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ABSTRACT

We present the results of high-resolution hydrodynamic simulations of stable and overstable radiative
shocks. A one-dimensional resolution study, incorporating both power-law and realistic astrophysical
cooling functions, agrees well with analytical solutions both in the spatial structure of the shocked zone and
in the frequencies of overstable oscillations. This builds upon previous work by Strickland & Blondin,
evaluating the accuracy of our code and estimating the resolution required to construct credible multi-
dimensional models of interstellar radiative shocks. These models show that accurate modeling of the spatial
and temporal structure induced by cooling processes in a multidimensional hydrodynamic simulation
requires high resolution. We then present inhomogeneous two-dimensional models with varying input
density fluctuation spectra and show that the resulting postshock density and velocity structures are largely
independent of the initial seed fluctuation spectrum and that small fluctuations can result in a dense
filamentary structure in two dimensions being fully developed in a single cooling timescale. These
inhomogeneous two-dimensional structures are described by a fractal dimension, which takes a characteristic
value in these two-dimensional simulations. Cooling inhomogeneous shocks have enhanced cooling
efficiency, due to their fractal structure, compared to homogeneous one- and two-dimensional models. The
increased radiative efficiency is accompanied by a decrease in the conversion of kinetic to thermal energy as
the additional degrees of freedom in the two-dimensional models allow kinetic energy to be redirected in
other directions, resulting in two-dimensional turbulence.

Subject headings: hydrodynamics — instabilities — plasmas — shock waves

1. INTRODUCTION

A physical understanding of the role of thermal and
dynamical instabilities is critical to our ability to model many
classes of astrophysically interesting radiative shock waves,
especially those with velocities in the range of 150 to
�1500 km s�1. These are encountered in such diverse envi-
ronments as active galaxy narrow-line regions, high-redshift
radio galaxies, supernova remnants, and the jets associated
with newly born stars. While detailed spectral predictions
from steady-flow shock models have been available for
decades (Cox 1972; Daltabuit & Cox 1972; Dopita 1977;
Raymond & Smith 1977; Raymond 1979; Dopita, Binette, &
Tuohy 1984), it has been known for almost as long that
steady, time-independent models may not be a good approxi-
mation for high-velocity shocks. Steady, plane-parallel
shocks have been computed using the MAPPINGS III code.
Although these models incorporate expanded ionization and
temperature ranges, they neglect the important effects of local
thermal instabilities (Sutherland 1993; Sutherland & Dopita
1993; Dopita & Sutherland 1995, 1996) as well as global
shock oscillations induced by cooling. The latter occurs when
a shock front initially collapses as a result of efficient post-
shock cooling followed by reexpansion driven by the high
pressure of freshly shocked gas.

1.1. Local Plasma Thermal Instability

The onset of thermal instability in cooling plasmas
depends upon the characteristics of the cooling function
and occurs whenever the cooling processes tend to enhance
preexisting density fluctuations as the plasma cools. In par-
ticular, a hot gas is unstable to isobaric (constant pressure)

perturbations if
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(Field 1965), while the gas will be thermally unstable to
isochoric (constant density) perturbations if
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(Parker 1953). In shocks, cooling occurs at (almost) con-
stant pressure, so that the first condition is appropriate.
Writing this explicitly in terms of the cooling function, �,
and the temperature, T, the plasma is thermally unstable
when

d ln�

d lnT
< 2 : ð3Þ

An inspection of the time-dependent, noncollisional equili-
brium cooling functions given by Sutherland (1993) reveals
that the slope of the cooling function, �, turns over and
becomes negative between 2� 105 and�3� 107 K and that
generally equation (3) is satisfied for Te2� 105 K.

1.2. Shock Oscillation Instability

Chevalier & Imamura (1982) showed that when a shock
occurs in a radiative plasma, the entire shock can oscillate
as a result of thermal instability, in a cycle of collapse
and reformation of the shock. This instability is related
to the local thermal instability, and the criteria for
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power-law cooling is similar to equation (3) above, with a
more severe limit,

d ln�

d lnT
< 1 : ð4Þ

That is the shock will be unstable to large-scale oscillations
of the shock-front location when the index of cooling is less
than 1.0. This condition on the nonequilibrium interstellar
medium (NEQ) cooling function is essentially the same as
above, i.e., when Te2� 105 K, as this is the same point
where the steep (and stable) cooling below 1� 105 K turns
over to much less steep cooling at higher temperatures.

For a fully ionized plasma of solar metallicity, the post-
shock temperature, Ts, is related to shock velocity, vs, by

Ts ¼ 1:38� 105ðvs=100 km s�1Þ2 K ð5Þ

(Dopita & Sutherland 2002). Thus any shock with a velocity
greater than �120 km s�1 can oscillate in an overstable
fashion. This covers the entire range of autoionizing radia-
tive shocks computed in Sutherland (1993) and Dopita &
Sutherland (1995, 1996).

This was also seen in Innes et al. (1987a, 1987b), where
one-dimensional hybrid hydrodynamic and spectrophoto-
metric models in the regime between 150 and 200 km s�1

were shown to oscillate. These supported the expectation
that normal shock diagnostics (i.e., the line ratios that are
sensitive to the shock velocity) are invalid when the shock
becomes thermally unstable. Later, Innes (1992) suggested
that the oscillating process could result in limit cycle
behavior—manifest as pulsations in the one-dimensional
propagating shocks—that in a time-averaged sense could
produce similar spectra to steady flowmodels.

1.3. Multidimensional Shocks

It remains an open question as to whether two- and, most
importantly, three-dimensional thermally unstable shocks
pulsate or whether the higher dimensionality allows other
modes of to occur. Indeed, it is possible that pulsations may
become incoherent along the face of an extended shock,
reducing the shock region to a quasi-steady state. The effects
of two- and three-dimensional local thermal instability,
forming differentiations in temperature and density in the
postshock gas (filaments, voids, and clumps) on the global
shock oscillations needs to be investigated.

Another limitation of steady one-dimensional shock
models, such as produced by the code MAPPINGS III is
the assumption of an infinite plane-parallel geometry. This
has direct implications for the radiative transfer models.
When the homogeneous and steady state assumptions are
removed, one of the key questions is that of radiative trans-
fer throughout the volume; in particular how much of the
downstream and upstream radiation fields are affected by
more complex geometry?

Recently, detailed and spatially resolved observational
studies of interstellar shocks have become available. These
are ideal for comparison with theoretical models and
include work by Danforth, Blair, & Raymond (2001) on the
Cygnus supernova remnant (SNR) and by Ghavamian et al.
(2000) on the Tycho remnant. These studies reveal complex
multiple shock structures that are clearly neither plane-
parallel nor steady. Moreover, the line diagnostics in the
Cygnus SNR suggest shock velocities in the critical velocity

domain near and above 150 km s�1, where thermal instabil-
ities are important. The filamentary structures in the
Danforth et al. (2001) observations are strongly suggestive
of highly inhomogeneous preshock gas, which in turn can
be reasonably expected to cool in an unstable fashion.

In this paper we describe our development and testing of
the computational tools that will allow us to directly model
thermally unstable, nonsteady shocks in time-dependent,
three-dimensional simulations. In a previous paper
(Sutherland, Bisset, & Bicknell 2003, hereafter Paper I) we
described a method for eliminating a numerical shock insta-
bility that is a feature of many directionally split codes. In
this paper we describe the construction of the code that is
used in these studies and the results of one-dimensional sim-
ulations that are used to test fundamental aspects such as
the grid resolution, which is necessary in order to properly
describe radiative shocks.

We then present inhomogeneous two-dimensional
models where the gas entering the shock front is given 5%
density fluctuations with two different fluctuation spectra.
We analyze the statistical properties and fractal structure of
the solutions and compare these with steady or homo-
geneous models. These two-dimensional models provide us
with insight into the physical properties of thermally
unstable shocks. In future papers we shall extend this work
to the computation of the full three-dimensional structure
of radiative fast shocks.

2. DESCRIPTION OF THE CODE

For this, and for other purposes, we have developed a
new hydrodynamic code based on the University of Virginia
VH-1 ppmlr code (Blondin & Lukfin 1993), which is in turn
based on the seminal work of Colella & Woodward (1984).
We have largely reorganized the code for improved effi-
ciency, improved its Riemann solver, incorporated radiative
cooling, and incorporated new options for eliminating
numerical instabilities. In the context of radiative shocks,
the most important of these is the striping instability that is
seeded at the shock front, which is subsequently amplified in
the postshock flow region perpendicular to the shock front,
appearing as striated fluctuations in temperature, density,
and pressure. This instability occurs in many directionally
split codes. This has been eliminated by the use of an ‘‘ oscil-
lation filter,’’ which was described in detail in Paper I, where
other approaches to eliminating this instability are also
discussed.

