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ABSTRACT

We present a technique for determining the number of X-ray sources per flux density interval, the log N–
log S relationship, that is mathematically analogous to spectral fitting. This technique is ideal for X-ray
source counts obtained using the Chandra X-ray Observatory since the telescope and the focal plane
instruments have been well modeled. This technique is of general applicability. In this paper, we apply it to a
wavelet source-detect analysis of a Chandra Advanced CCD Imaging Spectrometer (ACIS-I) mosaic image
of a 1.35 deg2 survey of the Lockman Hole. We verify the technique viaMonte Carlo simulations.

Subject heading:methods: miscellaneous — surveys — X-rays: galaxies

1. INTRODUCTION

Detecting the number of sources per flux density interval,
N(S), is a typical problem in astronomy. If the sources are
all of the same class and are located in the same distant gal-
axy or cluster, N(S) can be used to study the source-class
luminosity function. For extragalactic X-ray sources at dif-
ferent distances, the relationship between N and S is typi-
cally well approximated by a single or composite power-law
distribution (Hasinger et al. 1993). The normalization and
index of the power-law distribution are of great interest as
they have cosmological implications; for sources uniformly
distributed in a Euclidian nonevolving universe, the N(S)
relationship is a power law of index 5=2. The power-law
nature of N(S) or of its integral form N(>S) is often pre-
sented in the form of a logN versus log S plot.

A typical recipe for determining an X-ray N(S) is to
detect the sources, determine the X-ray counts for each
source, and correct for effective area and exposure time. The
X-ray counts for each source are then converted to physical
flux units (e.g., ergs cm�2 s�1) based on a spectral model.
The measured N(S) is then the number of sources at a spe-
cific flux density, and in a specific flux density interval. The
sky coverage of the survey is then incorporated to give
N(S) per unit solid angle. There are a number of biases and
selection effects present when determining N(S), several of
which are listed below:

1. Sensitivity.—Source detection algorithms detect
higher flux density sources with a greater probability than
lower flux density sources.
2. ‘‘ Poisson migration ’’ or Eddington bias (Eddington

1940).—Sources with a flux density near the detection
threshold will be preferentially detected when they have
upward fluctuations. The net consequence of this is that the
flux density of these sources is overestimated.
3. Source confusion.—Sources with angular separation

smaller than the telescope point spread function (PSF) can
be mistakenly identified as a single source. Similarly, the
extended wings of the PSF of a bright source may contribute
to the counts of adjacent sources.
4. Background events.—Fluctuations in the background

may add (or subtract) counts from the source.

These and other biases and selection effects, as well as
various techniques for correcting for them, have been dis-
cussed elsewhere (Hasinger et al. 1993; Vikhlinin et al. 1995;
Murdoch, Crawford, & Jauncey 1973; Schmitt & Macca-
caro 1986;Moretti et al. 2002).

Techniques for accommodating these biases can be ana-
lytical or numerical and are often investigated with exten-
sive Monte Carlo simulations. The simplest techniques
involve limiting source selection to those brightest sources
whose count uncertainty is significantly less than the bias
level. One can further correct for sensitivity by dividing the
differential N(S) by the probability P(S) of detecting a
source of flux density S. In addition to statistical biases,
implementations of source detection algorithms such as the
sliding cell or wavelet deconvolution may have their own
inherent selection effects or nonlinearities.

In this paper, we present a technique for determining
N(S) that is mathematically equivalent to spectral fitting.
As will be discussed, many of the issues and solutions of
spectral fitting have direct analogs in our method. The tech-
nique inherently takes into account statistical biases and
instrumental selection effects, and it inherently calibrates
the photometry scale for the source detection algorithm.
This method does not fully take into account source confu-
sion, in the same way that most spectral fitting algorithms
do not fully take into account photon pileup. As will be dis-
cussed below, the probability of source confusion where j
multiple sources are mistakenly grouped as a single source
is proportional to ½ N=�ð Þ � h��psfi�j, where N=� is the
number of sources per solid angle and h��psfi is the effective
solid angle of the point spread function averaged over the
observation. Since the Chandra point spread function is
small, source confusion is negligible as long as
½ N=�ð Þ � h��psfi�5 1.

This technique has been developed, in part, for the
purpose of analyzing a set of Lockman Hole (LH) data col-
lected as part of the HRCGTO program. Although we have
used the LH data set to determine various input parameters
to our procedure, the technique, with minor modifications,
is of general applicability. Further in-depth discussion and
analysis of the LH data set will be presented in future
publications.
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In the following sections of this paper we describe
our technique. We then apply the technique to our LH
data set. Finally, we apply the technique to Monte
Carlo simulations. For the sake of simplicity, we shall
keep flux density units, S, in terms of the equivalent
number of counts, n, that would have been detected in
the observation time for a given energy spectrum; this
sampling of flux density at specific increments is done
so that the discussion and results are independent of
any specific source spectral model. Keeping flux density
in terms of equivalent counts is ideally suited to our LH
data, where we have approximately uniform sky cover-
age over the survey.

