
NUCLEAR PARTITION FUNCTIONS AT TEMPERATURES EXCEEDING 1010 K

T. Rauscher

Departement für Physik undAstronomie, Universität Basel, 4056 Basel, Switzerland;
Thomas.Rauscher@unibas.ch

Received 2003 January 24; accepted 2003 April 3

ABSTRACT

Nuclear partition functions were calculated for a grid of temperatures from 1:2� 1010 to 2:75� 1011 K
(1 MeV � kT � 24 MeV) within a Fermi-gas approach, including all nuclides from the proton-dripline to
the neutron-dripline with proton number 9 � Z � 85. The calculation is based on a nuclear level density
description published elsewhere, thus extending the previous tables of partition functions beyond 1010 K.
Additional high-temperature corrections had to be applied.

Subject heading: nuclear reactions, nucleosynthesis, abundances

On-line material:machine-readable tables

1. INTRODUCTION

The knowledge of the nuclear partition function at
high temperatures is essential in understanding the
nuclear equation of state used in the core-collapse phase
of massive stars. In self-consistent simulations, the con-
traction of the core is explicitly followed up to nuclear
densities, giving rise to extreme temperatures and high
mean excitation energies of the nuclei. Ratios of high-
temperature partition functions are also ingredients in
nucleosynthesis networks in explosive scenarios, such as
the r- and rp-processes. When employed in nuclear statis-
tical equilibria (NSE), they often have to be known at
temperatures beyond 1010 K.

Recently, new sets of partition functions have been
published along with astrophysical reaction rates for
nuclides from proton dripline to neutron dripline and
charge number 10 � Z � 85 (Rauscher & Thielemann
2000). The sets include partition functions up to T9 ¼ 10
(1010 K) based on two different level densities calculated
within a shifted Fermi-gas approach (Rauscher, Thiele-
mann, & Kratz 1997) utilizing two mass formulas. Here
the extension of these partition functions to temperatures
of T9 ¼ 275 is presented. A straightforward extrapolation
is not valid because of additional effects acting at high
temperatures.

These effects have been a matter of discussion already
about 20 years ago (Fowler, Engelbrecht, & Woosley
1978; Mazurek, Lattimer, & Brown 1979). The recently
improved descriptions of nuclear level density and
nuclear reaction rate predictions make it worthwhile to
reconsider these arguments and to publish a complete
table of partition functions. In this work, in addition to
using the more recent level densities of Rauscher et al.
(1997), the corrections are treated by closely following
Tubbs & Koonin (1979).

2. PROCEDURE

The temperature-dependent partition function GðTÞ nor-
malized to the ground state spin of the nucleus J0 is usually

defined as (Fowler, Caughlan, & Zimmermann 1967)

ð2J0 þ 1ÞGðTÞ ¼
Xlm
l¼0

ð2Jl þ 1Þe�El=kT

þ
Z Emax

Elm

X
Jl; �l

ð2Jl þ 1Þe��=kT

� �ð�; Jl; �lÞd� ; ð1Þ

with � being the level density and lm the label of the last
included experimentally known state. The sum over
Boltzmann-weighted discrete states from the ground state
to state lm is performed using experimental levels as listed in
Rauscher & Thielemann (2001). Above the last known state
an integration over the nuclear level density is used instead
of a summation, as also outlined in Rauscher & Thielemann
(2000), employing the level density description of Rauscher
et al. (1997).

The upper limit Emax of the integration requires special
consideration. Formally, the integration procedure should
encompass energies up to infinity. However, for all prac-
tical purposes an energy cutoff can be introduced because
the Boltzmann factor e��=kT dominates at high energies
and suppresses any further contributions to the integral
value. It is well known that, for instance, the maximum
excitation energy above which there are no more signifi-
cant contributions to the partition function is of the
order of 20–25 MeV up to T9 ¼ 10 (Rauscher &
Thielemann 2000).

