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ABSTRACT

In the Cardassian model, dark energy density arises from modifications to the Friedmann equation, which
becomesH2 ¼ gð�MÞ, where gð�MÞ is a new function of the energy density. The universe is flat, matter domi-
nated, and accelerating. The distance-redshift relation predictions of generalized Cardassian models can be
very different from generic quintessence models, and can be differentiated with data from upcoming pencil
beam surveys of Type Ia supernovae such as Supernova/Acceleration Probe (SNAP). We have found the
interesting result that, once�m is known to 10% accuracy, SNAPwill be able to determine the sign of the time
dependence of the dark energy density. Knowledge of this sign (which is related to the weak energy condition)
will provide a first discrimination between various cosmological models that fit the current observational
data (cosmological constant, quintessence, Cardassian expansion). Further, we have performedMonte Carlo
simulations to illustrate how well one can reproduce the form of the dark energy density with SNAP. To be
concrete we study a class of two-parameter (n, q) generalized Cardassian models that includes the original
Cardassian model (parameterized by n only) as a special case. Examples are given of modified polytropic
(MP) Cardassian models that fit current supernova and cosmic microwave background data, and prospects
for differentiating between MP Cardassian and other models in future data are discussed. We also note that
some Cardassian models can satisfy the weak energy condition w > �1 even with a dark energy component
that has an effective equation of state wX < �1.

Subject headings: cosmological parameters — cosmology: theory — supernovae: general

1. INTRODUCTION

Recent observations of Type Ia supernovae (Riess et al.
1998; Perlmutter et al. 1999) as well as concordance with
other observations (including the microwave background
and galaxy power spectra) indicate that the universe is accel-
erating. Many authors have explored a cosmological con-
stant, a decaying vacuum energy (Freese et al. 1987; Peebles
& Ratra 1988; Frieman et al. 1995), quintessence (Wang &
Steinhardt 1998; Caldwell, Dave, & Steinhardt 1998; Huey
et al. 1999), and gravitational leakage into extra dimensions
(Deffayet 2001) as possible explanations for such an acceler-
ation. Recently Freese & Lewis (2002) proposed Cardassian
expansion as an explanation for acceleration that invokes
no vacuum energy whatsoever.5 In this model the universe is
flat and accelerating, and yet consists only of matter and
radiation.

In Cardassian models, the Friedmann equation is
modified fromH2 ¼ 8��=ð3m2

PlÞ to

H2 ¼ gð�MÞ ; ð1Þ

where gð�MÞ is a different function of the energy density, �M
contains only matter and radiation (no vacuum), H ¼ _aa=a
is the Hubble parameter (as a function of time), and a is the

scale factor of the universe. Models with gravitational leak-
age into extra dimensions also give a modified Friedmann
equation that can be cast into the form of equation (1), but
with a vacuum component.

The function gð�MÞ returns to the usual 8��M=ð3m2
PlÞ

during the early history of the universe, but takes a different
form that drives an accelerated expansion after a redshift
z � 1. Such modifications to the Friedmann equation may
arise, e.g., as a consequence of our observable universe
living as a three-dimensional brane in a higher dimensional
universe (Chung & Freese 2000). Alternatively, such a
Friedmann equation may arise if there is dark matter
with self-interactions characterized by negative pressure
(Gondolo & Freese 2002a, 2002b).

We wish to study the detectability of the altered
Friedmann equations by upcoming observations of Type Ia
supernovae such as SNAP. As discussed in Freese (2003),
the redshift-distance relationship predictions for general-
ized Cardassian models can be quite different from general-
ized quintessence models. It is the goal of this paper to see
how well we can reproduce the correct form of this dark
energy density in upcoming experiments.

For concreteness, we investigate a particular version of
generalized Cardassian cosmology. However, our results
are intended to generalize to any Cardassian cosmology,
i.e., to any function gð�MÞ. The particular model we study is
meant to illustrate that, generically, modified Friedmann
equations can lead to specific detectable predictions in
experiments like SNAP.

In this paper we study the following generalization of the
original Cardassian model:

H2 ¼ 8�G

3
�M 1þ �Card

�M

� �qð1�nÞ
" #1=q

: ð2Þ
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We call this model the ‘‘modified polytropic Cardassian ’’
(MP Cardassian)6 (Gondolo & Freese 2002a, 2002b), where
G ¼ 1=m2

Pl is Newton’s universal gravitation constant, �Card
is a characteristic constant energy density, and where we
take n < 2=3 and q > 0. The original power-law Cardassian
model corresponds to q ¼ 1.