We have not used an adaptive mesh because the advected
structures introduced onto the grid in the two-dimensional
models are fractal in nature. Consequently, any grid refine-
ment would be forced to the maximum resolution over most
of the grid in order to preserve the high spatial frequencies,
which occur throughout the model domain. The one-
dimensional tests performed here therefore also use a fixed-
resolution grid so that the conclusions drawn from the
one-dimensional models are then applicable to the final
two-dimensional models.

Magnetic fields are neglected in the present simulations.
While magnetic fields may play an important role in deter-
mining the full development of the filamentary structures in
interstellar shocks, it is also true that in the hot postshock
region the thermal pressure greatly exceeds the magnetic
pressure even if the thermal and magnetic pressure are
in equipartition in the precursor medium. Thus, the
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development of filamentary structure in the cooling layer is
initially controlled by the characteristics of thermally unsta-
ble cooling. Since the ratio of the magnetic to gas pressure
increases in the postshock gas in proportion to the density,
eventually the dense cooled layer is supported primarily by
magnetic pressure, and the gas then continues to cool not
only at constant pressure but also at constant density. In the
simulations presented here we have eliminated cooling
below 104 K so that the dense gas is artificially kept from
becoming too dense. This mimics what occurs when the gas
is supported by magnetic pressure. As long as this dense
layer remains comparable in size to that computed for the
shock tail in a model with a preshock equipartition mag-
netic field and steady flow cooling, then the dynamical
behavior should be similar between the magnetically sup-
ported model and the field-free hydrodynamic simulation.
To undertake magnetohydrodynamic simulations of suffi-
ciently high resolution in multiple dimensions remains a
challenging computational task, which we hope to under-
take in the future. For the time being, however, we limit
ourselves to consideration of the nonmagnetic case.

2.1. Treatment of Radiative Cooling

We have used the one-dimensional time-dependent
plasma-modeling code MAPPINGS III to compute the
nonequilibrium cooling function and ionization state of a
plasma with the standard solar abundance set taken from
Anders & Grevesse (1989). The MAPPINGS III code is
described in a number of papers (Dopita 1977; Binette,
Dopita, & Tuohy 1985; Sutherland 1993) and has been
extensively tested against other codes (Ferland et al. 1994).
MAPPINGS III can be used to compute the time-dependent
ionization and cooling for up to 16 atomic species over a
range 100–108 K, for both photoionization models and
models dominated by collisional ionization.

We use an explicit scheme to compute the cooling in the
ppmlr code. The time step is controlled by the cooling time
in addition to the usual Courant condition. The cooling is
computed in each cell after the hydrodynamical sweeps,
introducing pressure gradients to which the gas flow reacts.
The effect of the cooling after a time step Dt, in a given cell
Cði; jÞ is evaluated by reducing the initial pressure P0ði; jÞ
using an explicit Runge-Kutta (RK) integration:

U0 ¼ P0ði; jÞ=ð� � 1Þ ; ð6Þ
U1 ¼ U0 þ �1 þ 2ð�2 þ �3Þ þ �4½ �=6 ; ð7Þ

P1ði; jÞ ¼ ð� � 1ÞU1 ; ð8Þ

where

�1 ¼ � �20�ðU0ÞDt ; ð9Þ
�2 ¼ � �20�ðU0 þ �1=2ÞDt ; ð10Þ
�3 ¼ � �20�ðU0 þ �2=2ÞDt ; ð11Þ
�4 ¼ � �20�ðU0 þ �3ÞDt : ð12Þ

The NEQ cooling function �ðUÞ, was evaluated from
MAPPINGS III models of plasma cooling isobarically from
high temperatures, and, together with its derivative, was
tabulated over 1024 logarithmic temperature intervals from
103 to 1010 K; these tables are used for interpolation during
a simulation.

The NEQ functions differ from the cooling function
derived from a single-velocity steady shock model. The
principal difference is the absence of a short-lived strongly
cooling phase immediately after the shock front, where low-
ionization preshock material suddenly becomes hot. This
low-ionization gas rapidly ionizes in this region, strong
collisional excitation also occurs, and a spike of efficient
cooling results. However, the timescale of this phase is very
short, being only�1% of the steady flow in extent. The inte-
grated losses in this region are therefore small, despite the
high cooling rates. Since the shock front in the finite grid
simulations is already subject to excessive cooling as a result
of the interpolation of intermediate temperatures in the
shock front, we prefer to use the smooth NEQ function in
order to avoid exacerbating the cooling error in the shock
front. For shocks above approximately 150 km s�1, the
NEQ function is a good approximation to the actual shock
cooling function, apart from the initial spike; the postshock
gas is hot enough to come close to equilibrium before cool-
ing in shocks of this velocity. The NEQ function cools
almost at equilibrium down to about 106 K, and all shocks
above 200 km s�1 will cool similarly down to this tempera-
ture. The NEQ function may be a poorer approximation for
shocks of 100 km s�1 or less and to solve this problem ion-
ization calculations will need to be computed in the hydro-
dynamical models when determining cooling rates. Finally,
the calculation of the maximum allowed time step, dt during
a simulation step includes the local cooling timescale, in
addition to the timescales involved in the usual Courant
condition. We limit the time step to be no longer than 10%
of the shortest cooling time on the computational grid by
taking the harmonic mean of the sound and flow crossing
timescales and the cooling timescale.

The Runge-Kutta method for integrating the internal
energy was compared with higher order and other implicit
methods (such as reverse Eulerian) and was found to give
comparable results with minimal computation. The non-
equilibrium cooling function is smooth, and the Runge-
Kutta method was found to be accurate to a level �10�6

when compared to analytical solutions for power-law cool-
ing. This method of computation is preferable to a method
in which the cooling is computed during the hydrodynamic
sweeps because at the high Mach numbers here (15 and
above) the internal energy of the gas is a small component
of the total energy, and errors in the cooling estimates can at
times produce unphysical negative pressures from the direct
energy equation integrator. Energy conservation and the
consistency of this method was confirmed (see x 5.4).

We also note that even with relatively low diffusion, as in
high-order schemes such as the piecewise parabolic method
(PPM), there is always the possibility of excessive cooling in
zones separating hot and cool phases (that usually involve
low and high densities). In regions of steep gradients (in den-
sity, temperature, etc.), the use of zone-averaged quantities
to compute the cooling [i.e., h�i2�ðhTi, rather thanR
�2�ðTÞdx] can overestimate the cooling, no matter how

fine the discretization of �ðxÞ. Rather than attempt to
reduce this problem by limiting the local cooling rate (i.e.,
Blondin, Konigl, & Fryxell 1989; Stone & Norman 1993),
we refine the grid until the cooling behavior of the particular
simulation, wall shocks in this case, approaches an asymp-
tote. We then determine a resolution that brings the cooling
errors down to acceptable levels, where the local gradients
are small enough that the zone averages are adequate.
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Determining the asymptotic behavior of large simulations
(such as shock oscillation frequencies) is expensive in com-
puting terms. Nevertheless, the low-resolution models in
any resolution study are generally quick, and time is mostly
spent on the high-resolution models. This procedure would
need to be implemented for different simulation geometries,
i.e., a supernova blast model. There is no universal resolu-
tion that applies to all problems.

2.2. Normalization

In computational hydrodynamics, it is common practice
for adiabatic simulations to normalize the flow variables,
for example, by setting the sound speed equal to unity.
However, with the introduction of a nonequilibrium cooling
function, which is not scale free, renormalization of the
hydrodynamical variables is more complex. In some cases,
numericists, utilizing the precision of 64 bit arithmetic, do
not normalize the dynamical variables. Nevertheless, using
cgs units directly, can be excessively demanding on
numerical precision, so we have chosen to normalize the
simulations internally as follows.

Assuming � ¼ 5
3, the ideal atomic gas ratio of specific

heats, we adopt fiducial values for the spatial scale x0, the
velocity v0, and the density �0. Implied scaling factors for
the pressure P0, time �0, temperature T0, and cooling �0 are

P0 ¼ �0v
2
0 ; ð13Þ

�0 ¼ x0=v0 ; ð14Þ
T0 ¼ ðlmamuÞ=k½ �v20 ; ð15Þ
�0 ¼ P0=ð�0�20Þ ; ð16Þ

where l ¼ 0:6224 is the mean molecular weight per particle
(electrons included), mamu is the atomic mass unit, and k is
Boltzmann’s constant. These factors are then used as multi-
plicative factors to change the internal scaled quantities to
physical quantities,

aphys ¼ A0aint ; ð17Þ

where aphys is the physical quantity, aint is the internal
normalized quantity, and A0 is the appropriate scaling
factor given above.

3. ONE-DIMENSIONAL WALL-SHOCK FLOWS

In this paper, we have adopted the well-parameterized
and theoretically well-understood wall-shock model
(Chevalier & Imamura 1982, hereafter CI82; Strickland &
Blondin 1995, hereafter SB95). This provides a simple char-
acteristic shock model that can be studied in either one or
more dimensions.

