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ABSTRACT

Magnetic fields in the solar corona are most likely the dominant source of energy that powers coronal mass
ejections (CMEs). Such energy must be above and beyond that of a potential (current-free) magnetic field,
and thus the pre-CME coronal magnetic field should contain significant electric currents. Given the diffuse
nature of the corona, the coronal magnetic field is likely to be largely force free, implying that electric currents
are closely aligned with the field itself. In this work we explore such force-free fields, in the spherical geometry
appropriate to the solar corona, with the aim of understanding how the magnetic flux distribution at the
coronal base affects the storage of magnetic energy. We find that energy storage is enhanced when a region of
strong potential field overlies a nonpotential field whose footpoints are confined to low solar latitudes. Fur-
thermore, those flux distributions consistent with strong overlying potential fields may enable larger energy
buildup, when examined in the context of limits imposed by the scalar virial theorem and the Aly-Sturrock
theorem. Finally, we demonstrate the existence of force-free fields containing detached flux ropes, with

energies that lie above the Aly-Sturrock limit.

Subject headings: MHD — Sun: corona — Sun: coronal mass ejections (CMEs) — Sun: magnetic fields

1. INTRODUCTION

Coronal mass ejections (CMEs) have been called “the
most energetic events in the Solar System”™ (Klimchuk
2001). Typical CMEs expel some 10'® g of coronal mate-
rial into interplanetary space at speeds of several hundred
km s~!. The energy involved, some 1032 ergs, is needed
not only to accelerate the ejecta to such speeds, but also
to lift the material against solar gravity and, most signifi-
cantly, to open the coronal magnetic field so that the
frozen-in plasma can escape to interplanetary space. A
theorem proposed by Aly (1984, 1991) and Sturrock
(1991) suggests that force-free fields alone, at least in sim-
ple geometries, are incapable of storing energy sufficient
for all three of these required tasks. However, the energy
associated with field-aligned currents may well supply the
bulk of that energy and could, perhaps, supply all of it in
more complicated magnetic geometries. In this paper, we
explore energy storage in force-free fields in the spherical
geometry appropriate to the solar corona. We make the
simplifying assumption of axisymmetry—obviously an
approximation but nevertheless one that is reflected very
roughly in the large-scale structure of the solar corona.
Our goal is to learn whether the distribution of magnetic
flux at the coronal base plays a role in the buildup of
magnetic energy in the corona. The base flux distribution
is obviously a key determinant of the overall magnetic
structure, and it is furthermore a quantity accessible to
direct magnetograph observation.

2. CHARACTERISTIC ENERGIES OF
FORCE-FREE FIELDS

Two distinct mathematical theorems place limits on the
possible energies of force-free magnetic fields. The scalar
virial theorem (see Priest 1984) relates surface and volume
integral contributions to the energy contained in a plasma.
For a force-free magnetic field in axisymmetric spherical

1208

geometry, the virial theorem takes the form

U:///(33+B§+B§)d72//(B,%—Bg—B;)da
(1)

(Wolfson & Low 1992). Here d7 and do are the volume and
surface area elements, respectively, and B is the magnetic
field, here expressed in terms of its three components in
spherical polar coordinates. The left-hand integral is taken
over the volume between the coronal base and some outer
boundary (which may be at infinity), while the surface inte-
gral on the right is taken over the coronal base (the inner
boundary) and the outer boundary. Both integrals give U,
the magnetic energy, in the same arbitrary units.

In this paper we work in dimensionless units, with r = 1
at the coronal base. We specify the radial component of the
magnetic field at the base, and in our analytic work consider
that the field vanishes at infinity. In that case the surface
integral on the right-hand side of equation (1) is taken over
the surface of the unit sphere only. In the numerical work
we take the radial field component to vanish at an outer
boundary with > 1. The reasons for this choice will be dis-
cussed shortly, but in any event if the outer boundary is
sufficiently remote, numerical solutions become insensitive
to the exact form of the boundary condition. More impor-
tantly in the context of equation (1), the contribution from
the outer boundary to the surface integral for the magnetic
energy becomes negligible for a sufficiently distant boun-
dary. Thus, again, the virial surface integral can be taken
over the inner boundary (r = 1) only.

Determination of a magnetostatic coronal field begins
with specification of the magnetic flux distribution at the
coronal base. This distribution may be stated by giving the
radial field component, B,, as a function of the polar angle ¢
at the coronal base (r = 1 in our dimensionless units). For a
corona containing no electric currents, the base flux distri-
bution, along with the boundary condition B = 0 at infinity,
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is sufficient to determine the field everywhere. Such a field is
termed a potential field, because the magnetic field, having
zero curl, can be written as the gradient of a scalar potential.
This potential field is strictly poloidal (no azimuthal compo-
nent), and nearly all its field lines are closed and extend to
finite values of r. For simple bipolar distributions the only
open field lines are those originating at the poles; for more
complex distributions the lines separating different flux sys-
tems are also open and extend to infinity. The energy of each
such potential field is the lowest possible energy for a mag-
netic field with the given boundary conditions. We identify
the potential field as By and its magnetic energy as Upq.

