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ABSTRACT

We have studied forced turbulence of compressible magnetohydrodynamic (MHD) flows through two-
dimensional simulations with different numerical resolutions. First, hydrodynamic turbulence with Mach
number hMsiinit � hvirms=cs ¼ 1 and density compression h��=�irms ’ 0:45 was generated by enforcing a
random force. Then, initial, uniform magnetic fields of various strengths were added with Alfvénic Mach
number hMAiinit � hvirms=cA;init41. An isothermal equation of state was employed, and no explicit
dissipation was included. In our simulations, the maximum amplification factor of magnetic energy depends
on resolution and is proportional to n1:32x , where nx is the number of grid cells spanned by the computational
box size. After the MHD turbulence is saturated, the resulting flows are categorized as very weak field
(VWF), weak field (WF), and strong field (SF) classes, which have hMAi � hvirms=hcAirms41, hMAi > 1, and
hMAi � 1, respectively. The flow character in the VWF cases is similar to that of hydrodynamic turbulence.
In the WF cases, the magnetic energy is still smaller than the kinetic energy in the global sense, but the
magnetic field can become locally important. Hence, not only in the SF regime but also in the WF regime,
turbulent transport is suppressed by the magnetic field. In the SF cases, the energy power spectra in the
inertial range, although no longer power-law, exhibit a range with slopes close to �1.5, hinting at the
Iroshnikov-Kraichnan spectrum. These characteristics of the VWF, WF, and SF classes are consistent with
their incompressible turbulence counterparts, indicating that a modest compressibility of h��=�irmsd0:45 or
so does not play a significant role in turbulence. Our simulations were able to produce the SF-class behaviors
only with a high resolution of at least 10242 grid cells. With lower resolutions, we observed the formation of a
dominant flux tube, which accompanies the separation of the magnetic field from the background flow. The
specific requirements for the simulation of the SF class should depend on the code (and the numerical
scheme) as well as the initial setup, but our results do indicate that very high resolution would be required for
converged results in simulation studies ofMHD turbulence.

Subject headings: methods: numerical — MHD — turbulence

1. INTRODUCTION

The existence of cosmic magnetic fields in diffuse astro-
physical plasmas (the interstellar media in galaxies, the
intracluster media in clusters of galaxies, and even the media
associated with filaments and superclusters of galaxies) has
been recognized for a while (for reviews, see, e.g., Kronberg
1994; Beck et al. 1996; Zweibel & Heiles 1997; Carilli &
Taylor 2002; also see Ryu, Kang, & Biermann 1998; Clarke,
Kronberg, & Böhringer 2001). Although the origin of such
fields is not yet fully understood, turbulence is known to
play an important role in the amplification and diffusion of
existing magnetic fields. For instance, magnetic fields grow
effectively by the turbulent motion of conducting fluids (the
�-effect), but they are not further amplified when Maxwell
stresses become strong enough to affect the turbulent
motion itself. How strong the magnetic fields would need to
be in order to influence turbulence is one of the intriguing
topics in magnetohydrodynamic (MHD) turbulence. It has

been argued through two-dimensional incompressible
simulations that turbulent transport is reduced by weak
magnetic fields whose energy is small compared to the
kinetic energy of turbulent flows (Cattaneo & Vainshtein
1991; Cattaneo 1994). A similar suppression was also
observed in three-dimensional simulations of incompres-
sible flows (Tao, Cattaneo, & Vainshtein 1993). It is an
important issue in astrophysics, since it is a part of the
process for the generation and evolution of cosmic magnetic
fields (see, e.g., Ruzmaikin, Shukurov, & Sokolov 1988;
Kulsrud et al. 1997; Kulsrud 1999).

In this work, we study compressible MHD turbulence by
solving the ideal MHD equations with an isothermal equa-
tion of state. Since turbulent motion produces structures
spanning a wide range of scales, with accompanying energy
transfer among different scales, high spatial resolution is
required to cover a sufficient inertial range. Hence, in this
paper we present high-resolution two-dimensional simula-
tions using up to 15362 grid cells, leaving three-dimensional
simulations for follow-up work. In addition, in order to
achieve the highest possible magnetic Reynolds number and
Reynolds number, no dissipation was included explicitly in
our simulations. However, the resistivity and viscosity of
numerical origin are still effective as small-scale dissipative
channels. From the simulations, we examine the basic prop-
erties of the resultingMHD turbulence. We also address the
dependence of the properties on resolution, including the
amplification of the magnetic field.
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The rest of the paper is organized as follows: In x 2 we
describe the problem setup as well as the code properties. In
xx 3 and 4 we present the results of simulations of hydro-
dynamic and MHD turbulence. Finally, in x 5 the findings
of this study are summarized.