2. THE TECHNIQUE

A detected number–flux density relationship, NðS0Þ,
can be related to the true number–flux density relation-
ship, N(S), by a redistribution matrix function

NðS0Þ ¼
Z

RðS;S0ÞNðSÞdS ; ð1Þ

or by sampling the input flux density appropriately, we
can write this in terms of discrete counts:

NðmÞ ¼
X

Rðm; nÞNðnÞ : ð2Þ

The redistribution matrix, Rðm; nÞ, describes how a
‘‘ true ’’ n-count source through statistical and nonstatisti-
cal biases may be detected as an m-count source. It is
possible to populate the elements of the Rðm; nÞ matrix
by using what is equivalently a series of discrete delta
function input distributions of the form NðnÞ ¼ �j;n,
where j ¼ f1; 2; 3; . . .g. In practice, this involves using a
Monte Carlo simulation that generates sources with flux
densities sampled so as to give approximately integer
number of counts if the sources were on axis. With added
complexity, observation specific factors such as spatially
varying background and real source positions with
respect to detector features (such as inter-chip gaps) can
be incorporated. Having determined the Rðm; nÞ matrix,
a candidate NðnÞ distribution with free parameters is
tested by convolving it with Rðm; nÞ. The free parameters
are varied, and the NðnÞ Rðm; nÞ convolution is fitted to
the detected NðmÞ distribution.

The general technique is independent of the source detec-
tion algorithm and of the particular telescope simulation, as
long as one is consistent throughout the whole process. To
populate the Rðm; nÞmatrix we used a Monte Carlo simula-
tion encompassing the MARX (Modeling AXAF Response
to X-rays) Chandra modeling software package. MARX is
the presently accepted standard simulation package of the
Chandra telescope and is discussed in detail elsewhere (Wise
et al. 1999). We have generated multiple simulated fields,
each containing multiple n-count sources. This process was
repeated with n ¼ f1; 2; 3; . . . ; 50g . To make this appro-
priate to our LH observations, the source locations were
distributed randomly over an ACIS-I field of view that was
determined by an actual observation exposure map. Based
on the LH data set, appropriate numbers of background
events were added to these simulated source fields. These
background events were taken from archival ACIS-I back-
ground and the nature of these archival background data is

discussed elsewhere (Markevitch 20011). Although the
nature of the energy spectrum is not important to our tech-
nique, the energy spectrum of the simulated point sources
was set to a single power law with a photon index of 1.7; this
was done so that in the end, we could check and convert
from counts to physical flux density units for our LH data.
The conversion between on-axis source flux density and
ACIS-I counts was checked against the latest models of
the telescope and instrument using the PIMMS software
package.

The simulated data sets were run through the identical
point source detection algorithms and exposure map correc-
tions that were used for the real LH data. For each series of
fixed input NðnÞ ¼ �j;n j ¼ f1; 2; 3::gð Þ count simulations,
our detection process generated a column in the Rðm; nÞ
matrix. The normalization of each matrix column was set
equal to the fraction of the n-count sources that were
detected; this fraction is the probability, PðnÞ, of detecting
an n-count source

PðnÞ ¼
X
m

Rðm; nÞ : ð3Þ

The quantity P(n), when converted to physical flux density
units, is the sensitivity, P(S), and when scaled by the solid
angle, is the ‘‘ completeness ’’; it is analogous to the ancillary
response function (ARF) in spectral fitting. Our determined
PðnÞ, as well as the n ¼ 5 and n ¼ 9 columns of the Rðm; nÞ
matrix, are presented in Figures 1 and 2.

The effect of Poisson migration can be examined by look-
ing at the ratio of mean detected counts to input counts.
This quantity is inherent in theRðm; nÞmatrix

Mðm; nÞ ¼ 1

n

P
m mRðm; nÞP
m Rðm; nÞ

� �
: ð4Þ

1 http://cxc.harvard.edu/contrib/maxim/bg

Fig. 1.—Probability of detecting an n-count source is analogous to the
ancillary response function (ARF) in spectral fitting. It is embedded in the
Rðm; nÞ matrix as the normalization of each column, PðnÞ ¼

P
m Rðm; nÞ.