In this work we henceforth restrict ourselves to simple
bipolar fields with base flux distributions symmetric about
the equator, and in the present section we take the field to
occupy the entire domain from the coronal base (r = 1) to
infinity. Under these conditions, a second possible magnetic
field corresponding to the same base boundary condition is
potential everywhere except for a current sheet in the equa-
torial plane. This field becomes purely radial for r>1, and
its field lines are all open to infinity. We designate this open
field as Bopen and its magnetic energy as Ugpen.

Between the potential field and the open field lie a range
of force-free magnetic fields whose field lines’ magnetic foot-
points are displaced in azimuthal angle, giving rise to a
toroidal field component By. These fields have the same dis-
tribution of magnetic flux at the coronal base—that is, the
same B, versus 8—as do Bpo and Bgpeq, but these fields are
not fully determined by the base flux distribution. Rather,
one must also specify either the toroidal component or the
footpoint separation—the so-called magnetic shear. The
Aly-Sturrock theorem (Aly 1984, 1991; Sturrock 1991)
states that the energies of these sheared fields must lie below
Uspen, at least as long as the field contains no disconnected
magnetic flux. A look at the virial surface integral in equa-
tion (1) shows that, at least on average, By must decrease as
B, increases in order for the sheared-field energy to rise
above Uy Therefore the poloidal field must become more
nearly radial at the base, and so the field lines should bulge
outward as the magnetic shear increases. Physically, the
sheared field tends to look more like the open field as shear
increases, so it makes sense that the sheared-field energy
approaches but does not exceed Ugype,. This observation is,
however, just a plausibility argument and is certainly not an
ironclad assertion of the Aly-Sturrock theorem. We desig-
nate any of these infinitely many sheared force-free fields as
B; and the corresponding energy by Us.

Finally, the surface integral for the magnetic energy on
the right-hand side of equation (1) shows that there is an ab-
solute maximum possible energy for any force-free field with
a given flux distribution at the coronal base. This energy,
designated Up,y, is obtained by setting By = By =0 and
thus integrating only B?. The field with this particular
energy is strictly radial everywhere, and is generally neither
potential nor force-free. It is of interest less as a realizable
magnetic field than as evidence for an absolute upper bound
on the energies of force-free fields.

To summarize, we have identified three distinct magnetic
energies associated with fields that share a common flux
distribution at the coronal base: Uy, the energy of the
everywhere current-free field; Ugypey, the energy of the field
whose lines are all open to infinity and that is current-free
everywhere except on a current sheet in the equatorial plane;
and Up,y, the maximum possible energy for any force-free

field. These fields obey the inequality
UpO[ < UOan S Umax . (2)

(The reason for the possible equality in the relation between
Uspen and Upy,x Will become obvious shortly.) In addition to
these three discrete fields, we have an infinite set of force-
free fields whose energies must lie between Up,o and Upyy.
For force-free fields whose field lines are all anchored at the
coronal base, the Aly-Sturrock theorem further restricts the
maximum energy to Ugpep.

3. BASE FLUX DISTRIBUTIONS AND ENERGIES

It proves convenient to express the poloidal components
of the magnetic field in terms of a flux function ¥(r,6),
which in our axisymmetric spherical geometry is A4rsin 6,
with 4 the magnetic vector potential. In terms of 1), the
entire magnetic field becomes

T - P
= emoan -0+ Byg, (3)

rsin@ or
where the toroidal component B, is as yet unspecified. For
the potential fields discussed in this section, B; = 0, and the
contours of ¢ are the magnetic field lines. Later, with force-
free fields where By # 0, the contours of ¢ will represent the
projections of the field lines on (r, ) planes.

The boundary condition at the coronal base can be speci-
fied by giving (1, 6); the actual radial field component at
the base then follows from equation (3).

In this work we consider base boundary conditions
described by

Y(u) = o1 = u*) (4)

where u = cos @ and 1) is a parameter that sets the overall
scale of the magnetic field. The important parameter is «,
which determines the distribution of magnetic flux at the
coronal base. The case o = 2 describes the boundary condi-
tions appropriate to a dipole field; here, equation (3) shows
that B,(r = 1) o u. Since u = cos 6, this is the well-known
result for the angular dependence of the radial component
of a dipole field. More generally, equations (3) and (4) give

B,(r=1) = £paly*", (5)

where the positive and negative signs apply to the northern
and southern hemispheres, respectively.