A wall shock is set up on a grid with a �Mach 15 inflow
(150 km s�1 in the NEQ models) on one side and with a
dense layer on the other. The density of this layer was fixed
at the density that would be produced through a 150 km s�1

isothermal shock with initial density �0,�0M
2, where M is

the inflow Mach number. A fast reverse shock forms at the
dense layer interface, while a slow forward shockmoves into
the dense layer andmoves off the grid. An outflow boundary
is applied in this region, and this prevents reflected waves
from interfering with the simulation. The outflow velocity
was prescribed in such a way as to maintain the dense layer
with an approximately constant thickness during the course

of the simulations, effectively tracking the buildup of dense
gas. This is slightly different from the ideal reflecting wall
condition of SB95, where the shock was launched from the
wall itself. The present simulation is established in such a
way so we can study the effect on the shock of dense cooled
layer that is inevitably built up in any physical situation.

There exist analytic solutions for the structure of a wall
shock with power-law cooling (CI82) that enable us to
determine the required resolution to achieve the desired
numerical accuracy. We present comparisons with the ana-
lytical, time-independent models and the numerical, time-
dependent models for power-law cooling of SB95. We then
demonstrate, in one dimension, the differences from the
power-law solutions that occur when we utilize an NEQ
cooling function. We also estimate the resolution that is
required for realistic two-dimensional simulations.

The one-dimensional solutions presented in this paper
build on the substantial results reported by SB95 in the
following ways:

1. We verify our methodology by comparing the results
of our simulations with analytical power-law cooling
models. Dynamical models with power-law cooling are
compared with time-independent similarity models of CI82,
with good agreement. The correct time-dependent stability
of cooling of different indices is also confirmed.
2. The time-dependent dynamical models are then

extended using the nonanalytical NEQ function derived
from MAPPINGS III. These one-dimensional tests are
important for determining the grid size required for
adequate resolution of astrophysical radiative shocks,
where an analytic estimate is unavailable. Adequate
resolution is estimated for a uniform grid by examining
asymptotic behavior with increasing resolution.
3. We conduct resolution studies of radiative shocks,

examining in particular the asymptotic behavior of the
bounce amplitudes and oscillation frequencies of one-
dimensional NEQ shocks. These tests thus extend the tests
for power-law cooling carried out by SB95.

3.1. Power-Law Cooling Solutions

The local cooling function of an interstellar plasma is
often described in terms of a local power law with
temperature

�ðTÞ / �2T� ; ð18Þ

where � is the density, T is the temperature, and � is the
power-law index. In some circumstances, this representa-
tion can be quite accurate. For example, at high tempera-
ture, electron bremsstrahlung cooling dominates the
cooling giving a power-law cooling function with � ¼ 1

2. In
the theoretical case that the cooling function can be repre-
sented as a power law throughout the whole temperature
range, CI82 demonstrated that there exist analytical radia-
tive wall-shock similarity solutions that depend only on the
particular value of �.

For the cases � ¼ 2:0 and 1.0, we found that steady-flow
solutions can be obtained using the ppmlr code in one
dimension, with 1000 elements of resolution in a uniform
grid. The scaled velocity profiles that result are compared
with the analytical solutions from CI82 in Figure 1. The
� ¼ 2:0 model in particular shows a very good fit to the
theoretical profile, when a small (0.5%) density undershoot
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in the postshock density is taken into account, which
slightly biases the cooling and offsets the velocity curve
above the strict similarity solution. This is taken as evidence
that the code is integrating the cooling correctly. The
dynamical curve for � ¼ 1:0 show significant deviations
from the theoretical curve at low velocities, resulting in an
underestimation of the velocity by approximately 0.1 dex in
the region within 1% of the wall. This low velocity corre-
sponds to an overestimate of the density (by mass conserva-
tion) and a consequent excess of cooling through the �2 term
in the cooling equation. The error arises from interpolation
errors and numerical diffusion, as the piecewise parabolic
interpolation fails to give a good estimate of the average
density in the regions where it rapidly rises. This error can
be reduced by simply increasing the resolution of the simu-
lation, but it can never be completely eliminated using a
finite grid and a low-order interpolation scheme. In both
cases the curves are terminated by the lower temperature
cutoff of 104 K.

In simulations with strong cooling, in the sense that
� < 1:0, this density error can lead to erroneously strong
cooling. This directly impacts on estimates of cooling time-
scales and cooling lengths. If the density error in the inner-
most cells is large enough, then a single cell in the simulation
can dominate the overall cooling. In simulations with a fixed
grid the only solution is to increase the resolution and meas-
ure the changes in the implied cooling times and lengths to
determine when the error is reduced to acceptable levels.
Strickland & Blondin (1995) have performed similar simula-
tions to these, but at lower spatial resolution.

In Figure 2 we show the time-dependent behavior of 2048
cell models for � ¼ 2:0, 1.0, and 0.0. The expected stable,
marginally stable, and unstable behaviors of these shocks is
evident. In particular, the � ¼ 0:0 model shows a periodic
behavior that remains invariant from one cycle to the next,

once it has been fully established. This is caused by excessive
cooling, which robs the postshock gas of pressure support,
causing the shock front to first stall, then to collapse back
onto the dense cooled layer before being launched anew.We
also see strong secondary shock formation, due to reflec-
tions off the dense layer at the onset of strong collapse, that
are not visible in the SB95 simulations, due to the different
wall boundary conditions we have here.

3.2. Resolution

Numerical diffusion on any finite hydrodynamical grid
inevitably causes low-density cells that are adjacent to very
dense zones to acquire excessive mass. The interpolation
scheme essentially imposes a limit on the accuracy with
which high-density contrasts can be modeled. The usual
approach is to increase the resolution until the total volume
of the simulation with poorly estimated hydrodynamic vari-
ables has been reduced to an ‘‘ acceptable ’’ level.

For radiative losses, the cooling rate is proportional to
the density squared. Therefore, numerical mass diffusion of
mass causes excessive cooling in low-density cells adjacent
to those of high density. Under the approximately isobaric
conditions in a radiative shock, the highest density cells
have the lowest temperatures in which we have set the cool-
ing rate equal to be zero. The cells adjacent to these dense
cells are radiative, and since they have an incorrectly high
density, they form a thin layer with anomalously strong
cooling (see the two-dimensional models shown in Figs. 3c
and 3d). To reduce the impact of excessive cooling in this
thin layer on the overall hydrodynamic simulation, the total
cooling in a cell in this layer of thickness Ds, at location X,
must be much less than the total cooling that has already
occurred along the flow up to that point, i.e.,

�2�ðTX ÞDs <
Z 0

X

�2�ðTÞds : ð19Þ

Fig. 2.—Time-space plots of the density evolution of one-dimensional
power-law cooling tests (a) � ¼ 2:0, (b) � ¼ 1:0, and (c) � ¼ 0:0. Here the
time axis is horizontal and increasing going to the right, the spatial extent
of the shock lies in the vertical direction at any instant in time.

Fig. 1.—Time-independent one-dimensional power-law cooling tests.
2048 cell one-dimensional time-averaged dynamical models (solid curves)
are compared with analytical similarity solutions from CI82 (dashed lines).
(a) � ¼ 2:0; (b) � ¼ 1:0. See text for details.
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The grid resolution that is required to satisfy this condi-
tion depends upon both the cooling function and the range
of temperatures involved. In order to investigate the appro-
priate grid size, a series of one-dimensional bouncing wall
shock models with increasing resolution were constructed.

3.3. One-dimensional NEQCooling

In this test, grids with resolutions of 256, 512, 1024, 2048,
4096, and 8192 cells were essayed, and the extent of the
‘‘ bounces,’’ where the shock forms, grows, and collapses
after cooling takes over, was measured. Errors resulting
from numerical diffusion result in an early collapse and
reduced amplitude, and also an increased frequency of the
bounce—all the result of unphysical cooling. The aim of this
test is to discover at what resolution the shock behavior
asymptotes sufficiently closely to its limit and to quantify
the errors at this and other resolutions.

Figure 4 shows the density evolution of the wall shock
simulation at different resolutions. Both the amplitudes and
periods of the oscillations increase with resolution, with the
2048, 4096, and 8192 cell simulations tending toward the
limiting maximum amplitude.

The oscillations are analyzed as power spectra in
Figure 5. This can be compared to the similar plot in
Figure 1 of SB95. Here, for NEQ cooling, the power spectra

show that the principal frequency approaches a limit of
1:148� 10�11 s�1; this corresponds to a period of 2.94 cool-
ing times for the NEQ function for a hypothetical steady
150 km s�1 shock, or ! ¼ 0:34 in the CI82 notation. The
noise level at the highest frequencies drops rapidly to �10�6

of the peak power of the fundamental at the resolution of
2048 cells and remains at that level at higher spatial resolu-
tions. This characteristic is shown in the right-hand panel of
Figure 6. At the same time, the fundamental frequency
decreases rapidly with resolution, below a resolution of
2048 cells, and then stabilizes (see Fig. 6, left-hand panel).
For the 2048 cell simulation, the amplitude of the bounce is
within 10% of the limit. For all of these considerations, the
2048 cell resolution was adopted as the standard resolution
along the flow direction for all the subsequent one-dimen-
sional and two-dimensional simulations, since it provides
an acceptable compromise between accuracy and perform-
ance and also provides results in a practical length of com-
putational time in the case of the two-dimensional
simulations.