When divided by the solid angle of the survey it is the ‘‘ completeness ’’ of
the survey. The cgs scale is appropriate to our Lockman Hole (LH)
data set.
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A plot showing Mðm; nÞ is presented in Figure 3. It is clear
that for low-count sources there is Poisson migration in
detected source counts. This ratio of detected counts to
input counts is >2 for low-count sources. Figure 3 also
shows that there is a systematic bias in the photometry scale;
the ratio of detected source counts to input counts for even
the highest-count sources is� 3% low.We have investigated
this systematic bias and attribute approximately half of this
� 3% to events lost during the simulated CCD frame trans-
fer. The remaining � 1:5% is due to the extent of the wings
of the simulated PSF exceeding the wavelet photometry
region.

It should be noted that regardless of cause, if the Monte
Carlo simulation correctly describes the actual telescope,

these biases are embedded in theRðm; nÞmatrix and are cor-
rected for in the convolution and fitting process of equations
(1) and (2). For this reason, the accuracy of our Monte
Carlo simulation depends critically on how well MARX
represents the response of the Chandra telescope and instru-
ments. These simulations used MARX version 3.0. The
accuracy of MARX has been tested and is well documented
(Wise, Huenemoerder, &Davis 1997; Wise et al. 1999).

This technique does not fully take into account source
confusion. Given a random distribution of N sources in a
field of view of solid angle �, the probability of detecting j
sources within the same effective PSF, h��psfi, can be calcu-
lated assuming Poisson statistics to be

PðjÞ ¼ 1

j!
exp � N=�ð Þh��psfi

� �
�
�
N

�
h��psfi

�j

ð5Þ

For j ¼ 2, in the limit of ½ N=�ð Þ � h��psfi�5 1 this becomes
1=2!ð Þ½ N=�ð Þh��psfiÞ2�. Using our LH data set (� 400 point
sources in 1.35 deg2), we have calculated h��psfi and find
½ N=�ð Þ � h��psfi� < 10�3. The probability of source con-
fusion is negligible given our typical N=� and the small
Chandra PSF.

Source confusion in our technique is analogous to photon
pileup in spectral fitting; the nature of the correction is
dependent on theNðnÞ distribution just as the correction for
pileup in spectral fitting is dependent on the energy-
spectrum. For cases where source confusion is non-
negligible, post facto corrections to our technique can be
calculated and applied. We have not applied any source
confusion correction to our data set.

3. APPLICATION AND VERIFICATION
OF THE TECHNIQUE

We have applied our technique to our LH data and on
simulated data fields. The simulated data fields were made
using the LH data as a template. The Rðm; nÞ matrix that
was generated used uniform background levels appropriate
to the actual LH observations. We have used the standard
CIAO ‘‘ wavdetect ’’ and ‘‘ dmtools ’’ software packages
(v. 2.2.1) throughout this analysis (Freeman et al. 2002;
CIAO users manual 20012).

3.1. The LockmanHole (LH)Data

The LH data set consists of a 1.35 deg2 mosaic of 21
ACIS-I observations each of � 5000 s. The data underwent
standard Chandra event processing and filtering. The data
were then analyzed separately in the 0:5 2 keV, 0:5 7 keV,
and 2 7 keV bands. For the purpose of this paper we will
limit our discussion to the sources found in the 0:5 7 keV
band. Further discussion and analysis of the entire LH data
set will be presented in future publications.

The point source population of the LH observations was
detected using the CIAO ‘‘ wavdetect ’’ software. The wave-
let scales searched were f1; 2; 4; 8g � 1>96 with a probability
threshold of 1� 10�6 for identifying a pixel as belonging to
a source. In � 5000 s the number of background events in
any putative source is negligible; the detections are flux lim-
ited. For the total 0:5 7 keV band, 403 sources were
detected and the S=N (

ffiffiffi
n

p
) for the faintest sources was � 2

2 http://cxc.harvard.edu/ciao/download/doc/detect_html_manual

Fig. 2.—The two distributions shown are the n ¼ 5 and n ¼ 9 columns
of the Rðm; nÞ matrix; they show how input n ¼ 5-count and n ¼ 9-count
sources would be redistributed by statistics, by the telescope and
instrument, and by detection biases and systematics.

Fig. 3.—Ratio of mean detected source counts to input source counts.
This plot shows the effect of ‘‘ Poisson migration ’’ (Eddington bias).
Sources with counts near the detection threshold will be preferentially
detected when they have upward fluctuations. The net consequence of this
is that the flux density of these sources is overestimated. These data also
show that the recovered flux using the wavelet source detection algorithm
(wavdetect) is still � 3% low. Approximately half of this � 3% has been
attributed to events lost during the simulated frame transfer. The rest is in
the wings of the PSF, which are outside the wavelet photometry region.
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�. The wavelet-determined counts of each detected source
were corrected for effective area and exposure time.