2. NUMERICS

In simulations of compressible MHD turbulence, gas is
heated by shocks and reconnection events, as well as numer-
ical dissipation that mimics viscous and resistive influences
(see below). Hence, in order to maintain the turbulence stat-
istically in a steady state, cooling should be applied to the
internal energy. One simple way to handle it is to assume
the isothermality of flows. The MHD equations of
compressible, isothermal gas are
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with an additional constraint,

D

xB ¼ 0 ; ð4Þ

for the absence of magnetic monopoles. Here, cs is the iso-
thermal sound speed, and the units are chosen so that the
factor of 4� does not appear in the equations. To enforce
turbulence, a random force per mass, f ¼ fxx̂xþ fyŷy, is
added. It has the following form:

fx;y x; y; tð Þ ¼ vamp cos !tþ �tð Þ cos kin;xxþ �x
� �

� cos kin;yyþ �y
� �

; ð5Þ

where �t, �x, and �y are random phases in the range of
0 � �t; �x; �y � �.

The above equations were solved using the multi-
dimensional MHD code described in Kim et al. (1999),
which is specifically designed for isothermal MHD. It is
based on the explicit, finite-difference total variation dimin-
ishing scheme, which is a second-order accurate upwind
scheme, and employs the minmod flux limiter. Simulations
were performed in the computational domain of x ¼ ½0; L�,
y ¼ ½0; L�, and L ¼ 1 with a periodic boundary condition
using n2x ¼ 2562, 5122, 10242, and 15362 grid cells. The total
mass in the computational box is conserved, and the aver-
aged density is set to be h�i ¼ �0 ¼ 1. The values of other
parameters in the simulations are the following: the iso-
thermal sound speed cs ¼ 1, the angular frequency of the
random forcing ! ¼ 2�, and the input wavenumbers
kin;x;y ¼ 8�. With this choice, we note that the input scale of
the random forcing is one-fourth of the computational box
size, and the period is one sound-wave crossing time across
the box. The amplitude of the random forcing, vamp, was
set so that without a magnetic field, hydrodynamic turbu-
lence is saturated with the averaged Mach number
hMsiinit � hvirms=cs ¼ 1 (see x 3). MHD turbulence was gen-
erated by introducing uniform magnetic fields of various
strength into the saturated hydrodynamic turbulence (see
x 4).

Although our simulations do not contain explicit
resistivity or viscosity, unavoidable numerical diffusion of
the magnetic field and the momentum across the cell pro-
duce effective numerical resistivity and viscosity, respec-
tively. Kim et al. (1999) studied the character of numerical
dissipation in the code used for this work through the decay
of a two-dimensional Alfvén wave. They showed that for
waves spanning different numbers of grid cells n, the effec-
tive magnetic Reynolds number and the Reynolds number
are proportional to n1:66, mimicking the ‘‘ hypertype ’’ resis-
tivity and viscosity (�r4B and lr4v) rather than the
‘‘ normal-type ’’ resistivity and viscosity (�r2B and lr2v)
that characterize the physical dissipation of ‘‘ collisional ’’
fluids. They also estimated that the effective Reynolds num-
bers are larger than several hundreds if n � 8, so that the
inertial range covers scales spanning eight grid cells or more.
We note that numerical dissipation estimates depend some-
what on the tests used. For instance, the test suggested by
Zweibel, Heitsch, & Fan (2002) would have given somewhat
smaller numerical dissipation. Hence, our estimation of the
inertial range based on the Alfvén wave decay can be
regarded to be rather conservative.

In most numerical studies of astrophysical turbulence
based on explicit dissipation, the normal-type resistivity and
viscosity have been included explicitly. However, dissipa-
tion processes in diffuse astrophysical plasmas are not well
understood, and it is unlikely that the dissipation can be
modeled by way of simple resistivity and viscosity coeffi-
cients. Hence, more careful consideration would be required
in the studies of the properties of astrophysical turbulence
when details on dissipative scales become important. In this
paper we are concerned mostly with the properties of
turbulence in the inertial range, which would be less
sensitive to the form of dissipation, so we ignore dissipative
complications outside this range.