The choice a = 1 is the boundary condition appropriate
to the “ split monopole,” widely used in solar physics to rep-
resent a strictly radial field that reverses sign across the
equatorial plane. In this case, as equation (5) shows, the field
at the coronal base is independent of polar angle (i.e., of x),
except for the abrupt reversal at the equator. For the split
monopole (o = 1), magnetic flux is thus distributed evenly
in colatitude. For the dipole (o« =2), B, o<yt = cos 6, and
flux is concentrated more toward the solar poles. Indeed,
this is true for any o > 1, and the poleward shift of flux con-
tinues as « surpasses the dipole value 2 and increases fur-
ther. Our choice of the form given in equation (5) is
motivated in part by the desire for a simple expression in
which a variation of a single parameter changes the flux dis-
tribution in a physically meaningful way, and in part
because of previous work in which the mathematics of a sep-
arable solution changes the boundary condition in a way
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that corresponds roughly to a change froma=2toa =1
in equation (5) (Lynden-Bell & Boily 1994; Wolfson 1995).

In § 2, we identified three discrete energies associated with
magnetic fields sharing a common base flux distribution.
Here, we calculate the energies of those fields. For the
energy Up,y, it suffices to integrate the square of the base
radial field given by equation (5); for the energies of the
purely potential field and of the open field, it is necessary
first to know also the transverse field component at the base.
Although it would be possible to solve for these fields using
potential theory (recall that even the open field is potential
everywhere except on an equatorial current sheet), it is more
convenient to solve in terms of the flux function v intro-
duced earlier, as this approach will be necessary when
solving for nonpotential fields.

For a potential field in axisymmetric spherical geometry,
the flux function ¢ is governed by the equation

2 2
oY 1-woy (6)
or? r? ol

(Wolfson & Low 1992). This linear equation is separable,
and we have shown that it admits solutions of the general
form

_ o an—" + b+ Py () = Pra(w) ) 7
() ;(/ + by ){ T (7)

Here the a; and b; are coeflicients to be determined, P; is the
/Ith Legendre polynomial, and r, 4 = cos 6 are the spherical
polar coordinates (Wolfson 1985).

For a closed, bipolar field in the domain from r =1 to
r = oo, the boundary condition at infinity is simply v = 0,
so only the g; are nonzero. In this case the sum in equation
(7) is taken over odd / only, resulting in even Legendre poly-
nomials in the expression for . It then follows from
equation (3) that B, is an odd function of x, showing that its
sign reverses across the equator, while By is even—
characteristics of any bipolar field whose field lines are sym-
metric about the equatorial plane. In the Appendix we show
explicitly how the coefficients «; are calculated from the
boundary condition given by equation (4).

For the open field, the presence of the equatorial current
sheet requires different series solutions in the two hemi-
spheres (although the two are related by a simple sign
change). In this case we require that the transverse field van-
ish in the equatorial plane (1« = 0) and also at infinity. These
conditions make equation (7) a series in odd Legendre poly-
nomials, plus a constant term (formally involving the even
polynomial Py = 1). Again, the Appendix gives the details
for determining the coefficients ;.

Given the appropriate Legendre series solutions, we can
evaluate the virial surface integral in equation (1) to deter-
mine the energies of the closed, open, and maximum-energy
fields for different values of the parameter «. In practice, we
calculate the coefficients out to a maximum / value of 21,
differentiate the series according to equation (3), and then
evaluate the virial surface integral for the energy. All these
calculations are done analytically using MATHEMATICA.
A graphical comparison shows that the truncated series
solutions reproduce the base distributions of equation (4) to
better than 1 part in 101°.

Figure 1 shows the results of these energy calculations.
For comparison purposes, we have normalized the energies
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Fi16. 1.—Energy of the Aly-Sturrock open field and the maximum possi-
ble energy for any force-free field, as set by the virial theorem, as functions
of the parameter «. Larger « values correspond to a greater concentration
of flux at higher latitudes. Both energies are in units of the potential-field
energy for each value of .

so that the potential-field energies for different values of «
are all taken as 1. This choice to normalize energies means
that the base magnetic field strengths at a fixed point—say,
the pole—are different for different a. An alternative would
have been to fix the base field at the pole, and then express
all energies in terms of the energy of the potential dipole.
However, our energy-normalization approach seems more
appropriate in the context of comparisons among the three
characteristic energies Upor, Uppen, and Upay.

Given this normalization, the two curves in Figure 1 give
the open-field and maximum possible energies for each « in
terms of the potential-field energy for that same «.. Note that
for o = 1 (the split monopole) the two energies are the same.
In this case the open field, potential everywhere except on
the equatorial current sheet, is strictly radial and is thus the
same as the maximum-energy field. This equality of Ugpe,
and Up,x at a = 1 shows that, with this base flux distribu-
tion, there is absolutely no possibility of force-free fields
whose energy lies above the Aly-Sturrock open-field limit.
This equality is also the reason for the greater-than-or-equal
sign in inequality (2). For o > 1, the Ugpey and Upy,x curves
diverge, creating an energy gap that could, in principle, be
occupied by force-free fields not subject to the Aly-Sturrock
theorem (e.g., fields containing disconnected flux). As «
increases—physically, as flux concentrates toward the
poles—the gap grows. This occurs in part because of the
growth in Up,y, but more significantly because the ratio of
Uspen to Upoy shrinks. Physically, this may make it energeti-
cally easier to bring a magnetic field with larger a—more
flux concentrated at higher latitudes—to energies
approaching the open-field energy Ugpeq.