At a given shock velocity, the choice of spatial resolution
determines what range of isobarically cooling spatial struc-
tures can be resolved. For a shock velocity of 200 km s�1 the
peak postshock temperature, Tmax, is approximately
600,000 K, assuming it is propagating into an ionized inter-
stellar medium of solar composition. The subsequent cool-

Fig. 3.—Snapshot of the cooling rate in the region of the formation of a cool filament. The time,�6:6� 1010 s, corresponds to panel 3 in Fig. 12. Overdense
regions at (a) the 30–50 cell scale are strongly cooling, while (b) larger low-density voids are cooling slowly. As the filament approaches 104 K (c), it becomes
edge brightened and the dense core becomes less radiative. Eventually the center of the knot or filament ceases cooling (d ) and is embedded in a strongly
cooling envelope. The cooled filaments are well resolved at the 10 cell scale.
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ing under roughly isobaric conditions down to the minimum
temperature (Tmin, 10,000 K), therefore provides roughly a
60-fold increase in density. Consider a structure of size x at
Tmax that we wish to resolve by a minimum of 10 grid ele-
ments when it has cooled to near Tmin. In the immediate
postshock region such a structure must have dimensions of
order 600 elements. Such structures are therefore well re-
solved and contained in a 2048 cell grid. Since the postshock
temperature increases as the square of the shock velocity,
then simulations of similar structures in faster shocks will
require grid resolutions that increase as the square of the
velocity.

3.4. Velocity Stability Test

We have also tested the long-term behavior of NEQ
shocks in a regime where they are expected to the stable.
Figure 7 shows the temporal and spatial evolution of the
shock structure for both a 150 km s�1 inflow (corre-

sponding to �200 km s�1 initial shock velocity) and a 75
km s�1 inflow (�100 km s�1 initial shock). Both of these
simulations are made at the same grid resolution (2048
cells), and the spatial extents are scaled to a similar
amplitude in the two cases to produce cooling layers with
similar numbers of grid cells. The 100 km s�1 shock
shows the development of a steady flow with long-term
stability properties, as expected from the form of the
cooling function. The 200 km s�1 shock shows the over-
stable pulsation documented above, with a uniform
asymptotic amplitude. This gives us confidence that the
code properly reflects the stability properties expected of
the cooling plasmas.

4. TWO-DIMENSIONAL SIMULATIONS: THE
INITIAL CONFIGURATION

To study the thermal and dynamical behavior of two-
dimensional radiative shocks, we have chosen to advect
into the shock front an initial density perturbation that
contains a spectrum of spatial fluctuations, with a wide
range of wavenumbers. The introduction of density per-
turbations is fundamental to creating the new behavior in
these two-dimensional models. In the absence of pertur-
bations, the one-dimensional symmetry of a uniform flow
is maintained indefinitely in two-dimensional by the code
reproducing the one-dimensional results. All the two-
dimensional models presented here include the density
fluctuations that are not present in the one-dimensional
models.

We study the evolution of this spectrum through the wall-
shock models, similar to those described above. The sensi-
tivity of the models to the input perturbation spectrum is
tested by introducing density fluctuations with two different,
but prescribed, power spectra. We then determine the long-
term behavior under both types of initial conditions and
compare both to one-dimensional steady-flow models
computed withMAPPINGS III.

4.1. The Initial Perturbations

We define two-dimensional 2048� 2048 fluctuations in
the Fourier domain. We first establish a perturbation spec-
trum with constant amplitude and random phase through-
out Fourier space. (This corresponds to white noise when
inverse-transformed to the spatial domain.) We then multi-
ply the Fourier components by a power law or Gaussian (in
wavenumber) to produce spatial fluctuations with a well
specified power spectrum. The spatial fluctuations, obtained
from the inverse Fourier transform, are periodic in space as
a consequence of the finite Fourier domain. This has the
desirable property that as fluctuations are advected onto the
computational grid, the fluctuations ‘‘ wrap around ’’ in
each direction so that there are no sharp discontinuities in
either dimension, consistent with our assumed periodic y
boundaries and the continual introduction of the fluctua-
tions over time. By specifying the power spectrum of the
fluctuations directly in Fourier space, we are able to strictly
define and control the characteristics of the input
fluctuations.

Let k be the wavenumber in units of the reciprocal of
one grid cell and let PðkÞ be the power spectrum of the
density fluctuations. Our first spectrum is a power law,
PðkÞ / k� with an index � ¼ �2:0, and the second is a

Fig. 4.—Amplitude and period as a function of resolution. The
logðdensityÞ (gray) variable from one-dimensional simulations is shown as
a function of time in the horizontal direction and spatial coordinate in the
vertical direction. Each row represents a simulation with the number of
resolution elements indicated on the left. For each simulation the amplitude
and period of the pulses rapidly reaches steady values as the initial
transients disappear. The temporal location of the sixth bounce is indicated
by the dashed line, and the amplitude of the seventh bounce in the highest
resolution simulation is marked on the lower resolution simulations for
comparison. The lower three panels show how the solution asymptotes as
the simulation becomes well resolved.
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Gaussian with PðkÞ / expð�k2=�Þ, where � ¼ 8. These
spectra were further modified with a low-wavenumber
cutoff leaving k > 3; this limits the size of the largest
structures to less than the total extent of the grid by a
factor of 4. The timescale for the largest structures to

cross the computational grid is l=4v, or �3� 109 s, which
compares with 8:5� 1010 s for the fundamental frequency
of the bounces, or �25.5 times higher frequency. These
advected fluctuations are therefore unlikely to resonate
directly with the fundamental frequency.

Fig. 5.—Power spectra of the oscillations as a function of spatial resolution. The location of the one-dimensional shock front was located and interpolated
to fractional cell values with a local parabolic fit to the derivative of the pressure variable. The oscillations, as seen in Fig. 4, were then analyzed with fast
Fourier transform techniques to produce a power spectrum similar to those in Fig. 1 of SB95.

Fig. 6.—Shock properties as a function of resolution for the one-dimensional NEQ wall shock. (a) The fundamental frequency. (b) The high-frequency
noise level (power at the highest frequencies as a fraction of the peak power). At 2048 cell resolution and above, the fundamental frequency is steady and the
noise in the simulation is independent of resolution. At a resolution of 2048 cells both the principal frequency and the high-frequency power are close to the
asymptotic limits, with logðf Þ ¼ �10:93 and logðrelative powerÞ ¼ �6:18, respectively.
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Subsamples of the scaled density fluctuation fields are
shown in Figure 8, showing the power-law and Gaussian
fluctuation spectra models.

Both fluctuation fields were scaled to provide a 5% rms
fluctuation about a mean of 1.0 and were used to perturb
the initial density variable in the simulations. Throughout
the simulation, copies of these fields were used to update the
inflow boundary densities, resulting in the structures being
advected continuously onto the grid at the inflow velocity.
The periodic nature of the fluctuation fields means that dis-
continuities do not arise in either spatial direction. The gas
pressure in the initial conditions and on the boundary was
constant, resulting in similar small (�5% rms) temperature
variations, since T / P=�.

In the analysis of the simulations, the evolution of the
density structures was analyzed in Fourier space. That
analysis reveals that during the advection, the fluctuation
structure was maintained down to the 10�4.5 level. The
power-law density spectrum was preserved up to 1000k, and
the Gaussian spectrum extended to 60 wavenumbers before
becoming grid noise–limited. (This can be seen in the lower
panels of Figs. 9 and 10.)

4.2. Initial Conditions

The initial data for the two-dimensional simulations are
established in the two-dimensional equivalent of the one-
dimensional wall shock above, as shown in Figure 11. The
inflow velocity at the left-hand side of the grid is 150 km s�1

with a mean density of 1.0 particles (electrons and ions) per
cubic centimeter, or about 0.6 H atoms cm�3. The physical
parameters of the simulation are specified in cgs units but
were renormalizedwithin the code as for the one-dimensional
model (see x 2.2) to improve computational accuracy and to

avoid numerical overflows. The grid cells are nearly square,
with a size that varies slightly between the power-law and
Gaussian models to optimize the coverage of the grid and to
ensure that the results are independent of the exact coordi-
nates used. The grid size for the model with power-law den-
sity fluctuations was set at 2:0� 1017 cm on a side, and the
Gaussian model was computed on a grid of 2:56� 1017 cm.
Each cell thus represents between 1.0 and 1:28� 1014 cm2,
respectively. The x dimension (2050 cells) was chosen to opti-
mize memory access speed during the y-sweeps of the simula-
tion. The y-dimension was chosen to be a power of 2 (2048
cells) to match the periodic two-dimensional density
perturbation structures that are advected onto the grid in the
x-direction. Thus, the top and bottom edges of the simulation
have periodic boundary conditions, simulating a shock with
infinite extent in the y-direction.