3. HYDRODYNAMIC TURBULENCE

Simulations of hydrodynamic turbulence were first per-
formed for two reasons. One was to generate the initial
states for MHD simulations. The other was to observe the
change of turbulence properties from the hydrodynamic
case under the influence of magnetic fields. In the absence of
magnetic fields, a transonic turbulence with hMsiinit ’ 1
developed (see Table 1).

Figure 1 shows a typical resulting density distribution at
the epoch t ¼ 15 and the time-averaged power spectrum of
kinetic energy in the simulation with 15362 grid cells. The
existence of weak shocks is evident in the density image.
Here, ‘‘ weak ’’ means the shock Mach number is small;
typically Mshock � 2. The density compression is
h��=�irms ’ 0:45 when averaged over space and time in all
the simulations of all resolutions (see Table 2). In a two-
dimensional system, the forced turbulence of ‘‘ incompress-
ible ’’ flows exhibits the dual energy spectrum known as the
Kraichnan spectrum: in the range of k < kin, the slope fol-
lows k�5/3, indicating the direct cascade of energy, while in
the range of k > kin, it follows k�3, indicating the direct cas-
cade of enstrophy (see, e.g., Lesieur 1997 and references
therein). In the case of ‘‘ high compressibility,’’ in which
strong shocks are common, the energy spectrum follows the
k�2 slope in the inertial range, known as the Burgers spec-
trum (see, e.g., Lesieur 1997 and references therein). In our
results with weak compressibility, the energy spectrum is
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consistent with the Kraichnan spectrum, as shown in the
right panel of Figure 1, but the slope for k > kin is �2.72,
somewhat shallower than for incompressible turbulence. As
listed in Table 3, the deviation of the slope from k�3

increases systematically as the resolution increases. This is
because in higher resolution simulations, shocks are better
resolved, and hence, their effect is more evident in the energy
power spectrum.

4. MHD TURBULENCE

Weak, uniform magnetic fields of various strength were
added to the fully developed hydrodynamic turbulence. In
the n2x ¼ 2562, 5122, and 10242 simulations, the flows of
hydrodynamic turbulence at t ¼ 30 were taken as the initial
states, while in the 15363 simulations, the flow at t ¼ 15
(Fig. 1, right) was taken. The strength of the addedmagnetic
fields was set so that the initial Alfvénic Mach number,
hMAiinit � hvirms=cA;init, ranged from 1000 to 10 (corre-
sponding to a plasma � of 2� 106 to 200). The Alfvénic
Mach number represents the ratio of Reynolds stresses to

Maxwell stresses and so is a convenient way to characterize
magnetic field strength in these flows.

The magnetic field strength grew rapidly, almost exponen-
tially, during the initial transient period and then saturated.
Figure 2 shows the time evolution of the rms magnetic field
strength and flow velocity. The resulting flows of MHD tur-
bulence after saturation can be naturally categorized into
very weak field (VWF), weak field (WF), and strong field
(SF) classes (Table 4). In the VWF cases, magnetic field influ-
ences are negligible, and the flow velocity does not change
noticeably from purely hydrodynamic turbulence. In the WF
cases, the magnetic field energy Emag is still small compared
to the flow kinetic energy Ekin, but the magnetic field does
locally affect small-scale flow motions. Hence, the turbulence
flow velocity is decreased from that of nonmagnetic cases.
Finally, the cases in which Emag becomes comparable to Ekin

are classified as the SF class. We note that the change in the
flow properties is gradual with the increase of the strength
of the initial, uniform fields. Hence, boundaries between
the classes are somewhat arbitrary. We set the criterion for
the boundary between the VWF and WF classes as

TABLE 1

Alfvén Mach Number hMAi andMach Number hMsi for SF, WF, and VWF Cases

hMAiinit

50 100 200 300 1000 1a

Grid Cell Number hMAi hMsi hMAi hMsi hMAi hMsi hMAi hMsi hMAi hMsi hMAi hMsi

5122..................................... 2.38y 0.83y 4.93 0.95 9.70 0.99 14.90 1.00 49.66 1.00 1 1.00

10242................................... 1.60 0.70 3.02y 0.86y 6.00 0.95 9.05 0.98 31.38 1.00 1 1.00

15362................................... 1.41 0.66 2.28y 0.81y 4.04y 0.85y 6.57 0.97 . . . . . . 1 1.00

Notes.—Averaged spatially over the whole computational domain and temporally over 20 � t � tend for 5122 and 10242 simulations and over
10 � t � tend for 15362 simulations. The values for the WF cases are marked with a dagger for clarity. The simulations with 2562 grid cells were
performed but are not listed.

a Hydrodynamic turbulence.