4. FORCE-FREE FIELDS

Here we develop the basic equations for sheared, force-
free magnetic fields with different flux distributions as
specified by the parameter a. In our axisymmetric geometry,
the combination of Ampere’s law,

c
—VXB 8
SVXE, 8)

and the force-free condition J X B =0 leads to a Grad-

J =
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Shafranov type of equation for the flux function ),
P 11— 2oy af
— 4+ T _f L
or? 12 ou? dip
(Wolfson 1995).

Here /(1)) is an arbitrary function of the flux function v,
related to the azimuthal field component by

_JW) (10)

" rsinf

©)

]

The footpoint shear associated with a given /() can be cal-
culated by integration over the field lines, once the solution
1 has been found.

The function f (or, more accurately, the quantity
—fdf /d) is called the generating function, and its use has
been criticized as being a less physical approach to the prob-
lem than the direct specification of the footpoint shear—as
is possible when the field is expressed in terms of Clebsch
variables (Antiochos, Devore, & Klimchuk 1999). One
problem with the generating-function approach is that it
can lead to solution sequences that exhibit unphysical or
pathological behavior as the amplitude of the generating
function is increased. Absent such behavior, though, solu-
tions obtained by the generating-function method represent
perfectly valid force-free fields.

The main criticism leveled against the generating-
function approach focuses on a Cartesian geometry solution
by Low (1977), in which a critical value of the generating-
function amplitude results in a ““ tear ” in the magnetic field,
such that magnetic footpoints originally infinitesimally
close end up a finite distance apart (Klimchuk & Sturrock
1989). Here we avoid that possibility by choosing a generat-
ing function whose value and derivative both vanish at the
equator—meaning that the magnetic shear is zero on the
infinitesimally separated footpoints of the lowest magnetic
field lines that just cross the equator. Specifically, we take
the function f'(v) to be given by

Y —y*

/() = ysin [W(m

2
)] P <ap <y

and

f@) =0, >gorp <™. (11)

Here «y is a parameter loosely related to the amount of shear
applied to the magnetic footpoints. The quantity 1) is the
value of the flux function at r =1, 8 = /2, and is chosen
so that the energy given by equation (1) has the value 1 in
the potential-field case (y = 0). Finally, the constant * is
set, through equation (4), to confine the shear to a region
equatorward of a fixed latitude, here taken to be 45°. The
effect of this confinement is to produce a sheared force-free
field that lies beneath a potential field, with the strength of
the overlying potential field growing as the parameter «
increases.

For the dipole field (aw = 2), at low shear, integration over
the field lines shows that the shear is given by

2cost
=) (12)

This profile is shown in Figure 2. As the shear increases the
profile changes somewhat, but remains qualitatively similar

A¢
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FiG. 2.—Typical shear profile, giving the angular separation in azimuthal
angle ¢ between northern and southern hemisphere magnetic footpoints, as
a function of the polar angle at the NH footpoint. Profile shown is for the
dipole flux distribution (« = 2), at low values of . The profile amplitude
scales with ~, while the profile shape changes only slightly as ~ increases.

(see Wolfson & Low 1992 for a discussion of this
“ pseudo-shear-specified ”” approach). For other base flux
distributions (« # 2), the shear profile is similar but not
identical.

5. NUMERICAL ISSUES

The computation of force-free magnetic fields is a more
formidable numerical problem than it might at first seem.
Our equation (9) is, mathematically, a nonlinear elliptic par-
tial differential equation in two independent variables. Ana-
lytic and numerical methods for linear elliptic PDEs are
widely available, and iterative approaches can be applied in
nonlinear cases. In previous work on nonlinear force-free
fields, we have used finite-difference methods, employing
available linear solvers embedded in iterative schemes (see
Wolfson & Low 1992). Those methods proved reliable
except at extreme shears, where convergence could become
problematic. In the present study, we have developed a
numerical code based on the finite-element method. In this
method, widely used in engineering but less familiar to
astrophysicists, the domain of the problem is broken into
small geometrical elements, in our case triangles. The solu-
tion in each triangle is represented by a function of two
variables, in this case a simple linear function. The parame-
ters in each finite element’s solution function are then deter-
mined by solving a variational problem that optimizes the
fit of the global solution to the partial differential equation.
One advantage of the finite-element method is that the solu-
tion and its derivatives are defined at all points in the
domain, not just at the nodes as is the case with finite-
difference discretization. A second advantage is the ease of
producing nonuniform meshes, and adaptively refining the
mesh based on a posteriori error estimates. Finally, the
finite-clement method lends itself to irregular domains—
those whose boundaries do not lie on coordinate surfaces.

