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ABSTRACT

We introduce the theory of nonlinear cosmological perturbations using the correspondence limit of the Schro¨-
dinger equation. The resulting formalism is equivalent to using the collisionless Boltzmann (or Vlasov) equations,
which remain valid during the whole evolution, even after shell crossing. Other formulations of perturbation
theory explicitly break down at shell crossing, e.g., Eulerean perturbation theory, which describes gravitational
collapse in the fluid limit. This Letter lays the groundwork by introducing the new formalism, calculating the
perturbation theory kernels that form the basis of all subsequent calculations. We also establish the connection
with conventional perturbation theories, by showing that third-order tree-level results, such as bispectrum, skew-
ness, cumulant correlators, and three-point function, are exactly reproduced in the appropriate expansion of our
results. We explicitly show that cumulants up to predicted by Eulerian perturbation theory for the darkN p 5
matter fieldd are exactly recovered in the corresponding limit. A logarithmic mapping of the field naturally arises
in the Schro¨dinger context, which means that tree-level perturbation theory translates into (possibly incomplete)
loop corrections for the conventional perturbation theory. We show that the first loop correction for the variance
is for a field with spectral indexn. This yields 1.86 and 0.86 for and�2,2 2 4j p j � (�1.14� n)j n p �3L L

respectively, to be compared with the exact loop order corrections 1.82 and 0.88. Thus, our tree-level theory
recovers the dominant part of first-order loop corrections of the conventional theory, while including (partial)
loop corrections to infinite order in terms ofd.

Subject headings: cosmic microwave background — cosmology: theory — methods: statistical

1. INTRODUCTION

The most successful theories of structure formation assume
that small initial fluctuations grew by gravitational amplification
in an expanding cosmological background. This simple as-
sumption has been remarkably successful in explaining nonlinear
structures in simulations and observations, especially on larger
scales. The basic equation governing the statistics of the dark
matter field is the collisionless Boltzmann (or Vlasov) equation.
These nonlinear equations are considered to be intractable; there-
fore, the most usual approach is to take their moments.

Taking only the first few moments of the equation results in
Euler’s ideal (pressureless) fluid equations coupled with the
Poisson equation for gravity. The fluid approximation, however,
breaks down at shell crossing. Arbitrarily high moments yield
an infinite hierarchy of equations (e.g., Peebles 1980), the
BBGKY equations. These relate time evolution ofNth-order
moments to ( )th-order moments. The equations can beN � 1
“closed” only under certain assumptions (e.g., Davis & Peebles
1977; Fry 1984a; Hamilton 1988). Equations of motion in La-
grangian space (e.g., Bouchet et al. 1995) are as successful as
the Eulerian method. The above analytical tools are checked
by a set of numerical and seminumerical methods, such asN-
body simulations, and approximations thereof such as Zeldov-
ich, truncated Zeldovich, frozen flow, and adhesion approxi-
mation (e.g., Gurbatov, Saichev, & Shandarin 1989).

One particularly successful method to solve the above equa-
tions before shell crossing is perturbation theory (PT); Eulerian
and Lagrangian perturbation theories (EPT and LPT) are used
with similar success. Contributions can be ordered systemati-
cally, represented and enumerated by the use of Feynman
graphs pioneered by Goroff et al. (1986). The first nontrivial
order, tree-level PT penetrates the nonlinear regime to surpris-
ingly high degree. Cumulants of the dark matter density field
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have been calculated for Gaussian initial conditions by several
authors2 (e.g., Peebles 1980; Juszkiewicz, Bouchet, & Colombi
1993; Bernardeau 1992; Bernardeau et al. 2002). For instance,
the skewness of a mildly nonlinear field is ,S 34/7� (n � 3)3

wheren is the local power index of the power spectrum. Similar
calculations have been performed for the full three-point cor-
relation function and bispectrum (Fry 1984b). The theory has
been confirmed by simulations (e.g., Colombi, Bouchet, &
Schaeffer 1994; Szapudi et al. 1999, 2000; Columbi et al.
2000), and data appear to be in broad agreement as well (e.g.,
Szapudi, Meiksin, & Nichol 1996; Szapudi & Gaztanaga 1998;
Szapudi & Szalay 1997; Szapudi et al. 2002).