Because of the temperature dependence of the integrand
in equation (1), its peak contribution is shifted to higher
energies for higher temperatures T, thus also requiring a
larger cutoff Emax. Up to now, there has been no systematic
scrutiny of the behavior of the integrand, which also weakly
depends on the used level density. In Figure 1, the inte-
grands are plotted, also showing the peak energies and the
widths of the peaks for different energies. The shown ener-
gies are in agreement with the mean excitation energies
derived by Tubbs & Koonin (1979). In the same manner,
the cutoff energy of 25 MeV, often used for calculating
partition functions up to T9 ¼ 10, can be justified.

The Astrophysical Journal Supplement Series, 147:403–408, 2003 August

# 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

E

403



For T9 > 12, we extract a (nearly) quadratic dependence
on temperature of the peak energy Epeak and a linear
dependence of the width CFWHM of the integrand:

Epeak ¼ 0:0725T2:055
9 MeV ;

�FWHM ¼ 3T9 � 37:0 MeV : ð2Þ

The integration cutoff was then set to Emax ¼
max 35; Epeak þ �FWHM

� �
MeV.

3. HIGH-TEMPERATURE CORRECTIONS

Owing to the exponential increase of the nuclear level
density with excitation energy, extremely large partition
functions already result at temperatures of a fewMeV (tem-
peratures given as energies and in T9 are related by
E ¼ T9=11:6045 MeV). However, it has been realized that a
straightforward integration over the level density might
overestimate the partition functions. High-excitation
energies of the nucleus permit the emission of nucleons and
therefore an appropriate fraction of the level density
associated with such continuum states should be neglected
in the computation of the partition function.

Fowler et al. (1978) introduced such high-temperature
corrections by truncating the integration near the nucleon
separation energy and by subtracting continuum scattering
states (which, however, do not act below T9 ¼ 100).
Mazurek et al. (1979) accounted for the suppression of the
partition functions by arbitrarily setting the integral cutoff
to 25 MeV. In a semiclassical calculation, Tubbs & Koonin
(1979) showed that Fowler et al. (1978) and Mazurek et al.
(1979) largely overestimated the suppression, that a simple
truncation of the integral is incorrect, and that partition

functions remain large for temperatures as high as
T9 ¼ 100. They find that the corrections are much smaller
than given by truncated level density integrals and that the
conventional partition functions (with full integration) are
much closer to their values than values obtained with any of
the truncation methods.

The advantage of the description by Tubbs & Koonin
(1979), which is based on the independent particle model,
is the natural inclusion of both bound and continuum
nuclear states. Here we use a hybrid model by using the
level density and partition function descriptions as out-
lined in x 2 and applying correction factors derived from
the spherical square well approximation of Tubbs &
Koonin (1979, eqs. [7] and [9] in that reference) but using
the same nuclear properties (nucleon separation energies,
nuclear radius) as in Rauscher & Thielemann (2000). This
way, a continuous extension of the partition functions of
Rauscher & Thielemann (2000) is possible. While the sim-
plicity of the equations is kept, the limitations of the
spherical square well approach are partially lifted
because, e.g., the separation energies are taken from
experiment or from mass formulas employing more real-
istic nuclear potentials and accounting for shell and
deformation effects. Furthermore, this approach is only
used to obtain the relative corrections.

The correction factor C is extracted by comparing the
uncorrected and the corrected total nuclear partition func-
tion of Tubbs & Koonin (1979) computed in their spherical
square well formalism. While referring the reader to the
paper of Tubbs & Koonin (1979) for a more complete
description of their approach, only the relevant equations
are summarized here. The total nuclear partition function
Z ¼ Zesw ¼ ð2J0

i þ 1ÞGeswðTÞ is constructed as the sum of

Fig. 1.—Integrands from eq. (1) for different temperatures T9 of 109Cd. The absolute values are renormalized so that the area under the curves is the same. It
can be seen that for increasing temperature the location of the peak, arising from folding the Boltzmann factor e�E=kT with the level density �ðEÞ, is shifted to
increasingly higher excitation energies E. At the same time, the width of the peak is increased, thus allowing significant contributions to the integral at even
higher energies.
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two terms for protons and neutrons, respectively:

lnZ ¼ lnZp þ lnZn ; ð3Þ

with

lnZx ¼ ln qx � �X þ �E0x � 1
2 lnð2�NÞ : ð4Þ

The letter x stands for neutron (n) and proton (p), respec-
tively, and X is the neutron number N and the proton num-
ber Z, respectively. The ground state energy is denoted by
E0x and the inverse nuclear temperature by � ¼ 1=kT with
� ¼ 11:6045=T9 MeV. The mean-square number fluctua-
tion N, the nuclear contribution qx (as opposed to the con-
tribution of the exterior nucleon gas) of the grand partition
function, and the Lagrange multiplier � can be found with
and without continuum contributions, leading to nucleon
partition functions Zx, Z0

x and total partition functions Z,
Z0 with and without corrections. In the following, primed
quantities are without corrections. Thus, we obtain

q0x ¼DðTÞ F3=2 �0 þ �Sx þ 3�X=2�Fð Þ
� �

;

qx ¼DðTÞ F3=2 �þ �Sx þ 3�X=2�Fð Þ � F3=2 �ð Þ
� �

; ð5Þ

and

N
0 ¼ 3

4DðTÞ F�1=2 �0 þ �Sx þ 3�X=2�Fð Þ
� �

;

N ¼ 3
4DðTÞ F�1=2 �þ �Sx þ 3�X=2�Fð Þ � F�1=2 �ð Þ

� �
: ð6Þ

Fermi integrals of the order � with argument h are denoted
by F� �ð Þ. The factorDðTÞ is

DðTÞ ¼ 1ffiffiffiffi
X

p 2�FkT

3

� �3=2

: ð7Þ

For consistency, the same particle separation energy Sx is
used as for the reaction rate calculations of Rauscher &
Thielemann (2000). It is taken either from experiment or
from a mass formula where no experimental information is
available. The level density at the zero-temperature Fermi
surface is given as

�F ¼ 4ffiffiffiffiffiffi
3�

p
� �2=3

X 1=3 mxR2

�h2
; ð8Þ

using the nuclear radius R and the nucleon mass mx. With
that definition the ground state energy becomes

E0x ¼ � 3

5

X 2

�F
� XSx : ð9Þ

Before evaluating the above equations, the appropriate
(temperature dependent) Lagrange multiplicators with and
without corrections have to be determined. This is done by
requiring states in the grand canonical ensemble to have, on
the average, the correct number of nucleons, X, and there-
fore by finding the root of the following equations with
respect to � and �0:

3
2DðTÞ F1=2 �0 þ �Sx þ 3�X=2�Fð Þ

� �
� X ¼ 0 ;

3
2DðTÞ F1=2 �þ �Sx þ 3�X=2�Fð Þ � F1=2 �ð Þ

� �
� X ¼ 0 :

ð10Þ

The proper � or �0 found above has to be inserted also in
equation (4), of course.

Finally, the relevant partition function GðTÞ is then
obtained by multiplying the previous function (from x 2)
with the correctionC:

GðTÞ ¼ CðTÞGðTÞ ¼ exp lnZðTÞ � lnZ0ðTÞ½ �GðTÞ : ð11Þ

Thus, the correction factor C found with the approach
above is applied to the partition function derived in the full
computation described in x 2. The corrections start to act at
temperatures T9 ’ 50 60 for light and intermediate nuclei
and as low as T9 ’ 14 for heavy nuclei. Corrections are neg-
ligible for T9 � 10, implying that the partition functions
from Rauscher & Thielemann (2000) can be used without
further modifications. The magnitude of the corrections
ranges from a few percent at the lower end of the tempera-
ture range to a suppression factor of 10�5 for the heaviest
nuclides at T9 ¼ 100 and 10�40 at T9 ¼ 275, respectively.
The correction factors for a few selected cases are shown in
Table 1.