For comparison, we remind the reader of the original
power-law Cardassian model that was proposed in Freese &
Lewis (2002), which had the following specific form of
gð�MÞ:

H2 ¼ 8�

3m2
Pl

�M þ B�nM with n <
2

3
: ð3Þ

This is equivalent to writing

H2 ¼ 8�G

3
�M 1þ �Card

�M

� �1�n
" #

: ð4Þ

The first term inside the bracket of equations (2) and
(4) dominates initially, so that ordinary Friedmann-
Robertson-Walker (FRW) behavior takes place throughout
the early universe. At a redshift zCard � 1, the two terms
inside the bracket become equal, and thereafter the second
term dominates. Once the second term dominates, it drives
the universe to accelerate. The energy density at which the
two terms become equal is �Card ¼ �0ð1þ zCardÞ3, where �0
is the matter density today. The MP Cardassian model of
equation (2) depends on three parameters: the numbers n
and q and the density �Card. The latter can be traded for the
observed matter density�obs

m (see eq. [12] below).
The original power-law Cardassian model gave the same

distance-redshift relation as a quintessence model with con-
stant equation of state parameter wq ¼ n� 1. Generalized
Cardassian models, on the other hand, give predictions for
the distance-redshift relation that can be very different from
generic quintessence models. For example, some Cardassian
models can satisfy the weak energy condition w > �1 even
with a dark energy component that has an effective equation
of state wX ¼ pX=�X < �1. Note that an effective wX < �1
is consistent with recent cosmic microwave background
(CMB) and large-scale structure data (Schuecker et al. 2003;
Melchiorri et al. 2002). In this paper we explore these differ-
ences and their testability for theMPCardassian model.

The Cardassian model also has the attractive feature that
matter alone is sufficient to provide a flat geometry. Because
of the extra term on the right-hand side of the Friedmann
equation, the critical mass density necessary to have a flat
universe can be modified, e.g., to 0.3 of the usual value.
Hence, the matter density can have exactly this new critical
value and satisfy all the observational constraints such as
given by the cluster baryon fraction and the galaxy power
spectrum.

In a flat universe, the total energy density of the universe
can be written as

�totalðzÞ ¼ �c;old½�obs
m ð1þ zÞ3 þ �X fX ðzÞ� : ð5Þ

Here, �obs
m is the observed matter density of the universe;

we take �obs
m ¼ 0:3 as our fiducial value. The critical density

of the universe (for the ordinary Friedmann equation)
is �c;old ¼ 2� 10�29 h20 g cm�3, where h0 is the Hubble
constant today in units of 100 km s�1Mpc�1. We take

�X ¼ 1� �obs
m ð6Þ

(for a flat universe with total energy density �tot ¼ 1), and
fX ðz ¼ 0Þ ¼ 1. The subscript X refers to any component of
the universe that provides an additional term in Einstein’s
equation; generically it is called ‘‘ dark energy,’’ but in the
Cardassian case it is an additional matter term. The dark
energy density is

�X ðzÞ ¼ �X ð0ÞfX ðzÞ ¼ �c;old�X fX ðzÞ : ð7Þ

If the dark energy density corresponds to a cosmological
constant, then one finds that fX ðzÞ ¼ 1 at all redshifts z.

Note that for generalized Cardassian models, both terms
in equation (5) come frommatter;

�tot
m ¼ �obs

m þ �X ¼ 1 : ð8Þ

For the MP generalized Cardassian models of equation (2),
the dimensionless dark energy density fX ðzÞ is given by

fX ðzÞ ¼
�X ðzÞ
�X ð0Þ

¼ �obs
m ð1þ zÞ3

1��obs
m

1þ ð�obs
m Þ�q � 1

ð1þ zÞ3ð1�nÞq

" #1=q

�1

8<
:

9=
; :

ð9Þ

For fixed �obs
m , it depends on the two dimensionless

parameters n and q.
In Cardassian models, the observed matter density frac-

tion today is given by the ratio of the critical mass density of
the Cardassian universe, �c;Card ¼ �0, and that of the stan-
dard universe, �c;old � 3H2

0=ð8�GÞ. So the observed matter
fraction today in the MP Cardassian model is (Freese &
Lewis 2002)

�obs
m ¼ �0

�c;old
¼ 1

½1þ ð1þ zCardÞ3qð1�nÞ�1=q
: ð10Þ

Inversely, we can express zCard, and �Card, in terms of
�obs

m as

1þ zCard ¼ 1

�obs
m

� �q

�1

� �1=3qð1�nÞ

ð11Þ

and

�Card ¼ �c;old�
obs
m

1

�obs
m

� �q

�1

� �1=qð1�nÞ

: ð12Þ

First, we compare the MP Cardassian model of equation
(2) with existing data from supernovae and cosmic micro-
wave background. Next, we explore how plausible future
SN Ia data can be optimally used to constrain dark energy
models, and whether generalized Cardassian models can be
differentiated from generic models of quintessence and
models with a cosmological constant.