The most straightforward way to improve tree-level PT is to
include the next to leading order “loop” corrections. Such cal-
culations (Scoccimarro & Frieman 1996a, 1996b), albeit fairly
complicated, do improve the agreement with simulations on
small scales. Another extension to PT is the spherical infall
model, in which one calculates angle-averaged Feynman vertices
(Fosalba & Gaztanaga 1998). It is a fairly simple alternative to
the tedious calculation of loop corrections, but it yields only a
fraction of the corrections owing to neglecting tidal effects. Be-
sides physical theories, several phenomenological assumptions
exist to fit smaller scale behavior (e.g., “extended” and “hyper-
extended” PT; see Bernardeau et al. 2002 for details).

In this Letter, we propose an entirely different approach
based on the correspondence limit of the Schro¨dinger equations.
These are equivalent to the full Boltzmann-Vlasov description
(Widrow & Kaiser 1993) but involve a complex scalar field
depending on variables, similarly to the Euler equations.3 � 1
As shown below, PT of the Schro¨dinger theory (SPT) is not
significantly more complicated than EPT. Section 2 presents
the underlying theory, § 3 outlines the connection with con-
ventional PT, § 4 deals with the cumulants in more detail, and

2 The last paper contains comprehensive references on the subject.
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finally § 5 discusses the results and provides an outlook for
research possible using this formalism.

2. PERTURBATION THEORY WITH THE SCHRO¨ DINGER EQUATION

The Schro¨dinger equation in the correspondence limit is a
viable alternative to the collisionless Boltzmann (Vlasov) equa-
tions. In the expanding universe (with for simplicity),Q p 1

3˙i�w � Hw � Hw p 0, (1)
2

wherew is the complex scalar field representing dark matter
density with ,H is Hubble’s constant, and is the

2

r p d w d H
Hamiltonian of the gravitational field. This is a nonlinear equa-
tion, since depends on the density field. If new variables areH
introduced as

�3/2a A(r, t)�iB(r, t)/�w(r, t) p w e , (2)0 ( )a0

the above equation reduces to equations for two real scalar
fields,

1 2Ȧ p � (∇ B � 2∇A∇B),22ma
2� 12 2 2˙ F F F FB p (∇ A � ∇A ) � ∇B � mV, (3)2 22ma 2ma

2 2 2A¯∇ V p 4pGra (a � 1),

where the last equation is the Poisson equation coupled to the
Schrödinger equation. The structure of these equations is sim-
ilar to Euler’s fluid equations in terms of the density contrast
and velocity potential, despite the fact that we have not taken
moments of the underlying full equations. The main difference
and extra complication arise from the exponential in the Poisson
equation. The PT of these equations will be entirely analogous
to that of the Euler equations, and it can be presented in Fourier
space in the simplest manner.

In what follows, we work in the correspondence limit, i.e.,
; we neglect “wavy” features of the equations. Fourier� r 0

transforming the equations yields

1 2Ȧ p � [k B � 2(kA )(kB )],k k k k22a
2 2 N1 3H a 2 NḂ p � (kB )(kB ) � A , (4)�k k k k2 22a 2k N!N≥1

where the multiple and power of transforms are understood as
convolutions, is assumed for simplicity, the Poissonm p 1
equation was substituted for�V, and the exponential was
expanded.

These equations can be rendered homogeneous ina andH
using the followingAnsätze:

(N) NA p A a ,�k k

(N) N�2B p �H B a . (5)�k k

Perturbations can be ordered according to powers of the growth

factor. We can introduce the usual kernels with the following
definition:

(N) 3 3A p d k … d k d(k p k � … � k )k � 1 N 1 N

(N) (1) (1)# F (k , … , k )A … A ,1 n k k1 N

2(N) 3 3B p d k … d k d(k p k � … � k )k � 1 N 1 N2k
(N) (1) (1)# G (k , … , k )A … A . (6)1 n k k1 N

Substituting to the equations leads to the following recursions:

(N) (N) (S) (N�S)NF p G � 2 a(q , q )F G ,� 1 2
S

1 (N) (S) (N�S)N � G p b(q , q )G G� 1 2( )2 S

(M�2)2 (s ) (s )1 2� 3 d(N p s )F F … ,� � iM!M, s , s , …1 2

(7)

where mode coupling functions are similar to the Eulerian case,

(q q )1 2
a(q , q ) p ,1 2 2k2

2k (q q )1 2
b(q , q ) p , (8)1 2 2 2q q1 2

and the exponential is expanded; , , andk correspond toq q1 2

the sum ofS, , and all the wavevectors. To solve theN � S
recursion at any order, one has to separate ( ) in theNF M p 1
expansion of the exponential and subtract the two equations
from each other. This procedure leads to terms up to onN � 1
the right-hand side of the equations. Here we give explicitly
the caseN p 2

3 10 2(2)F (k , k ) p � a(k , k ) � b(k , k ). (9)1 2 1 2 1 27 7 7

Higher order kernel functions can be obtained trivially from
the recursion relation. These kernels can be used to calculate
quantities to the accuracy of tree-level PT. In what follows, we
will show the connection with EPT via explicitly calculating
tree-level quantities at third order.

