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ABSTRACT

Magnetic neutral sheets in weakly ionized interstellar gas are rapidly annihilated by ohmic diffusion. In this
paper we extend the model to a sheared magnetic configuration, and show that the magnetic pressure
associated with even a small nonzero field drastically reduces the reconnection rate of the reversing
component.

Subject headings: conduction — diffusion — ISM:magnetic fields — MHD

1. MOTIVATION

Under conditions typical for the interstellar medium
(ISM), the Lundquist number S—the ratio between the
ohmic diffusion timescale and the Alfvén timescale—is of
order 1015 < S < 1021. The large size of S has two implica-
tions. First, for most purposes the magnetic field can be
regarded as perfectly frozen to the gas. Second, resistive
processes can be important only in thin boundary layers
separating regions in which the field is frozen in. The break-
down of the frozen field approximation in these layers leads
to magnetic reconnection.

Reconnection is a hybrid process in the sense that it oper-
ates on timescales intermediate to the global diffusion time-
scale and the global dynamical timescale. The standard
model of steady state reconnection (Parker 1957; Sweet
1958) predicts that the reconnection rate is faster than the
ohmic diffusion rate by a factor of ~S1/2. However, given
the large values of S in the ISM, this rate leads to reconnec-
tion timescales much larger than any typical dynamical time
in galaxies. The standard time-dependent theory (Furth,
Killeen, & Rosenbluth 1963) leads to a similar conclusion.
Although it seems implausible that the topology of the
Galactic magnetic field is rigorously invariant—and in fact,
reconnection is necessary for the operation of a Galactic
dynamo—the mechanisms by which rapid reconnection
occurs in the ISM are still uncertain. Thus, the interstellar
reconnection problem is of considerable importance.

Much of the material in the ISM is only weakly ionized,
with the ion pressure generally much less than the magnetic
pressure in regions of low ionization. If there is a null in the
magnetic field, the plasma is accelerated down the magnetic
pressure gradient, leading to the formation of a thin current
sheet and establishing the conditions for rapid magnetic
reconnection (Mestel 1966; Brandenburg & Zweibel 1994).
Brandenburg & Zweibel (1995) and Heitsch & Zweibel
(2003, hereafter HZ03) discussed one-dimensional steady-
state reconnection within the current sheet model. Fast
reconnection in one dimension is possible because recombi-
nation is an efficient flow sink, eliminating the ions brought
into the reconnection region and preventing the buildup of
ion pressure (see also Vishniac & Lazarian 1999). These

authors showed that fast reconnection, i.e., reconnection
independent of S, is possible in the (cold) ISM and in proto-
planetary disks, although the ohmic heating rate is so high
that the process may actually be self-limiting.

This fast reconnection mechanism is based on the exis-
tence of a magnetic null, and thus is highly specialized. It is
qualitatively clear that the pressure force exerted by an addi-
tional component of field, perpendicular to the plane
defined by the flow and the original, reversing field and
without a null itself, should inhibit current sheet formation
and dissipation (Zweibel & Brandenburg 1997). The pur-
pose of this paper is to quantify these effects by deriving the
maximum strength of this additional field component such
that fast reconnection can still proceed. We find that for
practical purposes the vertical field must vanish at the outer
boundary in order to permit fast reconnection. Otherwise,
the field dissipates at the (slow) ohmic diffusion rate in our
one-dimensional model, and we have to rely on outflows in
two-dimensional geometry to accelerate reconnection. In
the limit of a strong vertical field, this leads to the slow
reconnection rate discussed in Zweibel (1989).

In x 2 we formulate the problem. In x 3 we develop a sim-
ple analytical model that leads to an upper bound on the
vertical field permitted in fast reconnection. In x 4 we briefly
review the numerical method developed for HZ03 and
recast the problem in a form suitable for use. In x 5 we
discuss the results and show that they are consistent with
the analytical predictions. Section 6 is a summary and
discussion.