The initial inflow is assumed to be in photoionization
equilibrium with the upstream photons being generated in
the shock, and it is effectively adiabatic. Its temperature is
set to 7500 K. This is deliberately chosen to be 25% below
the 10,000 K cutoff in the cooling function, with the aim of
preventing all regions of the density perturbed inflow from
fluctuating in temperature to greater than 10,000 K before
entering the shock. Above 10,000 K, cooling switches on,
and this could alter the spectrum of the perturbations before
they enter the shock. In all but the most extreme points in
the initial density fluctuations this was achieved; less than
0.01% of the incoming cells have any preshock cooling, and
even then, this is very weak.

The right-hand boundary, where the postshock cooled
gas accumulates, is prescribed to be a free outflow boun-
dary, and the last 0:2� 1017 cm of the grid was filled with
gas at a density � ¼ �0M2, as in the one-dimensional tests.

Fig. 7.—One-dimensional x-t diagrams of the density in radiative shock
models that use the MAPPINGS III nonequilibrium cooling function. (a)
Unsteady, 150 km s�1 shock and (b) steady 75 km s�1 shock. The time axis
is vertical, increasing going down the page, as in Fig. 2 and in SB95. The
stability analysis of the cooling function leads us to expect that only case (a)
will give rise to a steady-flow shock, and this is confirmed in the simulation.

Fig. 8.—Two density fluctuationmodels. The left-hand panel shows part
of the power-law fluctuation field, and the right-hand panel shows the same
portion with a Gaussian fluctuation spectrum. The same random number
seed was used to generate the phases in both models, so there is a common
overall structure with the differences attributable to the different spatial
power.
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An outflow velocity of 2.72 km s�1 was applied at the
right-hand boundary to keep the base of the shock in
approximately the same location over long periods of time,
effectively preventing the dense layer from building up on
the grid by allowing it to drift subsonically out of the
right-hand side.

5. TWO-DIMENSIONAL RADIATIVE SHOCK MODELS

In the light of what was learned from the one-dimensional
tests, we carried out two-dimensional simulations on a
2050� 2048 grid on the ANU Supercomputing Facility’s
Fujitsu VPP300 computer. The choice of the grid resolution
is a compromise between accuracy and performance, and
with this, we expect that numerical diffusion in the simula-
tion will affect the results at about the 10%–20% level, in
both timescales and lengths, but that all relevant structures
will be well resolved.

5.1. Time Evolution of the Shocks

The two-dimensional shocks evolved somewhat similarly
to the one-dimensional overstable shock simulations above,
but with some important differences. As noted when deter-
mining the optimum resolution (see x 3.3), increased cooling
resulting from numerical diffusion leads to decreased
‘‘ bounce ’’ amplitudes and increased fundamental frequen-

cies. Figure 12 shows snapshots of the evolution of the wall
shock for the power-law initial fluctuations over time. The
average position (averaged along the y-direction) over time
is shown in Figure 13.

The first bounce is quite large, and the hot shocked
region collapses rapidly with the onset of thermally
unstable cooling, allowing the formation of knots and fil-
aments of dense material. This first bounce amplitude is
similar to that seen in a well-resolved one-dimensional
model. However, subsequent bounces are reduced in
amplitude, by a factor of �0.5. We attribute this, at least
in part, to the more complex geometry involving develop-
ing filaments and the unevenly dense shock tail; this leads
to strongly cooling zones with temperatures �100;000 K.
The filaments and voids are probably initially formed by
thermal instabilities, increasing the separation between
hotter and slightly cooler gas. Figures 9 and 10 (see x 5.2)
show the large-scale fluctuations increasing in contrast as
they evolve through the shock to form filaments. The
power spectra suggest that the structures down to the
cooling cutoff are not very turbulent (or at least not
dominated by turbulence) but that once cooling no
longer dominates structure formation (below �10 cells),
normal dynamical instabilities and turbulence dominate.

In two-dimensions, then, when the geometry becomes
more complex, a range of new possibilities arise:

Fig. 9.—Power spectrum of the density fluctuations in the post-shock gas of the Gaussian fluctuation model. The curves in the lower panel correspond to
the numbered panes in the upper panel. Two power laws are fitted to the density spectrum from panels 6 and 7. The first is fitted between logðkÞ ¼ 1:0 and
logðkÞ ¼ 2:4 and has a slope of�0.6, the second has a slope of�2.2 between logðkÞ ¼ 2:5 and logðkÞ ¼ 3:0, and the crossover point is at logðkÞ � 2:42. See text
for details.
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1. The more complex (possibly fractal) postshock region
can produce a larger fraction of gas in the intermediate
(�100; 000 K) rapidly cooling temperature range by virtue
of the increased cold-hot gas boundary. More efficient cool-
ing can reduce the overall cooling timescales and hence the
amplitudes of the bounces. If this process dominates, then
quantitative estimates of the increased cooling must take
the resolution and numerical cooling errors into considera-
tion to separate physical effects from numerical ones. This
purely geometrical boundary effect may be less efficient in a
real physical system than in the finite resolution numerical
ones here.
2. The conversion of kinetic energy into thermal pressure

may be less efficient, as for example where an oblique shock
thermalizes only a fraction of the flow kinetic energy, result-
ing in redirection of kinetic energy into the y-dimension.
Reduced thermalization may also be reflected in the reduced
amplitude of the bounces.
3. Changes in the structure, or geometry, of the dense

adiabatic base layer may also increase the ability of this
layer to absorb energy, along the lines of item 2 above. As
the flow deflects off a prominence of the dense layer, an
increasing fraction of energy is transferred to the dense
layer. In essence it can become an absorbing ‘‘ sponge,’’
reducing the amount of thermalized energy available to
drive the relaunch of the main shock, resulting in a lower
shock velocity, reduced postshock temperatures, decreased

cooling timescales, and subsequently reduced bounces
amplitudes.

Essentially, in the two-dimensional case more dynamical
modes are available than in a one-dimensional model. These
modes can take the form of motions in filaments, voids, and
oblique shocks. All of these possibilities are investigated in
the following sections to determine the degree to which they
occur, if at all, and whether any are indeed the cause of this
dramatic change in behavior in the two-dimensional models.

After a total of approximately 50,000 hydrodynamical
cycles in the simulations for both the power-law and the
Gaussian fluctuation models, the cycle of shock collapse
and relaunching was still continuing. The total length of this
simulation covered only three bounces, and the long-term
behavior may become less coherent. Nevertheless, for the
present we restrict ourselves to analyzing the medium-term
properties of the shocks. In terms of their global structure,
there appears to be very little difference in the amplitudes or
frequencies of the bounces between the two different density
fluctuation models. This indicates that the results are not
strongly dependent on the choice of the initial fluctuations.

5.2. Analysis of the Shock Structure

Taking the shock structure at a point just past the peak of
the first bounce (6:6� 1010 s, near panel 3 in Fig. 12), before
the dense layer becomes too disordered, but after filaments

Fig. 10.—Power spectrum of the density fluctuations in the postshock gas of the power-law fluctuation model. The same power-law fits from the Gaussian
models are overlaid here without refitting.
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and knots have formed by the primary thermal instability
(i.e., Fig. 14), we analyze the spatial structure of the simula-
tions using Fourier transforms. Dividing up the simulation
into 64 cell wide slices, parallel to the shock face, we con-
struct the Fourier transform and thence determine the
power spectrum of the density along each y-column in the
slice. We then average the 64 power spectra to get a mean
power spectrum for the slice. Moving from left to right, sli-
ces analyze first preshock gas (testing the quality of the
advection of the fluctuations onto the shock), then the hot
postshock region, and finally through the cooling layers to
the dense cooled base of the shock. In this region we
encounter material with the largest postshock time, where
any instability, thermal or otherwise, will be most
developed.

The results are shown in the multipanel Figures 9 and 10
for the Gaussian and power-law models, respectively. Inter-
estingly, the most evolved slices (panels 5–7 in each case)
show that the structures both tend toward a broken power
law, for both initial spectra. The low-wavenumber end of
the spectrum is driven by the development of postshock
thermal instabilities. This leads to dense filaments and low-
density voids; the power spectrum is quite flat, with an index
� � �0:6. Ultimately, this region of the spectrum is termi-
nated by the formation of high-wavenumber structures �10
pixels in extent, that are so dense that they have cooled
below the 10,000 K limiting temperature of the cooling

Fig. 12.—Two-dimensional shock time-evolution snapshots. Panels 1–12 show the density variable in the power-law density spectrum shock model at
evenly spaced time intervals (2� 1010 s) throughout the simulation. The postshock gas is at times relatively smooth (1, 5, 8, 10), during the approximately
adiabatic buildup of the shock before cooling initiated collapse occurs. The visible fluctuations result from shock compressed initial fluctuations.
Subsequently, (2, 6, 9), the fluctuation contrast increases and dense filaments form (3, 7) along with low-density voids. The shock then collapses with the loss
of internal pressure support (4).