4. DISCUSSION AND CONCLUSION

The corrected renormalized partition functions G cal-
culated with level densities utilizing input from the finite
range droplet model (FRDM) (Möller et al. 1995; see
also Rauscher & Thielemann 2000) are given in Table 2.
Results making use of the Extended Thomas-Fermi mass
formula with shell quenching effects (ETFSI-Q) (Pearson,
Nayak, & Goriely 1996; see also Rauscher & Thielemann
2000) far from stability are given in Table 3. The proper-
ties of the mass formulas can enter via the particle sepa-
ration energies which are calculated from predicted mass
differences in case no experimental masses are known.
Furthermore, they always enter in the microscopic correc-
tion term used in the level density treatment of Rauscher
et al. (1997). The method to calculate the high-
temperature corrections is only applicable for bound
nucleons; therefore, only those nuclides are given for
which both the neutron and proton separation energies
are positive. The printed version of this paper contains
only example tables, showing which kind of information
is available. Partition functions for the full range of
nuclides from proton dripline to neutron dripline for
10 � Z � 83 (FRDM) and 26 � Z � 85 (ETFSI-Q) are
available as machine readable tables in electronic form.
The formatting is the same as used in Rauscher &
Thielemann (2000), except for the different temperature
range. Thus, the partition functions presented here pro-
vide a smooth and analytical extension of the previous
tabulation, extending the range of temperatures to 0:1 �
T9 � 275:

The new values for 56Ni can directly be compared to the
ones from Tubbs & Koonin (1979). Figure 2 shows the par-
tition function of this nucleus. By comparing to Figure 1 in
Tubbs & Koonin (1979) it can be seen that the new value is
higher by 45%–50% around kT ¼ 10 MeV than their cor-
rected value B. This is mainly due to the different level den-
sity description (different effective level density parameter a)
used since a similar treatment of the high-temperature
corrections is implemented in both calculations.

It has to be noted that the partition functions presented
here are valid for low-density conditions. In high-density
regimes, modifications of nuclear properties (e.g., separa-
tion energies) might have to be additionally applied. This is
beyond the scope of the current investigation.

No. 2, 2003 NUCLEAR PARTITION FUNCTIONS 405



TABLE 2

Renormalized Partition FunctionsGðT9Þ Including High-Temperature Corrections

Nuclide

Z A J0

Gð12Þ Gð14Þ Gð16Þ Gð18Þ Gð20Þ Gð22Þ Gð24Þ Gð26Þ
Gð28Þ Gð30Þ Gð35Þ Gð40Þ Gð45Þ Gð50Þ Gð55Þ Gð60Þ
Gð65Þ Gð70Þ Gð75Þ Gð80Þ Gð85Þ Gð90Þ Gð95Þ Gð100Þ
Gð105Þ Gð110Þ Gð115Þ Gð120Þ Gð125Þ Gð130Þ Gð135Þ Gð140Þ
Gð145Þ Gð150Þ Gð155Þ Gð160Þ Gð165Þ Gð170Þ Gð175Þ Gð180Þ
Gð190Þ Gð200Þ Gð210Þ Gð220Þ Gð230Þ Gð240Þ Gð250Þ Gð275Þ

56Ni

28 56 0.0

3.23[+00] 8.19[+00] 2.37[+01] 7.17[+01] 2.19[+02] 6.64[+02] 2.01[+03] 6.08[+03]
1.83[+04] 5.52[+04] 8.60[+05] 1.31[+07] 1.96[+08] 2.86[+09] 4.06[+10] 5.63[+11]
7.64[+12] 1.02[+14] 1.33[+15] 1.71[+16] 2.17[+17] 2.71[+18] 3.35[+19] 4.10[+20]
4.96[+21] 5.94[+22] 7.05[+23] 8.30[+24] 9.71[+25] 1.13[+27] 1.30[+28] 1.50[+29]
1.71[+30] 1.94[+31] 2.20[+32] 2.49[+33] 2.80[+34] 3.14[+35] 3.51[+36] 3.93[+37]
4.87[+39] 6.02[+41] 7.41[+43] 9.11[+45] 1.12[+48] 1.38[+50] 1.70[+52] 2.90[+57]