2. DESCRIPTION OF THE PROBLEM

As in HZ03, we consider the reconnection problem in a
weakly ionized gas (Fig. 1). We assume a reversal in BxðzÞ at
z ¼ 0. When the charged and neutral matter are strongly
coupled, regions of magnetic field reversal can achieve force
balance, with neutral pressure compensating for the deficit
in magnetic pressure. Reducing the coupling between neu-
trals and ions leads to ambipolar diffusion, in which case the
neutrals lag behind the field lines. Neutral pressure support
is lost, and the ion pressure—which is much smaller than
the neutral pressure—is overwhelmed by the magnetic pres-
sure, so that plasma flows toward the neutral sheet, trans-
porting the field lines with it. The magnetic field gradients
steepen around the null plane, leading to high current den-
sities and ohmic dissipation. An important simplification of
the Parker-Sweet problem arises because the flux of ions is
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not conserved. Recombination represents a sink, thus elimi-
nating the need for an outflow and making a steady state
possible in one dimension. We are interested in finding the
scaling of the steady state inflow speed, or equivalently the
electric field, with the ohmic diffusivity ��.

We look for steady state configurations in which mag-
netic field and plasma are advected toward the plane z ¼ 0
by a one-dimensional ion flow ẑzuðzÞ. We specify both
components of the magnetic field at the outer bound-
aries z ¼ �L. The inflow velocity uð�LÞ is a measure
of the reconnection rate, and our goal is to determine its
dependence onBð�LÞ.

We assume that Bx is antisymmetric in z while By is sym-
metric. Thus, By takes over the role of ion pressure in HZ03.
Since we assume a recombination time short enough to
maintain ionization equilibrium (see HZ03, x 2.3), the ion
pressure is negligible, which in turn helps us to determine
the effect of By > 0. We assume the layer width L is small
enough that the neutrals remain at rest, with constant den-
sity.3 The ion density is then also constant, and the ion pres-
sure gradient can be ignored. Our numerical integrations
have verified that the flow remains subsonic, so the
Reynolds stress can be neglected. Under these conditions, uz
is determined solely by balancing acceleration down the
magnetic pressure gradient against frictional drag by the
neutrals

uz ¼
�1

8��i�in

@

@z
ðB2

x þ B2
yÞ ; ð1Þ

where �in is the ion-neutral collision frequency. The electric
field E is given by

cE ¼ �u � B þ ��

D

� B ; ð2Þ

where ��, the magnetic diffusivity, is related to the electrical
conductivity � by �� ¼ c2=ð4��Þ. We need the x and y
components of E:

cEx ¼ uzBy � ��
@

@z
By ; ð3Þ

cEy ¼ � uzBx þ ��
@

@z
Bx : ð4Þ

With the geometry and spatial structure assumed here, E
must be constant in a steady state.

It is useful to express the magnetic field components in
units of B0 � BxðLÞ as bx;y � Bx;y=B0. We introduce the
ambipolar diffusivity �AD � B2

0=ð4��i�inÞ and the character-
istic timescales �AD ¼ L2=�AD, �� ¼ L2=��. We express the
coordinate z in units of L and measure Ex and Ey in terms
of the inverse timescales �x;y � cEx;y=LB0. With these
definitions, we can rewrite equations (3) and (4) as

�y ¼
bx

2�AD

@

@z
ðb2x þ b2yÞ þ

1

��

@

@z
bx ; ð5Þ

�x ¼ � by
2�AD

@

@z
ðb2x þ b2yÞ �

1

��

@

@z
by : ð6Þ

Equations (5) and (6) constitute a system of two first-
order ordinary differential equations with two free parame-
ters, �x and �y. We can specify both components of B at the
outer boundary z ¼ 1, and also impose conditions on B at
z ¼ 0, if we regard �x and �y as eigenvalues. We take as
boundary conditions on bx and by

bxð1Þ ¼ 1 ; bxð0Þ ¼ 0 ; ð7Þ

byð1Þ ¼ given ;
@

@z
byð0Þ ¼ 0 : ð8Þ

The second condition on by follows from symmetry
considerations.

Equations (6) and (8) imply �x � 0. Since the resistive
contribution to E is presumably small at the outer boundary
of the layer, �y is essentially a measure of the inflow speed,
or equivalently, the reconnection rate.

3. PREDICTIONS

Equations (5) and (6) are nonlinear, and cannot be solved
analytically. We can, however, use them to estimate the
behavior of the scaled vertical field by and to predict the
reconnection rate.