Fig. 1.—Left: Gray-scale image of density for the nonmagnetic case with 15362 resolution. Brighter regions correspond to higher values, and the gray scale
was set arbitrarily to highlight structures. The image represents the density distribution typical at the epoch (t ¼ 15) after hydrodynamic turbulence is fully
developed. Right: Power spectrum of the kinetic energy, time-averaged over 10 � t � tend, for the nonmagnetic case with 15362 resolution. Here,
k � ðk2x þ k2yÞ1=2. The peak at k ¼ 5:7 2�ð Þ corresponds to the wavenumber of the power input scale, kin � ðk2in;x þ k2in;yÞ

1=2. For reference, two vertical lines are
drawn at k ¼ 2kin and the wavenumber corresponding to eight grid cells, k8. Two lines with slopes of�5=3 and�3 are drawn for comparison.
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hMsi � hvirms=csd1; more specifically, hMsi ¼ 0:9 was
taken. On the other hand, the criterion for the boundary
between the WF and SF classes was set as
hMAi � hvirms=hcAirmse1; more specifically, hMAi ¼ 2 was
taken. Among the SF cases, we observed examples in which a
change in the magnetic field configuration takes place. In
particular, there are cases in which a dominant flux tube
develops. These cases we categorized specifically as the field
separation (FS) class. The growth of magnetic field strength
and the characteristics of the four classes are further detailed
in the following subsections.

For quantitative discussions, we computed, in addition to
hMAi and hMsi (Table 1), the density compression h��=�irms
and the intermittency (or the kurtosis of the field distribu-
tion) I � hB4irms=hB2i2rms (Table 2), as well as the slopes of
the power spectra of the kinetic and total energies (Table 3).
Note that with a Gaussian distribution of the magnetic field,
B / expð�x2=2�2Þŷy, the value of I is 2.39 when summed
over the interval �3 � � x � 3 �, or 3.99 when
�5 � � x � 5 � is taken into account.

4.1. Growth of theMagnetic Field Strength

There is no dynamo action in two dimensions, and the
total magnetic flux through given boundaries is conserved.
Hence, the growth of the magnetic field strength shown in
Figure 2 is due to stretching and compression. The growth
stops either when the magnetic energy reaches an equiparti-
tion with the kinetic energy, so that the back-reaction from
magnetic field Maxwell stresses plays a dominant role, or
when the separation between magnetic sheets is reduced to
the diffusive scale, so that reconnection takes place (see, e.g.,

Biskamp 1993 for details). If the initial, uniform magnetic
field is weak enough, the growth is saturated by the latter
cause before the magnetic energy reaches equipartition, as
in the VWF and WF cases. Then, the resulting growth
should depend on the diffusive scale and, hence, on the effec-
tive resistivity. Then, the amplification of magnetic energy
from the initial value is expected to be dðkin�Þ�2 � Rem
(see, e.g., Biskamp 1993). Here, � is the diffusive scale, and
Rem is the magnetic Reynolds number.

Figure 3 shows the averaged amplification of magnetic
energy in our simulations as a function of grid resolution.
Only the VWF and WF cases were considered, because in
the SF cases, the growth of the magnetic field stopped as a
consequence of Maxwell stresses, rather than reconnection.
The amplification shown in the figure is proportional to
n1:32x . Furthermore, with Rem / n1:66 for our code (see x 2),
the amplification is estimated to be approximately propor-
tional to Re0:8m , which is somewhat shallower than the
expected dependence (/Rem). However, this result agrees
well with results of two-dimensional numerical simulations
for incompressibleMHD turbulence (Biskamp 1993).