Fig. 11.—Grid setup: the grid size is 2050� 2048 cells, 2:0� 1017 cm on
a side. There is a hypersonic inflow on the left at 150 km s�1 and subsonic
outflow on the right of about 0.3 km s�1, tuned to keep the thickness of the
dense layer approximately constant. The y-axis has periodic boundary
conditions, approximating an infinite wall shock.
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function. More or less conventional two-dimensional
turbulence then takes over, with the power law steepening
to an index ��2.2 at k � 260. There appears to be no
universal spectral index for two-dimensional turbulence.
Nevertheless, this index is in the range of indices derived
under a number of physically different conditions (i.e.,
Nazarenko & Laval 2000).

5.3. Cooling in the Two-dimensional Models

Figure 3 shows a close up of a region of the power-law
model shown in Figure 14 at a location and time when a
dense filament has just formed. The figure shows the cooling
rate: black represents the strongest cooling, white the least.
The scale shows that the cooling is indeed strong at the 30 or
so pixel scale, and by the time the filament itself has cooled
and formed, the cooling has diminished completely in the
core of the filament. This gives the filament an edge-
brightened appearance. The filament is typically 10 pixels
across, and the spectral analysis shows that at this scale, and
on down to the grid resolution, the density spectrum is a
steeper power law.

The bulk of the cooling in the complex postshock struc-
ture emanates from a volume of gas below 100,000 K. In a
steady or one-dimensional dynamical model this would
correspond to a smooth column in the two-dimensional
simulation. Because of the convoluted structure of this layer
in these two-dimensional simulations, this zone may have a
much larger effective area than for the corresponding one-
dimensional or steady-flow model. This zone appears to
take on a fractal structure, and to measure the fractal index
we use a coastline measuring method, by laying down boxes
of increasing resolution and determining the number of
boxes that contain cells within the temperature range of
interest. At the resolution of the grid this gives the effective
area of the cooling zone.

The rate at which the number of boxes containing cooling
varies with the box size defines a fractal dimension of the
structure. If the structure displays self-similarity over the
range of resolutions measured then the slope of log½NðrÞ�
versus log(1/r) will be a straight line with a slope corre-
sponding to the capacity dimension D0, which is defined in
terms of numbers of squaresNðrÞ of side r that ‘‘ cover ’’ the
fractal (see Peitgen, Jürgens, & Saupe 1992 and references
therein),

D0 ¼ lim
r!0

log½NðrÞ�
log 1=rð Þ : ð20Þ

For a smooth curve, thisD0 is equal to 1 [NðrÞ / r1], and for
a smooth two-dimensional shape it is equal to 2 [NðrÞ / r2].
In each case measured here, the log½NðrÞ� versus log 1=rð Þ
curves were indeed straight lines with a slope tending
toward 1.3–1.35 on average, over 3 decades of resolution,
indicating the presence of true self-similar fractals.

Figure 15 shows the fractal dimension determined for the
cooling zone with temperatures between 100,000 and 20,000
K as a function of time. It typically lies between 1.0 and 2.0,
between a one-dimensional line and a two-dimensional
area, and each measurement was consistent with a power-
law structure with self-similarity. There was no significant
difference in the fractal structures measured for the
Gaussian and the power-law fluctuation models, and D0

would seem to be independent of the initial fluctuation spec-
trum. It is important to note that this does not allow us to
infer what fractal dimension a three-dimensional model
would have; this is still a purely two-dimensional result.

5.4. The Global Energy Budget Analysis

Let us now consider the dynamical energy budget in the
two-dimensional region. This is informative since it tells us
where the incoming energy flux is converted to radiation
and other forms of energy. We can also verify that energy is
properly conserved by code.

We consider two control surfaces bounding the computa-
tional domain,D (see Fig. 11):L1 along the inflow boundary
to the left and L2 on the right, at the subsonic outflow boun-
dary. We take the usual symbols �, vx, v, P, U ¼ P=ð� � 1Þ,
and h ¼ �P=�ð� � 1Þ to represent the density, x component
of velocity, speed, pressure, internal energy, and specific
enthalpy of the inflow. We use a zero subscript to represent
the inflow and a 1 subscript to represent the outflow. The
total energy on the grid at any time is given byZ
L1

�0
1

2
v20 þ h0

� �
vx0 > dy�

Z
L2

�1
1

2
v21 þ h1

� �
vx1dy

þ d

dt

Z
D

1

2
�v2 þU

� �
dx dy

�
Z
D

�2�ðTÞdx dy ¼ 0 : ð21Þ

The first two terms represent the energy flux per unit length
(normal toD) into and out of the grid area, through the two
control surfaces at the left- and right-hand edges of the grid,
respectively. The third term represents the rate of change of
the total energy on the grid (kinetic plus thermal), and the
fourth term represents the radiative losses. The periodic
boundary condition in y ensures that there is no net flow of
energy through the upper and lower surfaces. The area

Fig. 13.—Evolution of the averaged shock-front location. The two-
dimensional simulations were summed along the y-axis, and the shock
location was fitted. (a) The light solid curve shows the power-law model,
(b) the heavy solid curve shows the Gaussian model, and (c) the dashed
curve shows the 2048 resolution comparison one-dimensional model.

250 SUTHERLAND, BICKNELL, & DOPITA Vol. 591



integrals are easily evaluated by summing the zone-averaged
values over all zones in D, consistent with the Godunov
formalism being employed.

If we represent the first two terms (giving the net energy
flux into D) by F, the total energy in D by Etot and the total
cooling by C, then Figure 16 shows that when the left- and
right-hand sides of F þ dEtot=dt ¼ C are evaluated inde-
pendently by summing over the entire grid at each time step,
they are indeed equal. We are confident, therefore, that the
code is behaving consistently and conserving energy
correctly.

When the two-dimensional results are scaled to unit
width and compared to a one-dimensional model, with the
same initial conditions and resolution, it is obvious that the
two-dimensional shock ‘‘ bounces ’’ are smaller (see also
Fig. 13 above). Figure 16 shows the total energy on the
grid, Etot, the net flux of energy onto the grid, F, and
the cooling rate C to facilitate comparison of the one- and
two-dimensional models. While the first ‘‘ bounce ’’ is simi-
lar in both cases, and the two-dimensional model initially
behaves in an essentially one-dimensional manner, the sub-
sequent evolution is different. The amplitude of the two-

dimensional bounces is much less, and the cooling losses,
while maintaining a similar average (as expected), show
smaller fluctuations. We attribute this to effects associated
with the higher dimensionality.

Figures 17 and 18 show the breakdown of the total energy
into its kinetic and internal components for the one-
dimensional and two-dimensional models, respectively. The
individual panels refer to the entire grid (top), the hot
(>20,000 K) shocked region (middle), and the dense cool
layer (bottom). It is apparent that in the one-dimensional
model, the kinetic energy of the inflow is first converted to
thermal pressure in the shock. As the shock cools, the
kinetic energy of the collapsing gas increases until the
bounce occurs and the stored kinetic energy is reconverted
into thermal energy. The cycle then repeats, and the distri-
bution of energy between the thermal and kinetic compo-
nents is similar at the corresponding phases of each cycle.

The two-dimensional model displays important
differences. First, the radiative losses never return to the
sharp initial minimum. This is a geometric effect, because at
each cycle, the newly forming shock is launched at different
locations and times along the dense layer, as a result of the

Fig. 14.—Snapshot of the cooling rate, logð�2�Þ, in the postshock gas near the point of collapse. Black represents strong cooling, white represents adiabatic
gas. Successive points through the shock region are indicated. (a) The preshock region is adiabatic and hence white. (b) Small fluctuations grow in the
moderately cooling (gray) immediate postshock gas. (c) Stronger cooling regions begin to separate. (d ) Some compact filaments have formed and stop cooling
in their centers as that gas falls below 104 K. (e) Many filaments have formed and the gas is turbulent as a result of hydrodynamical instabilities, just before
impacting with the cool adiabatic dense layer.
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uneven distribution of the dense layer. There is no longer an
instant in time at which there is no shock, in contrast to the
one-dimensional model in which there is an instant of
complete collapse.

More importantly, on subsequent bounces, some of the
inflowing energy remains as kinetic energy, either in the
postshock gas or in the turbulent motions of the dense layer
itself, and this accounts for approximately half of the kinetic
energy on the grid. The internal energy in postshock gas is
lower, resulting in both a lower postshock temperature and
in an increased cooling efficiency (C=EP). This ensures a
much shorter cooling timescale for the shocked gas—by a
factor of 4 or more compared to the one-dimensional or the
initial two-dimensional bounce (see Fig. 19).