At the heart of our force-free approach is the finite-
element code PLTMG (for Piecewise Linear Triangle
MultiGrid), a robust and versatile two-dimensional nonlin-
ear elliptic solver (Bank 1998). The code is now in its eighth
version and is freely available. PLTMG incorporates a
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Newton iteration scheme that makes the code explicitly
applicable to nonlinear problems. It also has built-in evalua-
tion of user-specified integrals over the solution domain
and/or boundary, making it easy to track values of the ener-
gies given in equation (1). Finally, the code includes a
continuation procedure for following solution sequences
generated by varying one parameter in the PDE. However,
we have not employed this procedure in the present work—
although we have effectively done the same thing through
an adaptive stepsize procedure in the parameter ~ that
appears in our function f'(¢).

PLTMG also has powerful visualization capabilities,
embodied in a set of graphical output routines. These rou-
tines assume a Cartesian-like geometry, and for that reason
we have transformed equation (9) to cylindrical coordinates
p, z, which, although still properly describing our axisym-
metric spherical geometry, allow Cartesian-like graphics in
the p-z plane. Transformation of equation (9) to cylindrical
coordinates is straightforward, and results in the equation
we actually solve with PLTMG:

‘921/’_3<¢> > Y df (13)
o Op\p) 02 p T dip

Because PLTMG accepts irregular boundaries—and is
especially welcoming of circular arc boundaries—we can
easily continue to define the problem in a domain from
r = 1 to some spherical outer boundary at r = rpp,x. In what
follows we generally take rp,x = 20, although we have
shown explicitly that increasing ry,x has negligible effect on
the computed energies. Although one could solve this prob-
lem on the half-domain from pole to equator, with a
boundary condition B, =0 in the equatorial plane, we
choose instead the computationally less efficient approach
of computing over the entire range 0 < ¢ < «. That way the
equatorial plane is not a boundary, and thus we allow for
the possibility that current sheets might form in the equato-
rial plane. However, that possibility is not realized in the
calculations reported here.

PLTMG generates its own mesh from a simple specifica-
tion of the solution domain. Our computational mesh calls
for 10,000-40,000 vertices, and the resulting number of
finite element triangles is approximately twice this number.
The higher resolutions are required for consistent conver-
gence at the larger values of the flux-distribution parameter
a. We solve first the potential-field problem, first on a
coarser mesh and then, using PLTMG’s adaptive refine-
ment, approaching the final mesh of some 10* vertices in a
way that puts more and smaller elements where the solution
gradients are greatest (see Fig. 3 for a sample finite-element
mesh). We then verify that the flux function, magnetic field,
and both energy integrals are essentially equal to those of
the analytic Legendre series solutions introduced earlier. On
occasion it is necessary to refine the mesh further, either at
this point or later in the calculational sequence, in order to
keep the a posteriori error estimates below a specified
tolerance.

For a given value of the flux-distribution parameter «, we
then generate a sequence of solutions corresponding to
increasing values of the parameter ~y that specifies the devia-
tion from a potential field. We calculate both volume and
surface integrals for the magnetic energy associated with
each solution, and compare the two. The sequence is
assumed to terminate under any of the following conditions:
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FI1G. 3.—Sample finite-element mesh, with 300 vertices, refined to put
more elements where the potential dipole solution has the largest gradients.
Actual meshes used in numerical calculations have between 10,000 and
40,000 vertices, and are refined adaptively as needed.

(1) the two energy integrals disagree by more than 6%;
(2) the nonlinear solver fails to converge; or (3) the solution
exhibits features clearly inconsistent with a force-free field
or even, on occasion, with Ampeére’s law itself. (The latter
case occurs if the code produces magnetic islands containing
values of the flux function greater than 1), for which eq. [11]
shows that the field must be potential.)

This list of difficulties, all of which occur at large values of
magnetic shear (high values of ), might sound like serious
flaws in a code that is, after all, supposed to produce force-
free solutions. On comparison with other methods,
however, ours seems remarkably stable up to these most
extreme magnetic shears. One issue with this and any other
force-free code is to test whether the resulting solution is, in
fact, force free. Perhaps the most straightforward approach
is to calculate the angle between the current density J and
magnetic field B. However, this presents a problem for any
method based on a vector potential, flux function, or
Clebsch variables, in all of which the magnetic field must be
computed as a numerical first derivative and the current
density as a second derivative. Because numerical differen-
tiation is an inherently error-amplifying procedure, the
calculation of the angle between J and B is not particularly
accurate. A second approach is to test the validity of the
virial theorem described in equation (1), which of course
must be satisfied exactly by a strictly force-free field. This
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amounts to comparing the two different integrals for the
magnetic energy, which should be equal for a force-free
field. This approach has the advantage of integrating over
numerically computed first derivatives, greatly reducing the
error—especially in the case of the volume integral for the
magnetic energy. The surface integral is more problematic,
because the field components must be computed from
derivatives taken at the boundary, and these particular
derivatives are generally only first-order accurate as
opposed to the typically second-order accuracy that obtains
in the interior of the solution domain. For that reason the
two integrals in equation (1) generally differ by a few per-
cent, even at low values of ~. That is the reason for our
somewhat arbitrary 6% criterion for accepting a solution as
force free.