Most of this work was performed in 2002 September
when all the authors were at the Kavli Institute for Theoreti-
cal Physics in Santa Barbara. Subsequent dispersal of all
the authors to different parts of the country caused the
conclusion of the paper to take a long time.

6 The name ‘‘modified polytropic ’’ arises in the context of treating this
model as a fluid; then the relationship between energy density and pressure
is roughly polytropic (see Gondolo & Freese 2002a, 2002b).
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2. COMPARISON OF MP CARDASSIAN WITH
CURRENT DATA

In this section, we compare the modified polytropic
Cardassian model of equation (2) with current supernova
and CMB data. We show that the existing data can be well
fitted for several choices of the parameters n and q.

In a smooth Friedmann-Robertson-Walker (FRW) uni-
verse, the metric is given by ds2 ¼ dt2 � a2ðtÞ dr2= 1� kr2ð Þ½
þr2 d�2 þ sin2 �d�2

� �
�, where aðtÞ is the cosmic scale factor,

and k is the global curvature parameter. The comoving dis-
tance r is given by (Weinberg 1972)

rðzÞ ¼ cH�1
0

Sð��Þ
�

; � � �kj j1=2 ; ð13Þ

�ðz; �obs
m ;�X ;FÞ ¼

Z z

0

dz0
1

Eðz0Þ ; ð14Þ

Eðz0Þ � �obs
m ð1þ z0Þ3 þ �X fX ðz0Þ þ �kð1þ z0Þ2

h i1=2
; ð15Þ

where�k ¼ 1� �obs
m � �X , and

SðxÞ ¼
sinhðxÞ ; �k > 0 ;

x ; �k ¼ 0 ;

sinðxÞ ; �k < 0 :

8><
>: ð16Þ

The angular diameter distance is given by dAðzÞ ¼ rðzÞ=
ð1þ zÞ, and the luminosity distance is given by dLðzÞ ¼
ð1þ zÞrðzÞ.

The distance modulus for a standard candle at redshift
z is

lpðzÞ � m�M ¼ 5 log
dLðzÞ
Mpc

� �
þ 25 ; ð17Þ

where m and M are the apparent and absolute magnitudes
of the standard candle, and dLðzÞ is its luminosity distance.
Type Ia supernovae (SNe Ia) are our best candidates
for cosmological standard candles, because they can be
calibrated to have small scatters in their peak luminosity
(Phillips 1993; Riess, Press, &Kirshner 1995).

Figure 1 shows the measured distance modulus (actually
the deviation of the distant modulus with respect to the
expected values for an open universe with �obs

m ¼ 0:3 and
�� ¼ 0) for flux-averaged7 (Wang 2000b) SN Ia data (Riess

et al. 1998; Perlmutter et al. 1999) as a function of redshift.
For comparison, superposed on the data points are the pre-
dictions for several familiar cosmological models (dotted
curves), from top to bottom: (�m, ��Þ ¼ (0.3, 0.7), (0.3, 0),
and (1, 0). In addition, three examples of modified poly-
tropic Cardassian models from equation (2) are shown, all
with �obs

m ¼ 0:3. The three models have parameters n ¼ 0:2,
q ¼ 1 (solid curve); n ¼ 0:2, q ¼ 2 (short dashed curve); and
n ¼ 0:2, q ¼ 3 (long dashed curve). Note that the solid curve
is equivalent to a quintessence model with wq ¼ �0:8. Also
shown in Figure 1 is a quintessence model with
wqðzÞ ¼ �1þ 0:5z, for comparison (dot-dashed line). All
three generalized Cardassian models shown satisfy
current constraints from SNe Ia, so we conclude that MP
Cardassian models fit the existing supernova data very well.

Figure 2 shows the ðn; qÞ parameter space with con-
straints from current observational data from both super-
novae and the CMB, at a fixed value �m ¼ 0:3. The MP
Cardassian model with parameters ðn; qÞ is compared with a
fiducial �CDM (cold dark matter) model �m ¼ 0:3, �b ¼
0:05,�� ¼ 0:7, and h ¼ 0:65. The constraints are derived by
requiring that the MP Cardassian models agree with the
fiducial �CDM model to within 1 � of the measurement
uncertainties of the Wilkinson Microwave Anisotropy Probe
(WMAP) CMB data (Bennett et al. 2003) and the current
SN Ia data (Riess et al. 1998; Perlmutter et al. 1999;
flux-averaged with Dz ¼ 0:05; seeWang 2000b).