The form of N(S) is often modeled as a single or broken
power law. To determine the functional form of N(S), we
have convolved a power law NðnÞ ¼ A� n�� with Rðm; nÞ
and fitted to the LHNðmÞ data. The results of this fitting are
shown in Figure 4.

We find that the underlying NðnÞ distribution is well
described by a single power law with the following form:

NðnÞ ¼ 2122þ2981
�1471n

�2:09þ2:17
�1:87

(Fit reduced �2 ¼ 1:1 for � ¼ 48). The 90% confidence level
limits for the parameters are given. We have also converted
our results to physical flux units based on a single average
power-law energy spectrum of photon index 1.7 and the
angular coverage of our survey. In integral form, for the LH
data 0:5 10 keV band (extrapolated from 0:5 7 keV), we get

Nð> S14Þ ¼ 293þ411
�203S

�1:09þ1:17
�0:87

14 deg�2 ;

where S14 indicates that flux is in units of 10�14 ergs cm�2

s�1. We have assumed a single average spectrum for the
sources; the true conversion of n to S varies from source to
source, and this would contribute to our uncertainties.

3.2. Verification

The only proper way to verify our technique is to know a
priori the underlying N(S) distribution and then to use the
technique to reconstruct it; this can be done via Monte
Carlo simulation. We have generated simulated observa-
tions with source populations that have distributions N(S)
with similar statistics to those encountered in our LH data
set. The simulated source population NðnÞ distribution is of
the form NðnÞ ¼ 2200n�2:0, where N is the number of
sources that would give us n counts in the given observation
time.

We used MARX to generate output event files to which
we added appropriate amounts of archival ACIS-I back-

ground events consistent with our real data. Images were
generated and analyzed with the identical source detection
algorithms and probability thresholds as were used to ana-
lyze the real data. The resultant source counts were cor-
rected by the appropriate exposure map. The detectedNðmÞ
distribution was fitted to a power law convolved with our
Rðm; nÞ matrix. The data, fit, and residuals are presented in
Figure 5. The resultant best fit distribution was

NðnÞ ¼ 2400þ3500
�1640n

�2:09þ2:23
�1:88

with a �2=� ¼ 0:7 for � ¼ 48. The 90% confidence level lim-
its for the parameters are given.We have also tested for false
detections using just background data. We find that we can
expect� 5� 1 spurious detections in our real data set, given
our detection thresholds. Figure 6 shows the inputNðnÞ dis-
tribution, the best fit power law to the input distribution,
and the power law that was recovered via theRðm; nÞ convo-
lution technique.

Fig. 4.—Best fit power law NðnÞ ¼ A� n�� convolved with Rðm; nÞ and
fitted to detected Lockman Hole NðmÞ distribution. We have also
converted to cgs units based on an average power-law energy spectrum of
photon index ¼ 1:7 spanning 0:5 10 keV appropriate for the LH data set.
The reduced �2 ¼ 1:1 for � ¼ 48.

Fig. 5.—Power law NðnÞ ¼ A� n�� convolved with Rðm; nÞ and fitted
to detected Monte Carlo simulated NðmÞ distribution. The reduced
�2 ¼ 0:7 for � ¼ 48.

Fig. 6.—Results of Monte Carlo simulation to recover the underlying
NðnÞ distribution. Histogram is the underlying input power law sample
NðnÞ. The solid line is the fit to the input sample. The triangle data points
are the result of recovering the distribution via the Rðm; nÞ convolution and
fitting toNðmÞ.
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In Figure 7 we present results ofMonte Carlo simulations
that compare a detected NðmÞ distribution with the under-
lying parent NðnÞ distribution, the parent distribution

taking into account sensitivity [NðnÞ � PðnÞ], and finally
NðnÞ convolved with Rðm; nÞ. For sources with n higher
than �16 the effect of the various biases are negligible and
NðmÞ � NðnÞ. Taking into account sensitivity allows us to
get below m � 10, while the full convolution technique
allows us predictNðmÞ to sources with 2 detected counts.

4. CONCLUSIONS

We have presented a technique for determining the
number of X-ray sources per flux density interval that is
mathematically identical to spectral fitting. The technique,
though of general applicability, was applied to a set of
Lockman Hole Chandra ACIS-I observations and further
verified via Monte Carlo simulations. The benefits of this
technique are that it inherently embodies and accounts for
statistical and systematic biases, provided that the Monte
Carlo is of sufficient fidelity. A series of improvements to
the technique is presently being investigated, including more
simulations to improve statistics (particularly for the low-
est-count sources), improved fitting algorithms that use dif-
ferent or more appropriate fit statistics, and a post facto
correction for cases where source confusion is a dominant
problem.

Funding for this research was provided by NASA con-
tract NAS8-38248 and NAS8-01130.
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