4.2. VWFCases

The VWF class includes those cases in which the back-
reaction of the magnetic field into flow motions is
insignificant. The criterion hMsie0:9 corresponds to an
rms velocity decrease by less than 10%. The characteristics
of turbulence in these cases are summarized as follows: (1)
The density compression is still large, with h��=�irmse0:38
(Table 2), and shocks still exist, as shown clearly in the
bottom left panel of Figure 4. (2) The intermittency is large,

TABLE 2

Density Compression h��=�irms and Intermittency I for SF, WF, and VWF Cases

hMAiinit

50 100 200 300 1000 1a

Grid Cell Number h��/�irms I h��/�irms I h��/�irms I h��/�irms I h��/�irms I h��/�irms I

5122.............................. 0.32y 2.68y 0.39 3.86 0.42 4.80 0.42 5.28 0.45 5.93 0.45 . . .

10242............................ 0.25 2.06 0.34y 3.03y 0.40 4.28 0.42 5.05 0.44 5.88 0.45 . . .

15362............................ 0.24 1.95 0.30y 2.48y 0.37y 3.48y 0.41 4.58 . . . . . . 0.45 . . .

Notes.—Averaged spatially over the whole computational domain and temporally over 20 � t � tend for 5122 and 10242 simulations and over
10 � t � tend for 15362 simulations. The values for theWF cases are marked with a dagger for clarity. The simulations with 2562 grid cells were performed but
are not listed.

a Hydrodynamic turbulence.

TABLE 3

Spectral Slope of Kinetic Energy and Total Energy for SF, WF, and VWF Cases

hMAiinit

50 100 200 300 1000 1a

Grid Cell Number

Kinetic

Energy

Total

Energy

Kinetic

Energy

Total

Energy

Kinetic

Energy

Total

Energy

Kinetic

Energy

Total

Energy

Kinetic

Energy

Total

Energy

Kinetic

Energy

Total

Energy

5122.............................. 2.22y 1.27y 2.77 2.21 2.95 2.78 2.67 2.61 2.77 2.76 2.90 2.90

10242............................ 1.46 1.27 2.07y 1.20y 2.74 2.09 2.84 2.51 2.75 2.71 2.85 2.85

15362............................ 1.45 1.48 1.68y 1.18y 2.33y 1.50y 2.68 2.05 . . . . . . 2.72 2.72

Notes.—Averaged temporally over 20 � t � tend for 5122 and 10242 simulations and over 10 � t � tend for 15362 simulations. Slopes were fitted over the
range of 2kin � k � k24. Here, kin and k24 are the wavenumbers corresponding to the power input scale and 24 grid cells, respectively. The values for theWF
cases are marked with a dagger for clarity. The simulations with 2562 grid cells were performed but are not listed.

a Hydrodynamic turbulence.
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with Ie3:5 (Table 2), which indicates that the spatial con-
trast in the magnetic field strength distribution is high. In
particular, the bottom right panel of Figure 4 shows that the
magnetic field is mostly thin tubes (or thin sheets in exten-
sion to the third dimension). (3) The Alfvén Mach number
is hMAid4:5 (Table 1), and hence the kinetic energy is at

least an order of magnitude larger than the magnetic energy.
In addition, the power of the kinetic energy, Pkin

k , is larger
than that of the magnetic energy, P

mag
k , over most wave-

numbers, as shown in the bottom panels of Figure 5. How-
ever, Pmag

k ePkin
k in a small range of large wavenumbers.

This is because the magnetic field first built up on small
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Fig. 2.—Time evolution of rms velocity (left) and magnetic field strength (right), which were averaged over 1 period of random forcing (� ¼ 1), for different
initial AlfvénicMach numbers.Top: Cases with 10242 resolution.Bottom: Cases with 15362 resolution.

TABLE 4

Classification of Turbulence/Time at the End of Simulations, tend

hMAiinit

10 20 50 100 200 300 1000 1

Grid Cell

Number Class

End

Time Class

End

Time Class

End

Time Class

End

Time Class

End

Time Class

End

Time Class

End

Time Class

End

Time

5122................ FS 80 FS 100 WFy 40y VWF 40 VWF 40 VWF 40 VWF 40 HD 40

10242.............. FS 110 FS 140 SF 40 WFy 40y VWF 40 VWF 40 VWF 40 HD 40

15362.............. . . . . . . . . . . . . SF 20 WFy 20y WFy 15y VWF 20 . . . . . . HD 20

Notes.—The turbulence classifications are field separation, strong field, weak field, very weak field, and hydrodynamic. See the text for details. The
values for theWF cases are marked with a dagger for clarity. The simulations with 2562 grid cells were performed but are not listed.
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scales. However, it saturated because of reconnection before
the power could extend to larger scales. (4) The slope of Pkin

k
was not affected much by the magnetic field. The change
was less than a few percent, as shown in Table 3. However,
the slope of the power of the total energy, Ptot

k , changed sig-
nificantly compared to the hydrodynamic case, especially in
the MHD cases close to the boundary between the VWF
andWF classes. This is because the small-scale power of the
magnetic energy pushed Ptot

k up, and hence Ptot
k does not

have a single, well-defined slope any more.