Equation (3) admits the integral, expressed here entirely
in dimensional units

Byð0Þ ¼ Byð1Þ exp �
Z L

0

uðzÞ
��

dz

� �
: ð9Þ

Let us assume that By5Bx and evaluate the integral in
equation (9) for By � 0. In this case, there is an approximate
analytical solution for uz with limiting forms (see HZ03)

uz ¼ � L

�AD

�AD

3��

� �2

z for z < zl ; ð10Þ

uz ¼ � L

�AD
z�1=3 for z > zl ; ð11Þ

where zl marks the transition from resistively dominated
(z < zl) to inductively dominated (z > zl), and is given by

zl ¼
3�AD

��

� �3=2

: ð12Þ

Using equations (10), (11), and (12) in equation (9) and
expressing By in dimensionless form yields

byð0Þ ¼ byð1Þ e��=2�AD : ð13Þ

0

B x

By

z=−L z= L

Fig. 1.—Schematic configuration for steady state reconnection as
described in x 2. Plasma and magnetic field are accelerated inward by the
gradient in B2

x and advected toward the plane z ¼ 0. The plasma is re-
moved by recombination, while the magnitude of By is limited by resistive
diffusion.

3 The layer considered here is actually a sublayer of a larger region in
which the neutral density has adjusted to compensate for the spatially vary-
ing magnetic pressure. On sufficiently small scales, however, the ions and
neutrals decouple.
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For the AD solution to remain valid, by must be dynami-
cally unimportant, or byð0Þ5 bxð1Þ, resulting in the
condition for byð1Þ

byð1Þ5 e���=2�AD : ð14Þ

Table 1 demonstrates just how small byð1Þ must be in order
to render the AD solution valid.

In order to solve for byð0Þ, we integrate equation (6) with
�x � 0. The result is

b2yð0Þ
2

þ �AD

��
ln byð0Þ ¼

1þ b2yð1Þ
2

þ �AD

��
ln byð1Þ : ð15Þ

Rewriting equation (15) in terms of an expression for byð0Þ
yields

byð0Þ ¼ byð1Þ exp
��

2�AD
1þ b2yð1Þ � b2yð0Þ
� �� �

ð16Þ

In the limit that b2yð0Þ and b2yð1Þ5 1, equation (16) reverts to
equation (13). Equation (16) can be solved by iteration. The
results (Fig. 2) show that equation (13) is quite accurate for
byð1Þ5 1, but does not predict the saturation of byð0Þ as
byð1Þ increases.

We can estimate the dimensionless electric field �y in
terms of the outer magnetic field strength by by replacing
the derivatives in equation (5) with differences over the
domain. The result is

�y �
cE

LB0
¼ 1

2�AD
1þ b2yð1Þ � b2yð0Þ
� �

þ 1

��
: ð17Þ

If by � 0, equation (17) predicts �y ¼ ð2�ADÞ�1 þ ��1
� ,

while the exact solution for this case gives �y ¼ ð3�ADÞ�1

þ ��1
� . The discrepancy is the result of differencing rather

than differentiating, but the answer is correct to order unity.
We estimate �y by substituting the solution of equation

(15) for by. When by is small enough that equation (13) is
valid,

�y �
1� b2yð1Þ e��=2�AD � 1ð Þ

2�AD
þ 1

��
: ð18Þ

Equation (18) predicts that the reconnection rate is
significantly slowed for b2yð1Þ � expð���=2�ADÞ, which is
consistent with equation (14).

4. MODIFIED EQUATIONS AND NUMERICS

In HZ03 we described a relaxation method for solving the
eigenvalue problem with adaptive mesh refinement on an
initially exponential grid. This method requires expressing
the derivative for each variable as a function only of the var-
iables, not their derivatives. Equations (5) and (6) are not in
suitable form for this technique. However, we can convert
these equations to a system with the structure desired by
introducing new dependent variablesR and h defined by

R ei� ¼ bx þ iby ¼ Rðcos �þ i sin �Þ : ð19Þ

Subtracting i�x from �y and using �x � 0 leads to

d

dz
R ¼ �y �� �AD cos �

��R2 þ �AD
; ð20Þ

d

dz
� ¼ � �y �� sin �

R
: ð21Þ

The boundary conditions corresponding to equations (7)
and (8) are

Rð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2yð1Þ

q
; ð22Þ

�ð1Þ ¼ arctan byð1Þ
� �

; ð23Þ

�ð0Þ ¼ �

2
: ð24Þ

Equations (20) and (21) are amenable to solution with the
numerical machinery described in HZ03.