The region between the thick solid lines in Figure 2 corre-
sponds to ðn; qÞ values of the MP Cardassian models that
satisfy the current SN Ia data (flux-averaged with Dz ¼
0:05) within 1 � of the fiducial �CDM model, i.e., D�2 ¼
�2
MPC � �2

�CDM ¼ 1. Note that the fiducial �CDM model
(�m ¼ 0:3, �� ¼ 0:7, h ¼ 0:65) corresponds to n ¼ 0, q ¼ 1.

Fig. 1.—Examples of MP Cardassian models (see eq. [2]) that satisfy
current observational constraints from Type Ia supernovae (SNe Ia) data.
ThreeMP Cardassian models are shown, all with�obs

m ¼ 0:3: n ¼ 0:2, q ¼ 1
(solid curve); n ¼ 0:2, q ¼ 2 (short-dashed curve); and n ¼ 0:2, q ¼ 3 (long-
dashed curve). Note that the solid curve is equivalent to a quintessence
model with wq ¼ �0:8. The dot-dashed curve is a quintessence model with
wq ¼ �1þ 0:5z. The dotted curves show several familiar cosmological
models for comparison (from top to bottom): (�m,��Þ ¼ (0.3, 0.7), (0.3, 0),
and (1, 0).

7 Here we briefly describe flux averaging. Because of the inhomogeneous
distribution of matter in our universe, the light from perfect standard can-
dles (which all have exactly the same peak luminosity) at a given redshift z
will experience different amounts of bending (because of matter inhomoge-
neity along different lines of sight) before reaching the observer. Hence,
even perfect standard candles will be observed to have a non-Gaussian
spread in peak luminosity because of gravitational lensing (Frieman 1997;
Wambsganss et al. 1997; Holz & Wald 1998; Metcalf & Silk 1999; Wang
1999; Wang, Holz, & Munshi 2002; Munshi & Wang 2003). If this effect is
not properly taken into account, the estimated cosmological parameters
will be biased, i.e., the estimated mean of the parameters will deviate from
the true value of the parameters. Fortunately, the total number of photons
from all the standard candles at redshift z should remain unchanged in the
presence of gravitational lensing (which only redistributes the photons by
bending the light from each standard candle); therefore the average peak
luminosity of all the standard candles at z should be the same as the peak
luminosity of a standard candle at z without gravitational lensing. This is
the basic idea behind flux averaging of Type Ia supernova data. For details,
seeWang (2000b).
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Complementary plots showing constraints from the power-
law Cardassian model with fixed q ¼ 1 and varying n and
�m are given in Sen & Sen (2003; Zhu & Fujimoto 2002,
2003).

The dashed line in Figure 2 indicates the constraints from
WMAP CMB data. When the cosmological parameters are
varied, the shift in the whole CMB angular spectrum is
determined by the shift parameter (Bond, Efstathiou, &
Tegmark 1997;Melchiorri et al. 2002; Ödman at el. 2003)

R ¼
ffiffiffiffiffiffiffi
�m

p
H0rðzdecÞ ; ð18Þ

where rðzdecÞ denotes the comoving distance to the decou-
pling surface in a flat universe. The results from WMAP
data require H0rðzdecÞ ¼ 3:330þ0:193

�0:158 and hence give the
allowed range in the shift parameter. The corresponding
constraints on MP Cardassian model parameters (n; q) are
represented by the dashed line in Figure 2. All models in
Figure 2 below the dashed line lie within this allowed range
for the shift parameter. We conclude that the MP Cardas-
sian models of equation (2) are compatible with current
supernova and CMB data.

3. COMPARISON OF MODELS USING SIMULATED
FUTURE DATA

In this section, we will construct simulated SN Ia data
for three dark energy models: a MP Cardassian model, a
cosmological constant model, and a quintessence model.
We then investigate if we can recover the original theory
from the simulated data. In particular, we want to see if
Cardassian cosmology can be differentiated from generic
quintessence models or a cosmological constant by analysis
of upcoming SN Ia data. We will begin with a modified
polytropic Cardassian model of equation (2), choose

specific values of the parameters q and n, and see how many
SNe Ia we expect.

The measured distance modulus for a SN Ia (labeled
‘‘ l ’’) is

l
ðlÞ
0 ¼ lðlÞp þ �ðlÞ ; ð19Þ

where l
ðlÞ
p is the theoretical prediction (see eq. [17]), and �ðlÞ

is the uncertainty in the measurement, including observatio-
nal errors and intrinsic scatters in the SN Ia absolute magni-
tudes. In the simulated data set, we take the dispersion in
SN Ia peak luminosity to be Dmint ¼ 0:16 mag (this is the
rms variance of �ðlÞ).