4.3. WFCases

The WF class was categorized by the property that glob-
ally the magnetic energy is smaller than the kinetic energy,
but yet the back-reaction of the magnetic field is not negli-
gible. As the criteria to represent this property, hMsid0:9
and hMAie2 were adopted (Table 1). The characteristics of
turbulence in these cases are the following: (1) As shown in
the middle left panel of Figure 4, the occurrence of shocks is
reduced and their strength is weakened compared to the
hydrodynamic case. The density compression is 0:28d
h��=�irmsd0:38 (Table 2), which is smaller than in the VWF
cases. (2) The contours of magnetic field lines plotted in the
middle right panel of Figure 4 show the appearance of
almost circular magnetic islands. At the same time, the mag-
netic field is less concentrated than in the VWF cases, with
smaller intermittency 2:2dId3:5 (Table 2). (3) Although in
the small-wavenumber region the magnetic energy power is
still smaller than the kinetic energy power, Pmag

k 5Pkin
k , at

large wavenumbers, Pmag
k ePkin

k , as shown in the middle
panels of Figure 5. Hence, turbulent transport can be sup-
pressed by magnetic fields on small scales where Pmag

k ePkin
k .

Consequently, the flow velocity decreases noticeably from
that of hydrodynamic turbulence (see Fig. 2). (4) The power
of the magnetic energy, P

mag
k , changed the shape of Ptot

k as
well as of Pkin

k in power spectra, and the slopes are not

simply defined over the entire inertial range of wavenumbers
any more (see Fig. 5). We calculated the slopes of Pkin

k and
Ptot
k over 2kin � k � k24, where the slopes are relatively well

defined, and listed them in Table 3. Here, k24 is the wave-
number corresponding to 24 grid cells. The slope of Pkin

k is
significantly smaller than those of the hydrodynamic and
VWF cases. The slope of Ptot

k is quite small, but this is
because P

mag
k peaks in the wavenumber range over which

the slope was calculated (see Fig. 5).

4.4. SF Cases

In the SF cases, the magnetic energy grows to become
comparable to the kinetic energy, with hMAid2 at satura-
tion (Table 1). Hence, the flow velocity is influenced signifi-
cantly by the magnetic field (Fig. 2), with hMsid0:75 at
saturation (Table 1). The characteristics of SF turbulence
are the following: (1) With the significantly reduced Mach
number, shocks are rare, as shown in the top left panel of
Figure 4. The density compression is accordingly reduced to
h��=�irmsd0:28 (Table 2). (2) As shown in the top right
panel of Figure 4, circular magnetic flux islands, or loops,
are common. This trend of changing topology in magnetic
field lines, from tubes to loops, with an increase of magnetic
field strength was observed also in the two-dimensional sim-
ulations of incompressible MHD turbulence (see, e.g.,
Biskamp 1993). At the same time, the spatial contrast of the
magnetic field strength distribution becomes low with
smaller intermittency Id2:2 (Table 2). (3) The power of the
magnetic energy exceeds that of the kinetic energy with
Pmag
k ePkin

k over all kekin, as shown in the top panels of
Figure 5, although still P

mag
k < Pkin

k for kdkin. (4) The
slopes of Pkin

k and Ptot
k , calculated over 2kin � k � k24 as in

the WF cases, are listed in Table 3. Across the above wave-
number range, Pkin

k , Ptot
k , and P

mag
k all exhibit a single slope

close to �1.5, namely, the slope of the Iroshnikov-
Kraichnan spectrum (Fig. 5, top).

We note that the emergence of the slope of �1.5 is
achieved only in the very high resolution simulations with
10242 and 15362 grid cells, not in the simulations with 2562

and 5122 grid cells. In fact, there is no case categorized as
the SF class in the simulations with 2562 and 5122 grid cells
at all (see Table 4). That is, our two-dimensional simula-
tions of MHD turbulence start to show converged
behaviors with 10242 grid cells or more.