Another popular approach to force-free fields is the mag-
netofrictional method (Yang, Sturrock, & Antiochos 1986;
Antiochos et al. 1999), in which a pseudo-time-dependent
problem is solved essentially by moving the magnetic field in
response to a computed Lorentz force until that force
becomes negligible. This method has the distinct advantage
of specifying directly the footpoint shear (through one of
the two Clebsch variables used to represent the magnetic
field), thus avoiding the criticisms that apply to the generat-
ing-function method. We have obtained and studied a
particular magnetofrictional code written for force-free
problems in spherical geometry (Antiochos et al. 1999). This
code checks the solution by computing a current-weighted
average of the cosine of the angle between J and B, and the
results are impressive: after tens of thousands of iterations,
this average cosine is generally within 10~* or better of the
exact force-free value, namely, 1. However, after adapting
the magnetofrictional code to test also conformance with
the virial theorem, we find that the volume and surface
integrals for the magnetic energy often differ dramatically—
sometimes by factors of 20 or more—and that the surface
integral is frequently negative. These discrepancies occur
despite average-cosine results that suggest a nearly perfectly
force-free solution. Even with the finest mesh, the two inte-
grals differ by more than 10% well before reaching anything
approaching extreme values of shear. And at more extreme
shears, the magnetofrictional method exhibits its own diffi-
culties with convergence. Furthermore, at lower resolutions,
this magnetofrictional code can in some cases report a
force-free solution based on the cosine criterion, while the
volume energy integral gives values above even the
maximum allowed by the virial theorem.

Clearly, it is no simple matter to verify that a numerical
solution is indeed force free. Again, our criterion in the
present study is that the solution satisfy the virial theorem
for force-free fields. As described above, the solution is
obtained by solving a generating-function-containing
nonlinear elliptic PDE using the finite-element code
PLTMG.

6. RESULTS

For each value of the flux distribution parameter «, our
method produces a sequence of solutions for increasing val-
ues of the parameter . At v = 0 we get excellent agreement
with our analytic Legendre series solutions, and the two
integrals for magnetic energy are in close agreement. As ~
increases, the magnetic field bulges outward somewhat, and
both energy integrals increase together. Eventually the
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energies begin to rise more rapidly, as measured by the
derivative dU/d~. At this point we employ an adaptive
stepsize in « to limit the increase in energy with each step.
Eventually dU/d~ reaches a very large value at which we
consider the energy to be the maximum possible in a closed
arcade with this particular value of « and the form we have
adopted for the function f. Increasing +y still further results
in one of several possibilities:

1. A sequence of similar solutions with energies and field
configuration changing only slightly and in a stochastic
way. We suspect these are essentially the same solution,
reached through slightly different nonlinear Newton
iteration paths.

2. Convergence failure in the numerical method.

3. Arapid divergence of the two energy integrals, usually
with the volume integral increasing much more than the sur-
face integral, and indicating that the solution is no longer
truly force free.

4. The appearance of chaotic field structure on small
scales, which we take to indicate a failure of the numerical
method.

5. The development of X-O neutral point pairs, and
associated detached magnetic flux ropes.

Of these possible outcomes, probably only 5, with detached
flux ropes, is physically meaningful.

Figure 4 shows the energies calculated for numerical solu-
tions with the flux-distribution parameter « ranging from 1
to 9, stepping by Aa = 0.1 In contrast to Figure 1, we have
normalized the energies in Figure 4 to the energy of the
analytic open-field solution—the maximum allowed by the
Aly-Sturrock theorem for force-free fields without detached
flux. The irregularities in the numerical-solution energy
curves in Figure 4 reflect the difficulties in obtaining consis-
tent convergence near what is a critical point in the solution
sequence. Nevertheless, the overall trend is quite obvious.
Energies of the maximally sheared arcade solutions evi-
dently track the potential-field energies, but are of course
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Fic. 4.—Energies of numerical solutions, normalized to 1 at the
Aly-Sturrock open-field limit. Squares mark maximum-energy sheared
arcades and triangles are flux rope solutions. Convergence of flux rope solu-
tions was unreliable beyond o = 8 and, with the one exception shown,
below about o = 3. The considerable scatter suggests that energies of the
numerical solutions are not accurately determined, and that flux rope ener-
gies above the Aly-Sturrock limit cannot be taken as definitive evidence of
force-free fields with energies in excess of that limit—even though such
energies are allowed for detached flux ropes. Also shown are the
potential-field energies, again normalized to the open-field limit.
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F1G. 5.—Projections of magnetic field lines in the poloidal plane, for the potential field (/ef?), the maximally sheared field (center), and the flux rope solution
(right), all for v = 6.6. Circular arc at left is the solar surface, and the plots show a limited portion of solutions that were computed out to 20 R.,. The sheared
region involves those field lines whose footpoints lie within 45° of the solar equator. With the linear contouring routine used here, the rightmost frame does not

show the flux rope itself. The rope is shown in detail in Fig. 6.