Many (but not all) models of dark energy can be charac-
terized by an equation of state wX ðzÞ ¼ pX ðzÞ=�X ðzÞ, where
pX ðzÞ is the pressure. Most authors have concentrated on
constraining the equation of state wX of the dark energy
from SN data. However, it was shown byMaor, Brustein, &
Steinhardt (2001) and Barger & Marfatia (2001) that it is
extremely hard to constrain wX using SN data. Instead,
Wang & Garnavich (2001) emphasized that it is easier to
extract information on the dark energy density �X ðzÞ,
instead of wX ðzÞ, from the data. This is because there are
multiple integrals relating wX ðzÞ to the luminosity distance
dLðzÞ of SNe, which results in a ‘‘ smearing ’’ that obscures
the difference between different wX ðzÞ. It is better to use
�X ðzÞ directly, as it is related to the time derivative of the
comoving distance to SNe Ia, r0ðzÞ; hence, it is less affected
by the smearing effect. The advantage of measuring �X ðzÞ
over measuring wX ðzÞwas confirmed by Tegmark (2002). In
their work, Wang & Garnavich (2001) assumed that
�0X ðzÞ > 0, a condition equivalent to the weak energy condi-
tion for those cases in which the ordinary Friedmann equa-
tion applies. Here, on the other hand, we make no such
assumption. In fact, we show that it is possible to determine
the sign of �0X ðzÞ.

3.1. Determining the Sign of the Time Dependence of Dark
Energy Density, with Prior on�m

We simulate data for three models (see Table 1): (1) a cos-
mological constant model; (2) a MP Cardassian model with
n ¼ 0:2 and q ¼ 2, which has �0X ðzÞ � 0; and (3) a quintes-
sence model with wX ðzÞ ¼ �1þ 0:5z, which has �0X ðzÞ � 0.

Note that MP Cardassian models can have either
�0X ðzÞ � 0 or �0X ðzÞ < 0. On the other hand, popular quin-
tessence models in which the quintessence field tracks the
matter field have �0X ðzÞ � 0 (Barger & Marfatia 2001). Fig-
ure 3 shows the sign of �0X ðzÞ in the ðn; qÞ parameter space at
fixed �m ¼ 0:3 for MP Cardassian models (see eq. [2]) with
�obs

m ¼ 0:3. The arrows indicate the regions in which
�0X ðzÞ � 0 and �0X ðzÞ < 0, respectively. The region in
between indicates models with dark energy densities that
are notmonotonic functions of time.

allowed by CMB   

allowed by SNe Ia     

Fig. 2.—Parameter space of ðn; qÞ showing constraints from SNe Ia and
CMB at fixed �m ¼ 0:3. All models below the dashed line are in agreement
with the shift parameterR as measured byWMAP. All models between the
solid lines are in agreement with the SN Ia data.

TABLE 1

Dark Energy Models

Model Model Parameters �0X ðzÞ

�CDM.............................. �m= 0.3,��=0.7 �0X ðzÞ ¼ 0

MPCardassian model....... �obs
m ¼ 0:3, n= 0.2, q= 2 �0X ðzÞ < 0

Quintessence model........... �m= 0.3,wq(z) =�1 + 0.5z �0X ðzÞ � 0
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Note that the weak energy condition requires that the
total equation of state w � �1. In the context of treating
Cardassian models as a fluid (Gondolo & Freese 2002a,
2002b), this is

w ¼ pX
�m þ �X

¼ �
ð�obs

m Þ�q � 1
� 	

ð1� nÞ
ð1þ zÞ3ð1�nÞq þ ð�obs

m Þ�q � 1
; ð20Þ

which satisfies w � �1 for the parameter choices we are
interested in, �obs

m < 1, n < 1, and q > 1. Therefore, all via-
ble MP Cardassian models satisfy the weak energy condi-
tion but can have wX < �1. Note an effective wX < �1 is
consistent with recent CMB and large-scale structure data
(Schuecker et al. 2003; Melchiorri et al. 2002).

Some scalar field dark energy models with wX < �1 have
been studied previously (Caldwell 1999); models that are
stable despite violating variants of the weak energy condi-
tions have been found to be difficult to construct (Carroll,
Hoffman, & Trodden 2003). Our proposal here is a different
alternative to the models previously studied.

We now assume that the data set is given, either from the
simulated data sets described above, or in the future from
SNAP.8 We show that investigating the data set can repro-
duce the sign of the time dependence of the dark energy den-
sity, assuming one knows the matter density to an accuracy
of 10%.