4.5. FS Cases

The cases with hMAiinitd30 show FS-class behavior,
wherein a dominant flux tube forms and, as a consequence,
the magnetic field separates from the background flow (see
Fig. 6). In such FS cases, flows become anisotropic, and
their characteristics are different from the other cases. The
appearance of this behavior can be understood as follows:
Recall that there are three ideal two-dimensional MHD
invariants: the total energy Etot, the mean square of the
magnetic potentialA, and the cross-helicity

K ¼ 1
2

Z
v xB d2x : ð6Þ

Among them, the power spectrum of A exhibits an inverse
cascade, while the power spectra of Etot and K exhibit a nor-
mal cascade (see, e.g., Biskamp 1993). Hence, just as in three
dimensions, large-scale magnetic field power can be built up
in the regime k � kin in two-dimensional MHD turbulence.

100 1000
10

100

1000

100 1000
10

100

1000

Fig. 3.—Averaged amplification of the magnetic energy from the initial
value in the VWF andWF cases as a function of numerical resolution. Four
points of 2562, 5122, 10242, and 15362 grid cells are plotted. The fitted line
/n1:32x is drawn.
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Fig. 4.—Gray-scale images of density (left) and contours of magnetic field lines (right) at the epoch t ¼ 13 for cases with 15362 resolution. Top: Case of
hMAiinit ¼ 50, classified as the SF class.Middle: Case of hMAiinit ¼ 100, classified as theWF class. Bottom: Case of hMAiinit ¼ 300, classified as the VWF class.
In the density images, brighter regions represent higher values, and the gray scale was set arbitrarily to highlight structures.



In our FS cases this power buildup proceeds through the
formation of a magnetic flux tube with a coherent length
larger than the scale associated with kin. However, as
pointed out in x 4.1, there is no dynamo action in our simu-
lations. Hence, the formation of such a flux tube should
involve reconnection followed by the expulsion of gas out
of the flux tube, reducing the gas density (therefore, also
the gas pressure) inside the tube, while maintaining
approximate pressure equilibrium.

We note that the critical value of hMAiinit for the FS class
is independent of numerical resolution in our simulations
(see Table 4). This is because the existence of the flux tube
depends on its ability to resist ram pressure bending, which
depends on large-scale flows, and so is independent of

numerical resolution. On the other hand, since the forma-
tion of the dominant flux tube involves reconnection, we
expect the time to reach the state in which the magnetic field
separates from the background flow to depend on resistiv-
ity. The flux tube was developed in a few tens of eddy turn-
over times in our simulations. However, in astrophysical
environments such as interstellar media or intracluster
media, the resistivity is much smaller than that of our simu-
lations. The classical magnetic Reynolds number in the
interstellar medium can be as large as 1050 or so (see, e.g.,
Spitzer 1979). Hence, we expect that the emergence of the
flux tube would take too long in astrophysical environ-
ments, and instead, turbulence of the SF class is more likely
to develop. Therefore, the failure of SF cases in our 2562
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Fig. 5.—Power spectra, time-averaged over 20 � t � tend for 10242 resolution (left) and over 10 � t � tend for 15362 resolution (right). Spectra are
multiplied by k1:5 for clarity. Plotted are the power spectrum of the kinetic energyPkin

k (solid line), the power spectrum of the magnetic energyPmag
k (dotted line),

and the power spectrum of the total energy Ptot
k (dashed line). The panels from top to bottom correspond to the SF, WF, and VWF classes, respectively. The

slopes fitted over the range of 2kin � k � k24 are shown in Table 3. Here k24 is the wavenumber corresponding to 24 grid cells.
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and 5122 simulations is probably a limitation of numerical
simulations: in particular, from very large numerical resis-
tivity compared to astrophysical environments and perhaps
also from the periodic boundary we employed.