With a shorter cooling timescale the shock cannot pro-
gress as far against the incoming flow before it recollapses,
producing a smaller bounce amplitude and higher bounce
frequency. The total cooling still equals to the total net
energy flux and the changes in the internal energy between
the control surfaces. Moreover, the mean luminosity is simi-
lar to or a little less than the average net energy flux since
energy is stored in the kinetic energy reservoir of the dense
layer. The rate of change of the kinetic energy in the dense
layer d=dtEK ;dens and the increase in energy of the gas flow-
ing off the grid is sufficient to appreciably reduce the both
the maximum and the mean luminosities of the shock.

This transfer of energy to the dense layer in two dimen-
sions takes place as the fast shock launches from, and dense
filaments collide with, the ‘‘ spongy ’’ dense layer. Trans-
verse motions (i.e., in the y-direction) and the accelerations

Fig. 16.—Time evolution of the energy budgets for a one-dimensional shock (upper panel) and two-dimensional shock (lower panel ). Each panel displays
the net energy flux, F, onto the grid and the rate of change of the total energy on the grid, dE=dt. The comparison between the summed total coolingC and the
computed difference between the integrated fluxes and rates of change on the grid, F � dE=dt, is very close.

  

 
 

 
 

Fig. 15.—Fractal covering dimension of the postshock gas between
30,000 and 100,000 K as a function of time. The lighter curve is the model
with power-law input fluctuations, and the heavier curve is the Gaussian
fluctuation model. The dimension asymptotes toward a value between 1.3
and 1.35, irrespective of the initial fluctuation spectrum.
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during the bounce result in the fractal and turbulent dense
region seen, for example, on the right in Figure 14. This
layer represents the photoionized ‘‘ tail ’’ of the radiative
shock and is, in effect, the ‘‘ piston head ’’ driving the shock,
which is on average stationary in the frame of the grid. When this dense layer remains at about the same thickness

as the tail of a real shock, the amount of kinetic energy it
contains in the simulation is realistic. However, if allowed
to become too great in volume compared to the shock, the
simulation would overestimate this energy reservoir.

Steady, one-dimensional MAPPINGS III models suggest
that the thickness of the photoionized tail (10;000 >
T > 5000 K) of a 150–200 km s�1 shock is of order
ð1 3Þ � 1017 cm for the densities in our simulations. Thus,
the dense layer in these two-dimensional simulations, which
grows to approximately 5� 1016 cm, has not yet become
too thick to be unphysical. The radiation from the hot
shocked regions should be sufficient to keep the dense layer
from cooling throughout the simulations here.

The dense, cool gas carries away an important fraction of
the shock energy in the form of small-scale turbulence. This
increased transfer of kinetic energy is a result of the
increased degrees of freedom for the two-dimensional flow
compared to the steady and one-dimensional models. The
difference between two-dimensional and future three-
dimensional models may not be so dramatic, as they both
have the freedom to transfer energy to turbulent kinetic
energy in the postshock and dense layers. Nevertheless, the
quantitative measure of the efficiency of this transfer
requires high-resolution three-dimensional modeling to cor-
rectly estimate the coupling between the energy in the shock
across the boundary into the dense gas. Nonetheless, this
demonstration that shocks can directly inject small-scale
turbulence into the interstellar medium (ISM) is impor-
tant because it is now generally believed (see Elmegreen
2002; Elmegreen, Kim, & Staveley-Smith 2001) that star

Fig. 18.—Time evolution of the energy components of a two-
dimensional shock. Upper panel: The total kinetic and internal energy on
the entire grid. Middle panel: Same, but for just the postshock gas at
T > 20; 000 K. Lower panel: The energies contained in the dense cool layer.
Compared with Fig. 17, the dense layer and to a lesser extent the postshock
gas containmore kinetic and less peak thermal energy. See text for details.

Fig. 19.—Time evolution of the cooling timescale (U=�2�) averaged
over the grid, compared to the crossing timescale (grid length divided by
the inflow velocity l=v � 1:5� 1010 s) for one-dimensional and two-
dimensional dynamical models. In the two-dimensional cases, for the
second and subsequent bounces, the cooling timescale is at most twice the
crossing time; in the one-dimensional case and the initial two-dimensional
bounce it is 4.5–5 times longer. When the cooling time is less than the cross-
ing time of the flow, the shock lose pressure support and collapses. When
the cooling time is long compared to the crossing time for an extended
period, larger and slower ‘‘ bounces ’’ result.

Fig. 17.—Time evolution of the energy components in a one-
dimensional shock. Upper panel: The total kinetic and internal energy on
the entire grid.Middle panel:The same for the postshock gas atT > 20; 000
K. Lower panel: The energies contained in the dense cool layer. See text for
details.
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formation is moderated by the turbulent cascade and dissi-
pation on small scales. The turbulence at large scales is
believed to come from violent shocks such as supernova
remnants and stellar winds. However, the effect of the direct
input of small-scale turbulence, which amongst other
things, will help the mixing of their chemical products in the
ISM, has not hitherto been considered.

6. COMPARISON WITH STEADY-FLOW MODELS

In most astrophysical situations, it is rare to be able to
spatially resolve the internal structure in individual shocks,
the exception being in local SNRs (i.e., Patnaude et al. 2002)
and some young stellar object (YSO) jets (Bally et al. 2002;
Hartigan et al. 2000). In most cases, we observe an unre-
solved ensemble of shocks whose emergent spectrum is an
emission-weighted average over the ensemble. Even if they
are characterized by an average velocity, then, if they are
pulsating like the models here, they will be observed at many
different phases in such an average. In the past, steady-flow
models, such as those produced by the one-dimensional
MAPPINGS III code have been applied to situations such
as active galaxy narrow-line and extended emission-line
regions both in the nearby and distant universe (Dopita
et al. 1997; Allen et al. 1999; Bicknell, Dopita, & O’Dea
1997; Bicknell et al. 2000; Best, Röttgering, & Longair

2000a, 2000b). Thus, in order to compare the dynamical
models with the steady models, we construct time-averaged
histograms of observable quantities to compare with the
steady histograms of the same quantities in a MAPPINGS
III model derived for a shock of the same mean velocity.

In these models, the inflow of 150 km s�1 results in a
shock with amean velocity of 150 km s�1 but with an instan-
taneous velocity between zero and 200 km s�1. We now
compare the time averages of these models with a steady
150 km s�1MAPPINGS III model.

6.1. Time-averaged Distributions

6.1.1. Density

Figure 20 (upper left-hand panel) shows the histogram
obtained by analyzing �250 two-dimensional data frames
for the density variable, averaged over three complete
expansion and collapse cycles of the wall shock, for both the
power-law andGaussian fluctuation models.

Histograms of the gas density were constructed for each
frame of the simulation. By counting only the regions where
the temperature exceeds 10,000 K and the gas is radiating,
we are able to analyze just the postshock region, through
the thermally unstable regime down to the point where pho-
toionization is expected to halt cooling. This is the domain
where the present simulation are most physically consistent.

Fig. 20.—Normalized volume distribution of important flow variables derived from a steady-flow MAPPINGS III model and the time-averaged
distribution for two-dimensional dynamical models. Upper left: density; upper right: cooling; lower left: temperature; lower right: velocity distributions along
the x-axis and along the y-axis. See text for details.
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The density intervals were chosen to be 0.02 dex logarithmic
intervals. Density units are multiples of the preshock
density, and the histogram is normalized to a maximum of
1.0 (0.0 in the log). The value of the histogram at any density
is then the fraction of the shocked cooling gas by volume
present in the time-averaged, or ensemble, sense. Both the
Gaussian and power-law models produce essentially
identical results.

When these histograms are compared to the steady-flow
MAPPINGS III shock model, differences are immediately
apparent. In the steady model, the minimum density is
determined by the immediate postshock gas; as the tempera-
ture decreases monotonically down to 10,000 K, the density
can only increase in the shock flow region. In the dynamical
models, the existence of the thermal instability allows the
increasing separation of both low- and high-density regions
in the postshock flow. Not only do dense filaments form,
but low-density voids also appear as a result of the physical
redistribution of gas as it flows into dense condensations.
The voids cool slowly because of the lower the density, but
they all collapse as the shock retreats into the dense layer at
the end of a cycle.

The two arrows in Figure 20 (upper left-hand panel, [a]
to [b] and [a] to [c]) show notionally how the fraction of
material at intermediate temperatures is redistributed to
increase the fraction of high-density gas on the right of the
figure and to produce low-density gas (by volume) on the
left. There is even an appreciable fraction of postshock gas
with a density below that of the preshock gas. Estimates of
postshock densities using line diagnostics from steady
models (such as [Ar iv] lines) may therefore be misleading
compared to the dynamical situation in the hydrodynamical
simulations and perhaps in real ISM shocks.