Given our data set, we now proceed as though we have no
information on where it comes from; i.e., we proceed as
though we did not know which model it came from. We
parameterize the dark energy density in order to allow us to
compare it to the data set. We take �X ðzÞ to be an arbitrary

function. To approximate the function, we parametrize it
by its value at nbin equally spaced redshift values, zi, i ¼ 1,
2, . . ., nbin; znbin ¼ zmax. The value of �X ðzÞ at other
redshifts are given by linear interpolation, i.e.,

�X ðzÞ ¼
zi � z

zi � zi�1

� �
�i�1 þ

z� zi�1

zi � zi�1

� �
�i ;

zi�1 < z � zi ; z0 ¼ 0 ; znbin ¼ zmax : ð21Þ

The values of the dark energy density �i (i ¼ 1; 2; . . . ; nbinÞ
are the independent variables to be estimated from data;
note that the number of independent variables is nbin. Again,
we proceed as though we had absolutely no information on
the function �X ðzÞ, and treat it as a completely arbitrary
function.

The complete set of parameters, then, is

s � ð�obs
m ; �i ; and nbinÞ ; ð22Þ

where i ¼ 1; . . . ; nbin as described above. Hence our number
of parameters is N ¼ nbin þ 2. We will vary the number of
bins nbin between 1 and 10, and look for the optimal fit to
the data. To illustrate, an arbitrary function may become a
good approximation to the data for four bins whereas it is a
miserable fit for three bins.

We expand the adaptive iteration method developed in
Wang & Garnavich (2001) and Wang & Lovelace (2001);
unlike what is done in those papers, we do not restrict
ourselves to cases in which �0X ðzÞ > 0.

We can now determine a best fit to the set of parameters s
by using a �2 statistic, with (Riess et al. 1998)

�2ðsÞ ¼
X
l

½lðlÞp ðzl jsÞ � l
ðlÞ
0 ðzlÞ�2

�2
l

; ð23Þ

where l
ðlÞ
p ðzl jsÞ is the prediction for the distance modulus at

redshift zl , given the set of parameters s. Here �l is the dis-
persion of the measured distance modulus due to intrinsic
and observational uncertainties in SN Ia peak luminosity.

To reduce the computation time, we can integrate over
the Hubble constant H0 analytically and define a modified
�2 statistic, with

~��2 � �2� � C1

C2
C1 þ

2

5
ln 10

� �
� 2 ln h� ; ð24Þ

where h� is a fiducial value of the dimensionless Hubble
constant h,

l�p � lpðh ¼ h�Þ ¼ 42:384� 5 log h� þ 5 log H0rð1þ zÞ½ � ;
ð25Þ

and

�2� �
X
l

1

�2
l

ðl�ðlÞp � l
ðlÞ
0 Þ2 ;

C1 �
X
l

1

�2
l

ðl�ðlÞp � l
ðlÞ
0 Þ ;

C2 �
X
l

1

�2
l

: ð26Þ

It is straightforward to check that the derivative of ~��2 with
respect to h� is zero; hence, our results are independent of
the choice of h�. We take h� ¼ 0:65.

8 Note that the current SNAP design is substantially improved (Tarle
et al. 2003). Here we assume that SNAP will obtain all SNe Ia in its
survey fields up to z ¼ 1:7, similar to a supernova pencil-beam survey
(Wang 2000a;Wang &Lovelace 2001).

Fig. 3.—Parameter space of (n, q) forMP Cardassian models (see eq. [2])
with �obs

m ¼ 0:3. The arrows indicate the regions in which �0X ðzÞ � 0 and
�0X ðzÞ < 0, respectively. The region in between indicates models with dark
energy densities that are notmonotonic functions of time.
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For a given choice of nbin, we can minimize the modified
�2 statistic of equation (24) to find the best-fit �obs

m and
�X ðzÞ (parameterized by �i, i ¼ 1, 2, . . ., nbin).

For each model in Table 1, we obtain four sets of best-fit
parameters. We apply four different constraints to the
arbitrary function �X ðzÞ in order to discover which one
allows a good fit. The four constraints are (1) �X ðzÞ ¼
�X ð0Þ ¼ constant; i.e., a cosmological constant model; (2)
�0X ðzÞ � 0; (3) �0X ðzÞ < 0; and (4) completely unconstrained
�X ðzÞ. For each of these constraints, we find the best-fit
parameters.

Figure 4 shows our results: Figures 4a and 4b correspond
to the MP Cardassian and quintessence models described
in Table 1, respectively. For simulated data of model 1
of Table 1, a cosmological constant model, we find that
�obs

m is estimated correctly to 1% accuracy, regardless of
the assumption made about �0X ðzÞ. For model 2 (MP
Cardassian) and model 3 (quintessence), Figures 4a and 4b
show the best-fit �obs

m , under all of the four constraints
above, for nbin values ranging from 1 to 10. We find that
assuming the wrong sign for �0X ðzÞ leads to an estimated �m

that differs from the assumed �obs
m by more than 10%. The

different constraints on the sign of �0X ðzÞ are represented by
different point types. The solid horizontal line is our fiducial
value of �m ¼ 0:3 (i.e., we are assuming that this is the true
value of the matter density), and the dot-dashed horizontal
lines indicate 10% error bars about this fiducial value. We
are assuming that �m is known to within 10% from other
data sets.

