of field regions where,

although the electromagnetic force decreases to zero asymp-
totically, it still dominates the force balance. In these field

regions the magnetic field structure is shown to be described
by the Hamilton-Jacobi equation (52), which we solved. We
obtained the distribution of flux as represented by equations
(56) and (57). The poloidal proper current K (eq. [40]) is
shown to remain constant in each of these field-region cells,
approaching a value independent of a. For a nonvanishing
asymptotic value of K, a substantial part of the energy
reaches the asymptotic domain in electromagnetic form.
For vanishing K, all of the wind energy is in kinetic form.
We found that K may approach zero as the inverse
logarithm of distance.
Field regions are bordered by

a) Boundary layers along the polar axis.
b) Null surface boundary layers.

These boundary layers have the structure of charged
column or sheet pinches supported by plasma pressure. For
very cold winds, the support is by magnetic poloidal pres-
sure. They carry the poloidal electric current still present in
the asymptotic domain.
2. The polar boundary layer has been shown to have the

structure of a charged column pinch for which a Bennet
relation between axial pressure and proper axial current is
given by equation (72). The distribution of flux with radius
in this region is explicitly given by equations (63)–(64).
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Fig. 4.—Magnetic field structure for Poynting jets in the field region,
from eqs. (56) and (57). From pole to equator, the contours are for
a=A ¼ 0:4, 0.6, 0.7, 0.85, 0.9, and 0.95. The functions EðaÞ and �ðaÞ are
constants, while we assume, as discussed in Heyvaerts & Norman (2003b),
that �ðaÞ ¼ ½K�=ðE � c2Þ�ð1þ f½ða=AÞ � 0:8�2=½1� ða=AÞ�1=2gÞ. The unit
of the plot for the variables r and z is the scale l defined in eq. (75). An inter-
polation formula has been used to connect the asymptotic structure of the
field to a split monopole field near the origin. Eqs. (56) and (57) become
increasingly accurate with larger r=l and z=l, the scale of the transition
between the split monopole structure near the origin and the asymptotic
one being arbitrary.



3. The equatorial region, or more generally the vicinity
of any null magnetic surface, has been shown in x 6 to have
the structure of a charged sheet pinch. The density in the
equatorial boundary layer of a Poynting jet decreases as
described by equation (107), while in the equatorial
boundary layer of a kinetic wind it decreases as described by
equation (108).
4. We have derived solutions valid in these regions and

have matched them asymptotically to the field-region solu-
tions. Matching between the polar boundary layer and the
field-regions determines the decline with distance of the den-
sity at the polar axis or, equivalently, the proper current
around the polar axis. The variation with distance of the
axial density is given by the solution of equation (79),
considering equations (74), (75), (76), (77), and (78). A
simplified form of equation (79) is equation (80).
5. The geometry of magnetic surfaces in all parts of the

asymptotic domain has been explicitly deduced in terms of
the first integrals in x 7 for both kinetic wind and Poynting
jet regimes. In particular, the magnetic surfaces in field
regions of a relativistic kinetic wind are paraboloids with a
variable exponent, given by equations (110) and (83), while
deep in the polar boundary layer, magnetic surfaces have
exponential shapes, as represented by equation (115). Deep

in the equatorial boundary layer, the shape of magnetic
surfaces is represented by equation (118). Note that any
magnetic surface embedded in this equatorial boundary
layer eventually finds its way out at some finite distance.

These results are illustrated in Figures 1–7. Figures 1–3
represent properties of kinetic winds as deduced from our
analysis. Figure 1 illustrates the geometry of magnetic sur-
faces. Figures 2 and 3 represent the structure of the polar
and equatorial boundary layers. Figures 4–7 represent
similar properties for Poynting jets.

In all cases, the polar and null surface boundary layers
that carry residual electric current may stand out observa-
tionally against the field regions, both because of their large
density contrast to them and because they possess a source
of free energy that makes them potentially active by the
development of instabilities. It is noteworthy that the den-
sity about the pole either does not decline with distance, in
the case of Poynting jets, or only very slowly (as a negative
power of the logarithm of the distance) in the case of kinetic
winds. It may be that what is observed as a jet is but the
dense and active polar boundary layer of a flow developed
on a much larger angular scale. This diffuse flow may be
itself barely visible because of its very low density and activ-

60 100 140

1

2

3
x 10

−3

 r /l

(α
°Ω

° l2 /K
°)3

/2
  n

e(r
, 0

)

60 100 140
0

0.5

1

1.5

2

 r /l

 K
∞

(r
) 

/K
°

100 150 200 250 300 350 400 450 500

−4

−2

0

4

2

 r /l

γ ∞
β ∞

(a
°/A

)(
α °/α

∞
)(

K
°/α

°Ω
° l2 )3

/2
  z

 /
l

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.2

0.6

1

γ
∞,10

β
∞
(a

°
/A)(r

°
 /l)2(K

°
 /α

°
Ω

°
 l2)2  z /l

 X
(r

°, z
)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0.2

0.6

1

γ
∞,10

β
∞
(a

°
/A)(r

°
 /l)2(K

°
 /α

°
Ω

°
 l2)2  z /l

 I
(r

°, z
) 

/I
°
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 ¼ 1

2.

1254 HEYVAERTS & NORMAN Vol. 596



ity. Null surface boundary layers, for example equatorial
ones, enjoy a more favorable status than field regions from
this point of view (Beskin & Okamoto 2000) and may be
observed in association with jets. The X-ray structure of the
Crab Nebula (Weisskopf et al. 2000) can be understood in
such a framework (Blandford 2002). In addition, our work
is relevant to the large-scale aspects of pulsar winds, jets
from active galaxies, and gamma-ray bursts (Vlahakis &
Königl 2003a, 2003b). It is interesting to note that, from our
analysis, the highest degrees of collimation are associated
with flows that carry significant Poynting flux. In our next
paper (Heyvaerts & Norman 2003b), we show that such

flows should actually occur, owing to the slow decline of the
asymptotic proper current with distance.
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