higher. At the higher « values, the maximally sheared
arcade energies are some 90% of the open-field Aly-
Sturrock limit (the value 1 in Fig. 4). This result confirms
our earlier suggestion, based on the analytic calculations
alone, that it may be easier to build up substantial magnetic
energy in a sheared force-free field when a strong potential
field overlies the sheared field.

The curve for flux rope solutions in Figure 4 is particu-
larly interesting, since it shows some solutions with energies
in excess of the Aly-Sturrock limit. This situation is permit-
ted because these fields include detached magnetic flux;
however, we know of no clear demonstration in the litera-
ture of the existence of such force-free solutions with
detached flux that exceed the Aly-Sturrock energy. Because
of the uncertainties in the numerical energy calculations,
and the fact that the flux rope energies are only a few percent
over the Aly-Sturrock limit, ours should not be taken as
such a demonstration either. Nevertheless, it is intriguing
that our method produces flux rope solutions with substan-
tially more energy than those of fully attached magnetic
arcades, and that the energies of those flux rope solutions
are in the vicinity of the Aly-Sturrock limit.

Figure 5 shows field line projections on the poloidal
plane, plotted for the potential field, maximally sheared
arcade, and flux rope solutions. The evolving field exhibits
the gradual bulging expected from the buildup of energy
associated with the increasing toroidal field component.
This bulging is most significant in the lower corona, but has
less effect on the overlying potential field whose footpoints
lie beyond 45° solar latitude. For the solutions shown,
« = 6.6, meaning there is very little flux emerging near the
solar equator. The linear contouring routine therefore does
not show the innermost field lines, and in particular does
not show the flux rope that, in the rightmost frame,
underlies the innermost field line shown.

A more detailed look at the flux rope solutions proves
most interesting. The form we have assumed for the func-
tion f(¢), as given by equation (11), precludes the
emergence of an X-O neutral point pair through the coronal
base. This is because such a pair would entail values of the
flux function ¢ in excess of v, and our choice of f ensures
that f, and therefore B,, must be zero for such values
1) > 1. Field lines with ¢ > 1 therefore could not satisfy

Ampere’s law because they would have to form closed loops
and yet could not encircle any electric current. However,
X-O pairs can form with ) in the range where f'is nonzero.
Physically, such a change in solution topology could not
occur in ideal MHD, but that is not an issue here because we
are not concerned with physically realistic temporal evolu-
tion of the coronal magnetic field, but only with
demonstrating the existence of solutions with particular
magnetic energies.

Figure 6 shows that the flux rope solution is interestingly
complicated, containing not one but two distinct ropes.
There are correspondingly two each of X and O neutral
points. An examination of Figure 6 in the context of

Fi16. 6.—Details of the flux rope solution shown in the rightmost frame
of Fig. 5. There are actually two flux ropes, and two each of X- and O-type
neutral points. The apparent bunching of field lines at the edges of the figure
is an artifact resulting from a highly nonlinear contouring scheme needed
to show the flux rope field lines. Arc at left represents the solar limb.
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Ampeére’s law shows that the toroidal currents in the two
ropes must be in opposite directions. Although our model is
too idealized to be an accurate representation of the corona,
the appearance of this flux rope pair is intriguing. The outer
rope, with its squashed, ““ kidney > shape, looks not unlike
some sketches depicting magnetic clouds observed in inter-
planetary space. Such clouds are believed to be the inter-
planetary manifestations of CMEs. And although mass
plays no role in our model except to carry electric current,
and therefore there is nothing like a prominence in the
model, it is interesting to speculate that the lower flux rope
might correspond to the cavity that is often inhabited by a
prominence.

Comparison of the poloidal and toroidal field compo-
nents in the equatorial plane shows that the field is almost
entirely toroidal inside the flux ropes. Therefore, the ropes
exhibit only a very weak twist. The center of the inner flux
rope, which corresponds to a broad, shallow local minimum
in the flux function 4, occurs at very nearly the value at
which the function f(¢) has its maximum. The outer rope
corresponds to a sharply peaked local maximum in ),
although with a value only slightly different from that of the
inner rope. Both these ¢ values lie somewhat closer to the
equatorial base value vy than to ¢*.