These plots are not intended to emphasize the dependence
of �obs

m on nbin. Indeed, as discussed above, the reason that
we have found the best fit �m for a variety of nbin values is
simply that the parametrization of the arbitrary function
�X ðzÞ may be poor for one value of nbin but excellent for
another; we take a given model to be a good one if it lies
within the 10% range on�m for several values of nbin.

Figures 4a and 4b show estimated �obs
m as function of nbin

for model 2 (MP Cardassian model) and model 3 (a quintes-
sence model). In Figure 4a, only the �obs

m values estimated
assuming that �0X ðzÞ � 0 consistently (i.e., for most values
of nbin) lie within 10% of the true value of�obs

m ¼ 0:3. Hence,
we have indeed recovered the correct general time depend-
ence of the model underlying this set of simulated data. In
Figure 4b, only the �obs

m values estimated assuming that
�0X ðzÞ � 0 deviate by less than 10% from the true value of
�obs

m ¼ 0:3. Again, we have recovered the correct general
time dependence of the model underlying this set of simu-
lated data. For all three models, we have been able to
correctly ascertain the sign of �0X ðzÞwith this technique.

This indicates that the estimated �obs
m (for a variety of

values of nbin), together with a 10% accurate prior on
�obs

m , can be used to determine the general time-dependence
of the dimensionless dark energy density, i.e., the sign of
�0X ðzÞ.

3.2. Estimating Dark Energy Density from Data

In this section we create a large number of Monte Carlo
samples to see how well we can reconstruct the entire

Fig. 4a
Fig. 4b

Fig. 4.—This figure shows that we can, indeed, determine the sign of the dependence of the dark energy density �0X ðzÞ; i.e., we can determine if it is increas-
ing, decreasing, or constant in time. The axes show estimated �est

m as function of nbin from the simulated data for SNAP for (a) a MP Cardassian model with
n ¼ 0:2 and q ¼ 2 so that �0X ðzÞ < 0 and (b) a quintessence model with wX ðzÞ ¼ �1þ 0:5z so that �0X ðzÞ > 0. The horizontal dot-dashed lines correspond to a
10% uncertainty on �obs

m ¼ 0:3	 0:03. The different curves show the results obtained assuming a variety of constraints on the time dependence �0X ðzÞ as
labeled. The long-dashed curve shows �2

pdf on an arbitrary scale. By requiring the results to lie within the dot-dashed lines, we recover the sign of the time
dependence of �X ðzÞ.
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function �X ðzÞ. To create these samples, we need first to
identify the best-fit model as follows.

For a given data set, we choose the best-fit model with
nbin [the number of parameters used to parametrize the
dimensionless dark energy density �X ðzÞ] that satisfies the
following three conditions:

1. It corresponds to an estimated �m value that deviates
less than 10% from the true value.
2. As we decrease nbin from a large value, say, nbin ¼ 10,

it minimizes the �2 per degree of freedom, �2
pdf ¼ �2=

ðNdata � 	Þ, without significantly shifting the estimated
value of�m (Wang &Lovelace 2001). HereNdata is the num-
ber of SNe Ia, and 	 is the number of parameters estimated
from data. Long dashed lines in Figure 4 show �2

pdf as
function of nbin on an arbitrary scale.9

3. If �0X ðzÞ 6¼ 0, then nbin > 1.

Now we apply the above conditions to Figures 4a and 4b.
In Figure 4a, as we decrease nbin from nbin ¼ 10, the signifi-
cant shifting in the estimated �m occurs at nbin ¼ 6, which
also has the smallest �2

pdf for 6 � nbin � 10. We find that for
the MP Cardassian model, SNAP data yield an optimal
nbin ¼ 6. In Figure 4b, as we decrease nbin from nbin ¼ 10,
the significant shifting in the estimated �m occurs at
nbin ¼ 3, which also has the smallest �2

pdf for 3 � nbin � 10.
Hence, for the quintessence model, SNAP data yield an
optimal nbin ¼ 3.