3. CONNECTION WITH EULERIAN PERTURBATION THEORY

Since , and , the perturbative corrections to2Ad p e � 1 d d1 2

d growing with the first and second power of the growth factor,
are

(1) (1)d p 2A ,
2(2) (2) (1)d p 2(A � A ). (10)
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Thus, to tree-level PT is3d

(1)2 (2) 4 (1)2 (2) (1)23Ad d S p 3a 8A (A � A )

4 3 3 2 (1) (1) ix k� ip 3a 8 d k … d k [1 � F (k , k )]A … A e� 1 4 2 3 k k1 4

3 4 3 3 2 (1) (1) ix k� ip a d k … d k [1 � F (k , k )]d … d e .� 1 4 2 3 k k1 42

(11)

When taking the ensemble average (assuming Gaussian fields),
and cannot be paired, yielding a combinatorial factor ofk k2 3

2. From this, , where the angle brackets here2S p 3A1 � F S3

mean angle averaging. Since and ,2AaS p 0 AbS p S p33

, as expected from PT.34/7
In fact, it is easy to show (after the necessary(2) (2)˜1 � F p 2F

symmetrization of the kernels), where is the second-order(2)F̃
kernel (naked vertex) in EPT. Thus, calculations entirely anal-
ogous to the above show that tree-level bispectrum, three-point
function, and the skewness after smoothing, cumulant correla-
tors, etc., are all exactly matching the tree-level EPT results.

4. CUMULANTS

To derive cumulants, one has to consider the angle-averaged
recursion relations. If the angle-averaged kernels are defined
as and , the first equation gives a veryn p N!AF S m p N!AG SN N N N

simple relation:

Nn p m . (12)N N

From this the second equation gives a simple recursion for
, which readsnN

N�12 2 N
n p s(N � s)n n� ( )N s N�ss[(2N � 1)N � 3 3sp1

M�22 n ns s1 M� 3N! d N p s … . (13)� � ( � )i ]M! s ! s !Mp2 s , …, s1 M 1 M

With the initial condition , one can solve to ar-n p m p 11 1

bitrary order in a trivial fashion. The first two naked vertices
are

26
n p ,2 21

568
n p , (14)3 189

473,744
n p .4 43,659

From these the tree-level cumulants of theA-field can be cal-
culated as

26AS p 3n p ,3 2 7

40,240A 2S p 4n � 12n p , (15)4 3 2 1323

119,609,680A 3S p 5n � 60n n � 60n p .5 4 3 2 2 305,613

Projecting the cumulants of theA-field using the formalism
of biasing recovers cumulants ofd. In this context, the primary
field is A and is a nonlinearly biased2A kd p e � 1 p � b A /k!k

field, where the usual bias coefficients read andb p 2 c pN

. According to the formula of Fry & GaztanagaN�1b /b p 2N

(1993),

34
�1S p b (S � 3c ) p ,3 3 2 7

60,712
�2 A A 2S p b (S � 12c S � 4c � 12c ) p , (16)4 4 2 3 3 2 1323
�3 A A A AS p b [S � 20c S � 15c S � (30c � 120c )S5 5 2 4 2 3 3 2 3

200,575,880
� 5c � 60c c ] p ;4 3 2 305,613

i.e., we recover the results of tree-level PT exactly.
Because of the nonlinear transformation, tree-level calcu-

lations of theA-field translate into (possibly incomplete) loop
corrections for thed-field. To demonstrate this, we calculate
the loop corrections arising from the tree-level SPT for the
variancej. According to Fry & Gaztanaga (1993), the variance

. Initially, there is no2 2 2 2 Aj p 4AA S � 4AA S (2S � 6) � …3

skewness; thus, for the initial conditions, the linear variance
follows the same equation with . Expanding and col-j S p 0L 3

lecting terms to second order in yields2AA S

AS32 2 4j p j � j . (17)L L2

Numerically the coefficient is within 2%AS /2 p 13/7� 1.8573

of the exact loop correction 1.82. This means that the dominant
part of the loop correction arises from tree-level perturbations
of the logarithm of the field. The same expansion can be gen-
eralized to any order; although tedious, it is fairly simple. It
will be presented elsewhere. Here we have used the general
theory of Fry & Gaztanaga (1993). However, exponential bias
was explicitly treated by Grinstein & Wise (1986); their results
will probably be useful for future calculations of this sort.