Notes.—The values given here were calculated with level densities based on FRDM input (see text). Each nuclide
is characterized by its charge and mass numbers Z, A, and its ground-state spin J0. Numbers in square brackets
denote powers of 10. Table 2 is available in its entirety in the electronic edition of the Astrophysical Journal
Supplement. A portion is shown here for guidance regarding its form and content.

TABLE 1

Correction Factors CðT9Þ for Selected Cases

Nuclide

C(12) C(14) C(16) C(18) C(20) C(22) C(24) C(26)
C(28) C(30) C(35) C(40) C(45) C(50) C(55) C(60)
C(65) C(70) C(75) C(80) C(85) C(90) C(95) C(100)
C(110) C(130) C(150) C(170) C(190) C(210) C(230) C(250)

16O

1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00]
9.99[�01] 9.99[�01] 9.97[�01] 9.93[�01] 9.87[�01] 9.78[�01] 9.65[�01] 9.49[�01]
9.29[�01] 9.05[�01] 8.79[�01] 8.49[�01] 8.17[�01] 7.83[�01] 7.48[�01] 7.11[�01]
6.36[�01] 4.90[�01] 3.63[�01] 2.61[�01] 1.83[�01] 1.27[�01] 8.66[�02] 5.89[�02]

56Fe

1.00[+00] 1.00[+00] 1.00[+00] 1.00[+00] 9.99[�01] 9.98[�01] 9.96[�01] 9.93[�01]
9.88[�01] 9.82[�01] 9.60[�01] 9.24[�01] 8.75[�01] 8.14[�01] 7.42[�01] 6.64[�01]
5.83[�01] 5.03[�01] 4.26[�01] 3.55[�01] 2.90[�01] 2.34[�01] 1.86[�01] 1.46[�01]
8.69[�02] 2.71[�02] 7.50[�03] 1.90[�03] 4.56[�04] 1.06[�04] 2.40[�05] 5.43[�05]

56Ni

1.00[+00] 1.00[+00] 9.99[�01] 9.98[�01] 9.96[�01] 9.92[�01] 9.88[�01] 9.82[�01]
9.74[�01] 9.65[�01] 9.33[�01] 8.90[�01] 8.35[�01] 7.71[�01] 7.00[�01] 6.24[�01]
5.48[�01] 4.73[�01] 4.02[�01] 3.36[�01] 2.78[�01] 2.26[�01] 1.81[�01] 1.44[�01]
8.72[�02] 2.86[�02] 8.33[�03] 2.23[�03] 5.61[�04] 1.36[�04] 3.24[�05] 7.63[�06]

176Hf

9.99[�01] 9.97[�01] 9.93[�01] 9.85[�01] 9.72[�01] 9.52[�01] 9.26[�01] 8.92[�01]
8.51[�01] 8.04[�01] 6.61[�01] 5.05[�01] 3.57[�01] 2.33[�01] 1.42[�01] 8.07[�02]
4.29[�02] 2.15[�02] 1.01[�02] 4.54[�03] 1.93[�03] 7.88[�04] 3.08[�04] 1.16[�04]
1.49[�05] 1.77[�07] 1.55[�09] 1.12[�11] 7.28[�14] 4.51[�16] 2.79[�18] 1.77[�20]

208Pb

9.99[�01] 9.97[�01] 9.93[�01] 9.84[�01] 9.69[�01] 9.48[�01] 9.18[�01] 8.80[�01]
8.34[�01] 7.80[�01] 6.23[�01] 4.55[�01] 3.03[�01] 1.85[�01] 1.03[�01] 5.32[�02]
2.53[�02] 1.12[�02] 4.64[�03] 1.80[�03] 6.62[�04] 2.30[�04] 7.61[�05] 2.41[�05]
2.14[�06] 1.15[�08] 4.30[�11] 1.28[�13] 3.36[�16] 8.33[�19] 2.06[�21] 5.24[�24]

Notes.—Numbers in square brackets denote powers of 10. The values given here were calculated with separation
energies based on experiment or FRDM input (see text).