We have been frustrated in attempting to explore in detail
the formation of the double-flux rope solution. Practically,
our numerical procedure seems incapable of resolving the
“instant” at which the flux ropes form, but rather jumps
abruptly from a closed arcade solution to one containing
flux ropes. Or it may be that the solution sequence reaches a
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catastrophe point (see Forbes & Isenberg 1991) where
dU /d~ becomes infinite, and then jumps abruptly to a new
solution with the flux rope topology.

7. CONCLUSION

We have computed force-free magnetic fields appropriate
to the spherical geometry of the solar corona, for a wide
range of magnetic flux distributions at the base of the model
corona. Our results show that it may be easier for shearing
of the magnetic footpoints to build up energy approaching
the Aly-Sturrock open-field limit when a strong potential
field overlies the sheared field. Furthermore, we find that
under that same condition, our solutions develop flux ropes
with energies that seem to be slightly in excess of the
Aly-Sturrock limit—although numerical noise prevents us
from drawing that conclusion with certainty. To the extent
that our results reflect physical processes in the real corona,
they suggest that substantial energy storage, and thus the
potential for coronal mass ejections, may be greatest in
regions of the corona where a strong potential magnetic
field overlies a region where footpoint shear is occurring.
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APPENDIX A

LEGENDRE SERIES SOLUTIONS

We have previously shown (Wolfson 1985) that equation (6) has the general solution given in equation (7):

)= i(a;r‘l + bt [
1=0

Pra(w) — Proa(w)

21 +1 } ' (A1)

For closed fields, with the boundary condition ¢ = 0 at r = oo, it suffices to set all the b, to zero. Then to meet the base boun-
dary condition of equation (4), we multiply equation (A1) by vo(1 — |u|”) P,y () and integrate over the polar angle (i.e., from
u = —1to1). Using the orthogonality properties of the Legendre polynomials, the result becomes

2

1
200 [ (1= )Puli) duzzmﬂ("’”“ ) (A2)

2m+3 2m—1

where symmetry allows us to take the integral from 0 to 1 and double the result, also dropping the absolute value signs.

Designate the integral here by 7,,,. (¢ for closed field):

1
Ly = /0 (1 _ﬂa)Pm(:u> dﬂ )

SO

2

2’(/}0 I, mc

_ Am+1 . am—1
2m+1\2m+3 2m—1)°

This equation can be written in the form of a recursion relation:

1 = (2m + 3) |:(2Wl + 1>1/101mc + 2’6,1},’1”11 1:| : (A3)

We start with the case m = 0, which gives

—3
ay = jIO(f .
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The other nonzero coefficients, all odd and thus resulting through equation (A1) in even Legendre polynomials reflecting the
equatorial symmetry, are then obtained through the recursion relation (A3).

The open-field case is handled in a similar way, except that now all field lines are required to extend to infinity. So we replace
the closed-field boundary condition at infinity, ¢» = 0, with By = 0. Equivalently, dv)/dr = 0 at infinity. Differentiation of
equation (Al) gives

aif: ST [= a4 (14 1)byr] Plil(ﬂz)ll?ﬂ(ﬂ) : (A4)

showing that all the »; must vanish to meet the condition dv/dr = 0 at infinity. In order that ¢ itself not vanish at infinity,
equation (A1) shows that we must have ap # 0. Then the flux function at infinity is given by

Y(r = 00) = ao[Pr-1(u) = Prai(w)] = ao(l — p) -

This equation shows that the open field at infinity takes on the *“ split monopole *” configuration regardless of the flux distribu-
tion at the coronal base. Because the value of v/ is constant on each field line, the range of v values at infinity must be the same
as at the base, and this immediately requires that ay = 1.

Now, in this open-field case there is a current sheet in the equatorial plane, and we require different solutions in the two
hemispheres. Here we solve explicitly in the northern hemisphere only; the southern hemisphere solution is obtained with suit-
able sign changes. To make the current sheet, we require that By = 0 in the equatorial plane. This condition can be met if the
Legendre polynomials in equation (A4) are all odd, requiring that the values of / be even. So we now have

{Pll 1) — Pz+1(ﬂ)]'

Yopen (1 1) = o(1 =) + > arr™

L 20+ 1

Again, orthogonality of the Legendre polynomials leads to a recursion relation,

am—1

(lm+1:(2m+3)|:27n—_1

+ (2m+ l)wofmo} ; (A5)

where

1
Lo = /0 (1= 1) P (10) dpe .

Note that this expression differs slightly from the analogous quantity for the closed-field case.

This completes the prescription for constructing Legendre series solutions in both the closed- and open-field cases, using the
recursion relations (A3) and (A5) and associated definitions. It is then straightforward to evaluate the magnetic energies for
different values of the flux distribution parameter « using the virial surface integral of equation (1). Again, this was done
analytically using MATHEMATICA.
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