5. RESULTS

Figure 3 shows bx and by over the whole domain for
increasing ��, and byð1Þ ¼ 0:003. For bx, the linear resistive
solution and the outer (inductive) solution are clearly distin-
guishable. Increasing �� lets the solutions converge to a
purely resistive profile, so that the electric field—and thus
the reconnection rate—is E / ��, the diffusion solution.
This proportionality we can clearly see in Figure 4.

We are interested in the threshold value of byð1Þ below
which the central byð0Þ is unimportant and the electric field

Fig. 2.—Central byð0Þ in terms of outer field strength byð1Þ, by solving
eq. (15) iteratively. Diamonds: B3; triangles: B4; etc. Note that the curves
change slope at the locations where eq. (14) predicts that by becomes impor-
tant. The overplotted lines show the values of byð0Þ predicted by eq. (13).

TABLE 1

Model Parameters

Model byð1Þ ��=�AD

B3 .................... 10�3 13.82

B4 .................... 10�4 18.42

B5 .................... 10�5 23.03

B6 .................... 10�6 27.63

Notes.—Key to model names: Bi,
where i ¼ � log byð1Þ, and byð1Þ gives
the outer value of the additional field
component according to eq. (14)
or given ��=�AD. Physically realistic
values for ��=�AD in the ISM range
around 108 or higher.
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is given by the AD solution (see HZ03, eqs. [35] and [36])

�y ¼
1

3�AD
þ 1

��
: ð25Þ

This solution follows from equations (1)–(3) or equations
(5) and (6) with By � 0. Figure 5 shows �y against byð1Þ for
the models in Table 1. For a given �� we decrease byð1Þ in
order to check whether the prediction of equation (14)

holds. Only model B3 has nearly reached the AD solution
(solid constant line and diamonds). The lines following the
symbols denote the predicted �y according to equations (15)
and (17).

In fact, none of the models could be run up to conver-
gence with the pure neutral sheet solution, probably because
the degree of the system drops from 2 to 1 when by � 0.
Nevertheless, we can see that the analytical prediction
for �y is qualitatively correct. The agreement is quite good
considering how crudely we arrived at the prediction.

6. SUMMARY

In a previous paper, HZ03, we showed that magnetic neu-
tral sheets in cold, weakly ionized gases can merge extremely
rapidly. Our results, which are in some respects an extension
of Brandenburg & Zweibel (1995) and Vishniac & Lazarian
(1999), rely on rapid recombination in the neutral layer,
which limits the ion pressure.

In this paper, we extended the model to the more general
case of a sheared magnetic field with a null in only one
component. We found that even a small additional field
component can prevent fast reconnection in one dimension.
Fast reconnection is only possible for ByðLÞ < BxðLÞ exp
ð���=2�ADÞ. Since ��=�AD > 108 in the ISM, an additional
nonzero field can prevent fast reconnection very efficiently.

Reconnection would, of course, be faster in two dimen-
sions, with reconnection at an X-point and outflow away
from it. In this geometry (see Parker 1957 and Sweet 1958),
the magnitude of By is limited by the outflow. Previous
analysis has shown that reconnection is slow if By is
dominant (Zweibel 1999), but the possibility remains that a
small but nonvanishing By is compatible with fast reconnec-
tion. Treatment of this case is beyond the scope of this
paper.

We thank the referee for a short and concise report. This
work was supported by the Alexander von Humboldt
Foundation andNSF grant AST-0098701.

Fig. 4.—Electric field �y against ��=�AD. Solid line: prediction according
to AD solution from HZ03, eq. (25); diamonds: numerical results for
byð1Þ ¼ 0:003. Electric field scales as ��1

� , indicating a pure diffusion
solution.

Fig. 5.—Electric field in terms of byð1Þ.Diamonds, triangles, squares, and
crosses: Models B3–B6, respectively. The curves following the symbols
denote the predictions of �y according to eq. (17). The lines of constant �y

denote the AD solution as given by eq. (25).

Fig. 3.—Magnetic field components bx;yðzÞ for various ��. The solutions
converge to a resistive profile for increasing ��.
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