The nuclear model for the corrections (and the one for the
level density) assumes a Fermi-gas of independent nucleons
interacting only through a common, spin-independent
mean field. At nuclear temperatures beyond about 30 MeV
(i.e., T9 � 350), the momentum dependence of the mean
field, the excitation of mesonic degrees of freedom, and the
breakdown of the independent particle approximation
become important. This is not relevant for the temperature
range explored here but will necessitate an altogether

different approach when expanding the temperature range
beyond about 25–30 MeV. It is expected that the exponen-
tial rise of the partition functions with temperature will
finally be effectively suppressed beyond those energies.

This work is supported by the Swiss National Science
Foundation (2000-061031.02). T. R. acknowledges a
PROFIL professorship from the Swiss National Science
foundation (grant 2024-067428.01).

Fig. 2.—Partition function of 56Ni calculated with level densities including inputs from FRDM (solid line) and ETFSI-Q (dashed line). Both calculations
include high-temperature corrections that, however, become significant only at kT > 5 MeV for this nucleus. Differences between FRDM and ETFSI-Q
partition functions are more pronounced for neutron-rich nuclides. Also shown is a partition function without the continuum corrections (dotted line).

TABLE 3

Renormalized Partition FunctionsGðT9Þ Including High-Temperature Corrections

Nuclide

Z A J0

Gð12Þ Gð14Þ Gð16Þ Gð18Þ Gð20Þ Gð22Þ Gð24Þ Gð26Þ
Gð28Þ Gð30Þ Gð35Þ Gð40Þ Gð45Þ Gð50Þ Gð55Þ Gð60Þ
Gð65Þ Gð70Þ Gð75Þ Gð80Þ Gð85Þ Gð90Þ Gð95Þ Gð100Þ
Gð105Þ Gð110Þ Gð115Þ Gð120Þ Gð125Þ Gð130Þ Gð135Þ Gð140Þ
Gð145Þ Gð150Þ Gð155Þ Gð160Þ Gð165Þ Gð170Þ Gð175Þ Gð180Þ
Gð190Þ Gð200Þ Gð210Þ Gð220Þ Gð230Þ Gð240Þ Gð250Þ Gð275Þ

56Ni

28 56 0.0

3.20[+00] 8.03[+00] 2.28[+01] 6.76[+01] 2.01[+02] 5.94[+02] 1.74[+03] 5.10[+03]

1.48[+04] 4.30[+04] 6.08[+05] 8.43[+06] 1.14[+08] 1.52[+09] 1.97[+10] 2.50[+11]

3.11[+12] 3.80[+13] 4.56[+14] 5.40[+15] 6.30[+16] 7.25[+17] 8.25[+18] 9.29[+19]

1.04[+21] 1.14[+22] 1.25[+23] 1.36[+24] 1.47[+25] 1.57[+26] 1.67[+27] 1.77[+28]

1.87[+29] 1.96[+30] 2.06[+31] 2.14[+32] 2.23[+33] 2.31[+34] 2.38[+35] 2.46[+36]

2.60[+38] 2.74[+40] 2.88[+42] 3.02[+44] 3.17[+46] 3.32[+48] 3.50[+50] 4.02[+55]

Notes.—The values given here were calculated with level densities based on ETFSI-Q input (see text). Each
nuclide is characterized by its charge and mass numbers Z, A, and its ground-state spin J0. Numbers in square
brackets denote powers of 10. Table 3 is available in its entirety in the electronic edition of the Astrophysical Journal
Supplement. A portion is shown here for guidance regarding its form and content.
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