6.1.2. Cooling

The average distribution of cooling in the dynamical
shockmodels is shown in Figure 20 (upper right-hand panel).
This is constructed in the same way as the density distribu-
tion above, using the cooling rate from the same regions.
The time-averaged cooling distribution by volume is
approximately symmetrically distributed about the mean
cooling rate. This is in contrast to the steady model, which
shows a one-sided distribution with decreasing fractions of
ever increasing cooling rates (dashed line). This is partly a
consequence of the fact that in the steady model the density
distribution down to 10,000 K is a monotonically increasing
function in the steady model, and the weakest cooling is at
the beginning of the shock and the cooling rate never falls
below this rate. Low-density voids in the hydrodynamical
models provide opportunities for volumes of gas to cool
slowly, through the density-squared dependence of the cool-
ing rate. The dynamical models also include substantial vol-
umes of gas with stronger cooling, above 10�19.5 ergs cm�3

s�1, compared to the steady model. The complex dense fila-
ments, formed via the thermal instability, constitute the
more efficiently cooling gas. Hence, the long-term time-
averaged luminosity is the same as for a steady-flow model,
but the emission originating from individual temperature
and density zones can be quite different.

6.1.3. Temperature

The averaged thermal distribution in the two-
dimensional dynamical shock is shown in Figure 20 (lower
left-hand panel).

Compared to the steady flow model, the dynamical shock
demonstrates an increased volume of intermediate tempera-
ture gas, below 300,000 K, consistent with this region hav-
ing a complex spatial structure. There is a deficit of very hot
gas close to the postshock temperature at (a), partly because
the launching phase of the bounces occupies a relatively
small fraction of the time. At most other times the shock is
slower and the temperatures are consequently, on average,
lower. This duty-cycle effect also contributes to the higher
average fraction of cooler gas. On average there can be as
much as 10–100 times more gas at the critical emitting tem-
peratures of 30,000–100,000 K than a simple steady model
would suggest. This has implications for shock diagnostics
that derive from species that emit in this region. Dynamical
models will be relatively bright in their optical and UV lines,
and steady-flow models would overestimate the density or
shock area required to achieve the same luminosity for a
given shock velocity. Shock velocities would tend to be
underestimated and preshock densities would be overesti-
mated in order to achieve the correct luminosity. The sys-
tematic differences between a grid of steady and unsteady
dynamical shock velocities is important to determine. Since
the structure of the critical region is subject to turbulence,
quantitative spectra will have to wait for three-dimensional
models.

6.1.4. Velocity

Since these two-dimensional simulation fail to capture
the complexity that would be expected in a three-
dimensional model, it is probably inappropriate to
attempt detailed spectral line synthesis from them. Never-
theless, is it useful to look at the distribution of velocities
along two lines of sight, along the x-axis, parallel to the
flow, and along the y-axis, perpendicular to it, since this
demonstrates the importance of the generation of turbu-
lence in the cooling layer. Figure 20 (lower right-hand
panel) illustrates these projections. A nearly symmetrical
distribution is obtained from the y-axis projection
wherein the velocity distribution is determined by the
internal motions of the turbulent gas. The x-axis velocity
distribution is asymmetric as expected, but if an ensemble
of shocks were viewed from a number of different angles,
the observed profile would be a sum of the symmetrical y
distribution and broad +x (looking into the shock; solid
line) and �x (looking out of the shock; gray line) profiles.
On convolution over all angles, we can expect a broad,
roughly symmetrical line profile from �vmax � vshock that
falls between the extremes of the +x and �x profiles.
This figure suggests that the shock velocity is better esti-
mated from the width of the base of an emission line,
such as the full width at 5% or 10% of a line peak, rather
than half maximum. A more detailed treatment of
emission-line profiles will be performed when three-
dimensional dynamical models of this resolution are
carried out.

7. SUMMARY

Observations are now beginning to resolve interstellar
radiative shocks prompting parallel theoretical develop-
ments that can be used to construct credible models of
the observations. In this second paper of our series on
the computation of radiative shocks we have utilized
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one-dimensional tests in order to establish the robustness
and reliability of our code for the simulation of multidimen-
sional radiative shocks and for estimating the resolution
necessary to accurately model the temporal behavior of
such shocks. The results give us confidence that the goal of
realistic multidimensional models can be achieved while at
the same time cautioning that high resolution is required in
order to resolve the high-density contrast that inevitably
occur in such situations.

We have shown in x 3 that with adequate resolution
the modified VH-1 code correctly reproduces one-
dimensional analytical solutions with a power-law cooling
function. This is an important result since the inclusion
of cooling into a directionally split code is subject to
some judgment and could conceivably introduce unex-
pected consequences. The comparison shown in Figure 1
shows excellent agreement between the velocity profiles
of one-dimensional numerical and analytical models; sim-
ilar agreement is obtained for the other dynamical varia-
bles. We have also demonstrated excellent agreement
between the oscillation frequencies of numerical and
analytical solutions in agreement with similar results
obtained by SB95.

Real interstellar shocks do not have a power-law
cooling function. Therefore it has been advisable to con-
duct similar tests for realistic plasma cooling functions.
We have chosen an NEQ cooling function correspond-
ing to plasma cooling from a high temperature. Using
this cooling function, we have shown that in one-
dimensional, the NEQ function promotes both stable
and overstable cooling, at different shock velocities and
in line with expectations based on the local slope of the
cooling function.

Our resolution study of the NEQ shocks has produced
some constraints that have important implications for mul-
tidimensional studies. The cooling regions of radiative
shocks are to a large extent isobaric so that cooling results
in large density changes. In one-dimensional shocks these
occur at the tail of the shock leading to contact discontinu-
ities in both density and temperature. The density2 and tem-
perature dependence of the cooling function implies that,
unless these discontinuities are well resolved, the numeri-
cally calculated cooling can lead to serious errors. This is
evident in the resolution study presented in x 3.3, where we
have shown that 2000 grid points are required to resolve
cooling in a Mach 15 interstellar shock. In one dimension
adaptive mesh methods could be effective. However, in
higher dimensions high-density features, such as cooling fil-
aments as well as the tail of the shock, occur throughout the
volume and it is problematical whether adaptive mesh
refinement techniques would be useful. Another approach
may be to incorporate more effective tracking of contact
discontinuities. That may be an approach that could be
effectively followed in future. Nevertheless, for the present

the most direct approach is to use approximately grid cells
for the spatial region that we have used in these tests. Note
that, in effect, we have derived this result only for a single
velocity (150 km s�1) and oneMach number (15). We expect
similar results to hold for other shock velocities. Indeed, it
would be straightforward to redo these tests for other
velocities of interest.

Having laid the groundwork for computation of multi-
dimensional shocks, we have described in xx 4 and 5 our
work on two-dimensional simulations. The high-resolution,
two-dimensional simulations with 4� 106 computational
cells that we have described in this paper have demonstrated
important qualitative and quantitative differences between
dynamical and steady-flowmodels:

1. The thermal instability of the postshock gas can gener-
ate complex cooling structures, including dense filaments
and low-density voids.
2. The cooling zones in the dynamical models are more

efficient than one-dimensional or steady-flow models, as a
result of the fractal structures that evolve.
3. The structures that do evolve are independent of the

initial density fluctuation spectrum, with filaments and pos-
sibly turbulence forming rapidly within a single cooling
timescale. The resulting fluctuation spectra are not simple
power laws but rather broken power laws. The break in the
density power laws occurs at an intermediate scale, consis-
tent with the radiative dissipation from the largest initial
structures dominating over the numerical dissipation at the
smallest grid scale.
4. Multidimensional dynamically unstable radiative

shocks will, in general, be characterized by more efficient
cooling, both because of a more complex and larger vol-
ume of strongly cooling gas and because of the reduced
thermalization of kinetic energy into thermal pressure
with a resultant lower postshock temperature and higher
cooling rate.
5. The long-term average luminosity of multidimen-

sional is approximately the same as that derived from
one-dimensional, steady-flow models. However, the for-
mation of a fractal distribution of filaments and voids via
thermal instability implies that shock diagnostics from
species from different temperature zones are likely to give
inconsistent velocity fits when compared to steady
models. For example, this may be a source of ambiguity
in Danforth et al. (2001).

This research was supported by an ARC Large Grant
A69905341 and ARC Discovery project DP0208445. M. D.
further acknowledges the support of the ANU and the Aus-
tralian Research Council through his ARC Australian
Federation Fellowship. The authors would like to thank the
anonymous referee for the constructive comments which
benefited the final form of this paper.

REFERENCES

Allen, M. G., Dopita, M. A., Tsvetanov, Z. I., & Sutherland, R. S. 1999,
ApJ, 511, 686

Anders, E., &Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Bally, J., Heathcote, S., Reipurth, B., Morse, J., Hartigan, P., & Schwartz,
R. 2002, AJ, 123, 2627
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