To derive the error distribution of estimated parameters
�obs

m and �i (i ¼ 1, 2, . . ., nbin; see eq. [21]), we create 104

Monte Carlo samples by adding dispersion in peak luminos-
ity of Dmint ¼ 0:16 mag to the distance modulus lpðzÞ (see
eq. [17]) predicted by the best-fit model (i.e., assuming that
the best-fit model is the true model). This is equivalent to
making 104 new ‘‘ observations,’’ each similar to the original
data set (Press et al. 1992). The same analysis used to obtain
the best-fit model from the data is performed on eachMonte
Carlo sample. We use the distribution of the resulting esti-
mates of the parameters (�obs

m and �i) to derive the mean
and 68.3% and 99.73% confidence level intervals of the esti-
mated parameters. Wang & Lovelace (2001) showed that
such a Monte Carlo analysis gives less biased estimates of
parameters than a maximum-likelihood analysis; i.e., the
Monte Carlo mean of estimated parameters deviate less
from the true values of the parameters.

Figure 5 shows the estimated dimensionless dark energy
density �X ðzÞ for a generalized Cardassian model with
n ¼ 0:2 and q ¼ 2 from simulated SN data from SNAP
assuming that we know �m to 10% accuracy. The solid line
indicates the underlying true model for �X ðzÞ. The horizon-
tal dashed line near the top of the figure indicates
�X ðzÞ ¼ �X ð0Þ ¼ constant, a cosmological constant model.
The horizontal dotted line near the bottom of the figure
indicates �X ðzÞ ¼ 0. We impose �X ðzÞ � 0. The estimated
�m values (obtained by reconstructing the model from the
Monte Carlo samples) are listed at the bottom of the plot
with 68.3% confidence level intervals. Where the actual
value of �m for the fake data set was �m ¼ 0:3, we see that
the reproduced �m from our Monte Carlo study is
�m ¼ 0:298þ0:024

�0:023. Indeed, this reproduced value lies within
10% of the correct�m.

The error bars of the reproduced estimates of �X ðzÞ have
been computed using 104 Monte Carlo random samples

derived from the simulated data. The solid error bars and
the dotted error bars indicate the 68.3% and 99.73% confi-
dence level intervals, respectively. Hence, from Figure 5, we
see that a MP Cardassian model with a set of parameters
that fit the current observational data, �obs

m ¼ 0:3, n ¼ 0:2,
q ¼ 2, can be differentiated from a cosmological constant
model at 99.73% confidence level. We have shown the accu-
racy with which one can reconstruct the form of the dark
energy density. We see that SNAP can indeed differentiate
between different models.

4. DISCUSSION AND CONCLUSION

We have compared a particular form of Cardassian
model, the modified polytropic Cardassian model of equa-
tion (2), with existing data from supernova and cosmic
microwave background measurements. We have found
that current data constrain the parameter space of the MP
Cardassian model.

We have shown that future Type Ia supernova (SN Ia)
data from SNAP can differentiate various dark energy mod-
els (cosmological constant, quintessence, and generalized
Cardassian expansion), assuming that �m is known to 10%
accuracy. We have found the interesting result that the sign
of the time dependence of the dark energy density can be
determined by SNAP.

Further, we have performed Monte Carlo samples to
illustrate how well one can reproduce the form of the dark

Fig. 5.—Estimated dimensionless dark energy density �X ðzÞ for simu-
lated SN data from SNAP, assuming that we know �m to �10% accuracy
(and the correct general time dependence of the dark energy density; see dis-
cussion in x 3). The error bars of the estimated �X ðzÞ have been computed
from 104 Monte Carlo random samples derived from the simulated data.
The solid error bars and the dotted error bars indicate the 68.3% and
99.73% confidence level intervals, respectively. The reproduced estimates of
�m values are listed at the bottom of the plot with 68.3% confidence level
intervals.

9 The scale is adjusted for the curve to fit in the figure.
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energy density with SNAP. For example, a MP Cardassian
model with a set of parameters that fit the current observa-
tional data, �obs

m ¼ 0:3, n ¼ 0:2, q ¼ 2, can be differentiated
from a cosmological constant model at 99.73% confidence
level.

We wish to remark on another test of generalized Cardas-
sian models. There are two independent motivations for
these models: (1) they may arise as a consequence of imbe-
dding our observable universe as a 3-brane in higher dimen-
sions (see, e.g., Chung & Freese 2000), and (2) these models
may be described in terms of a fluid interpretation, in which
the dark energy density may be due to self-interaction of
dark matter particles (Gondolo & Freese 2002a, 2002b). In
this second interpretation, we have developed a fully relativ-
istic treatment of the resultant modified Euler’s equations,
Poisson equations, and energy conservation. Then we ana-
lyzed (Gondolo & Freese 2002a, 2002b) the linear growth of
density fluctuations in the fluid interpretation. A more com-
plete study of perturbation growth is in progress. Of partic-
ular interest is the study of the integrated Sachs-Wolfe effect

in the CMB. It is possible that the deficit of power on large
angular scales (low-order multipoles) may be explained in
generalized Cardassian models.
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