5. SUMMARY AND CONCLUSION

We performed high-resolution two-dimensional simula-
tions of isothermal MHD turbulence using up to 15362 grid
cells. Compressibility was taken into account, with Mach
numbers hMsid1. In order to maximize the magnetic
Reynolds number and the Reynolds number, no explicit dis-
sipation was included. Instead, resistivity and viscosity of
numerical origin were utilized. Our findings are summarized
as follows:

1. The growth of magnetic energy from the initial value
depends on the effective resistivity and, hence, on resolution.
We measured a maximum magnetic energy amplification
proportional to n1:32x . After the growth saturated, the turbu-
lence could be categorized into three classes, which we

labeled very weak field (VWF), weak field (WF), and strong
field (SF) classes, depending on the strength of the uniform
component of the magnetic fields, or equivalently, the initial
Alfvén Mach number hMAiinit. Each class is characterized
by different turbulence properties.
2. In the WF cases, although Emag < Ekin globally, the

rms flow velocity decreases because of the magnetic field,
which can become locally important. That is, even a weak
magnetic field reduces turbulent transport (Cattaneo &
Vainshtein 1991; Cattaneo 1994).
3. Although the inertial range power spectra of MHD

turbulence are not represented by power laws any more,
part of the inertial range still develops a slope close to �1.5:
that of the Iroshnikov-Kraichnan spectrum, in the SF cases.
Such a slope develops only in the highest resolution
simulations with 10242 and 15362 grid cells.
4. In the lower resolution simulations with 2562 and 5122

grid cells, there are no cases categorized as the SF class.
Instead, with hMAiinitd30, those simulations developed
into FS cases, in which a large flux tube dominates the flow

Fig. 6.—Contours of magnetic field lines at four different times for the case of hMAiinit ¼ 10 with 10242 resolution. It belongs to the FS class.
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structures and separates the flow from the magnetic field.
This FS property is the result of large numerical resistivity
along with the periodic box used.

The conclusions of our work are the following:

1. For the VWF, WF, and SF cases, we observed
properties of turbulence that are consistent with those of
incompressible counterparts, whenever comparisons are
made. Hence, we conclude that weak compressibility of
h��=�irms up to �0.45 would not be important in
characterizingMHD turbulence.
2. Converged behavior in simulated turbulence, such as

that of the SF class, starts to appear only in simulations with
very high resolution, 10242 grid cells or more, in our simula-
tions. The fact that simulations with 10242 grid cells or more
are necessary for our two-dimensional study of MHD
turbulence points to the need for very high resolution in
three-dimensional MHD turbulence studies as well. For
hydrodynamic turbulence, Porter, Pouquet, & Woodward
(1998) reported that converged results emerged with 5123 or
more grid cells in their simulations. However, we note that

numerical dissipation would differ in different codes based
on different schemes. As a result, the convergence behavior
would be different, too. These findings emphasize the impor-
tance in turbulence studies of high-resolution grids and
codes with the smallest possible numerical dissipation. Any
explicit treatment of dissipation will require even higher
resolution simulations, since numerical dissipation and
diffusion would have to be smaller than the explicit terms.
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Kim, J., Ryu, D., Jones, T.W., &Hong, S. 1999, ApJ, 514, 506
Kronberg, P. P. 1994, Rep. Prog. Phys., 57, 325
Kulsrud, R.M. 1999, ARA&A, 37, 37
Kulsrud, R.M., Cen, R., Ostriker, J. P., & Ryu, D. 1997, ApJ, 480, 481
Lesieur,M. 1997, Turbulence in Fluids (3d ed.; Dordrecht: Kluwer)
Porter, D. H., Woodward, P. R., & Pouquet, A. 1998, Phys. Fluids, 10, 237

Ruzmaikin, A. A., Shukurov, A. M., & Sokolov, D. D. 1988, in Magnetic
Fields of Galaxies (Astrophys. & Space Sci. Library 133; Dordrecht:
Kluwer)

Ryu, D., Kang, H., & Biermann, P. L. 1998, A&A, 335, 19
Spitzer, L. 1979, Physical Processes in the Interstellar Medium (New York:
Wiley)

Tao, L., Cattaneo, F., & Vainshtein, S. I. 1993, in Theory of Solar
and Planetary Dynamos, ed. M. R. E. Proctor, P. C. Matthews, &
A.M. Rucklidge (Cambridge: Cambridge Univ. Press), 303

Zweibel, E. G., &Heiles, C. 1997, Nature, 385, 131
Zweibel, E. G., Heitsch, F., & Fan, Y. 2002, in Turbulence and Magnetic
Fields in Astrophysics, ed. E. Falgarone & T. Passot (Berlin: Springer),
101

636 LEE ET AL.