Note that the above calculations are for the unsmoothed field,
or . Detailed calculation for other spectral indices willn p �3
be shown elsewhere; as a preview, simple considerations
suggest , and consequentlyA 2 2S p 26/7� 2(n � 3) j p j �3 L

, for , in excellent agreement with PT.4(�1.14� n)j n ! �1.14L

5. SUMMARY AND OUTLOOK

We have introduced SPT based on the Schro¨dinger equations.
In the correspondence limit, our description is equivalent with
the full Boltzmann (Vlasov) equations. Other versions of PT, in
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particular EPT, explicitly break down at shell crossing; therefore,
our ultimate aim is to penetrate the nonlinear regime deeper.

A unique feature of SPT is that it naturally uses the logarithm
of the dark matter field, which remains close to Gaussian
throughout the nonlinear evolution. This suggests that the SPT
expansion should converge faster. Related techniques such as
Edgeworth expansion, etc., are expected to be more accurate.
Indeed, we have shown that, at least for the variance, this is
the case. This feature of our theory sheds new light on the
validity of the lognormal prescription ford (e.g., Coles & Jones
1991) and suggests usingA, i.e., the logarithm of the underlying
dark matter field, to construct statistics, such as correlation
function, skewness, kurtosis, and bispectrum (inA-space). The
first encouraging steps toward analyzing data in log-space have
been done by Colombi (1994).

Our principal aim here is to present the basic theory and the
calculation of the recursions for the tree-level PT kernels. These
constitute the groundwork for a spectrum of future research.
We have also given the recursion for the angle-averaged kernels
and elaborated the results up to explicitly. Higher ordersN p 5
are calculated trivially from the results shown.

We have explored the connection of our theory with EPT.
We have recovered the first nontrivial tree-level PT kernel in
the appropriate limit. All third-order tree-level PT results (e.g.,
bispectrum, three-point function) are exactly reproduced by the
SPT expansion. In addition, we have applied the exponential
bias formalism to recover exactly the tree-level PT cumulants
up to . The theoretical exercise of proving the equiva-N p 5
lence to arbitrary order is left for subsequent research.

Our tree-level results correspond to (possibly incomplete)
infinite-order loop corrections. To demonstrate that, we have
obtained the first nontrivial loop correction for the variance by
simply expanding our tree-level results to second order. The
agreement of this simple expansion with the complex EPT loop
calculations is remarkable. A large, perhaps dominant, fraction
of the loop corrections arises from the nonlinear projection of
tree-level results fromA-space tod-space.

The following extensions and generalizations will be pre-
sented in subsequent publications: detailed exploration of the

higher order cumulants, cumulant correlators,N-point corre-
lation functions, and spectra, and the probability distri-N � 1
bution function; other statistics, such as genus and void prob-
ability; smoothing; non-Gaussian initial conditions; application
to angular correlations and lensing; general cosmological back-
ground; approximate loop and nonperturbative corrections for
higher order quantities using our nonlinear projection; exact
loop corrections inA-space; and comparison of tree-level sta-
tistics of theA-field, such as bispectrum, three-point correlation
function, and cumulants (variance, skewness, and kurtosis),
with simulations. Other interesting applications of the theory
are possible, such as studying the wavy term, which was ne-
glected so far (and thus modeling a dark matter with large
Compton wavelength). A fast approximation scheme similar to
second-order LPT will be obtained and implemented from our
formalism, possibly including wavy terms.

Note that we have not mentioned the interpretation of the
B-field ( and ). Initially, this corresponds to the usualNG mN

velocity potential; the interpretation after shell crossing is un-
clear. Nevertheless, our calculations yield and as well;NG mN

the connection with measurements is left for future work.
The method we have put forward follows almost exactly the

prescription of EPT for a slightly different set of equations.
This is not the only way to deal with these equations; other
possibilities exist, such as using the interaction picture analo-
gously to quantum mechanics. As a first step toward this di-
rection, the authors have shown that the Zeldovich approxi-
mation is recovered in the zeroth-order approximation. This in
turn (along with the logarithmic mapping) hints at a connection
with LPT, which will be explored later.
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