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ABSTRACT

Microlensing surveys derive the microlensing optical depth toward various directions such as the Galactic
center from the distribution of observed Einstein radius crossing times. I show that the formula that is being
used is invalid for ‘‘ exotic ’’ lensing events. The corrected formula is derived. The ‘‘ parallax ’’ effect (Earth
motion) requires no correction. Corrections for the finite sizes of sources and wide binary lenses are small
(typically less than 1%), except for blended events. Corrections for intermediate-type binaries such as
MACHOLMC-9 can be substantial.

Subject headings: dark matter — gravitational lensing

1. INTRODUCTION

Microlensing surveys (Paczyński 1996) such as EROS,
MACHO, or the Optical Gravitational Lensing Experiment
(OGLE) have been very successful at finding microlensing
candidates. The MACHO collaboration (Alcock et al.
2000a) found 13–17 events in their 5.7 yr data sample toward
the Large Magellanic Cloud (LMC). The EROS collabora-
tion found four events toward the same direction in their 3 yr
data (Lasserre et al. 2000; Lasserre 2000) and one event in the
2 yr Small Magellanic Cloud sample (Palanque-Delabrouille
et al. 1998). Hundreds of microlensing events were found by
either MACHO (Alcock et al. 2000c) or OGLE (Udalski et
al. 1994) toward the Galactic center. EROS (Derue et al.
2001; Afonso 2001) also found tens of microlensing events
toward theGalactic disk and the Galactic center.

The microlensing optical depth � is given by

� ¼
Z Ds

o

dDd �r
2
E�dðDdÞ ; ð1Þ

where Dd and Ds are the deflector and the source distance,
�dðDdÞ is the number density of deflectors of mass Md, and
rE, the Einstein radius, is given by

rE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMd

c2
DdðDs �DdÞ

Ds

s
: ð2Þ

The microlensing optical depth can be calculated toward
any direction with a Galactic model. An interesting prop-
erty of the optical depth is that it is independent of the
deflector mass function. Since the deflector mass function is
not known precisely (it is totally unknown in the case of
halo microlensing), the comparison between predicted and
measured optical depths is not very sensitive to systematics.
The experimental determination of the optical depth is
described in x 3.

The optical depth for microlensing toward the LMC
measured by the MACHO collaboration is �MACHO

LMC ¼
1:2þ0:4

�0:3 � 10�7, a factor of 4 too small to explain the Galactic
rotation curve. On the other hand, interpreting the observed
optical depth in terms of lensing by known stellar popula-
tions in the Galactic disk or in the LMC seems difficult,
since the expected contribution is much smaller
[�stellar ¼ 0:24 0:36ð Þ � 10�7]. The optical depth toward
Baade’s window measured by MACHO with red giants is

� ¼ 2:0� 0:4ð Þ � 10�6 (Popowski et al. 2001). This seems
somewhat (�30%) too large compared to the predictions of
models (Evans & Belokurov 2002). Previous measurements
byMACHO (Alcock et al. 2000c) and OGLE (Udalski et al.
1994) were even larger by a factor of 1.5–2.

Systematic effects have been suspected as the reason for
the excess optical depth toward the LMC and the Galactic
center. The main suspect is the ‘‘ blending ’’1 of source stars,
sometimes associated with binary lensing effects (see, e.g.,
Di Stefano 2000). The purpose of this paper is to investigate
the role of ‘‘ exotic ’’ microlensing events in the calculation
of the optical depth.

About 10% of the detected microlensing events are exotic
events. They cannot be explained by the simplest point lens–
point source (PLPS) model of lensing. Examples of exotic
lenses are binary lenses or sources (‘‘ xallarap ’’ events),
‘‘ parallax ’’ events (distortion due to the Earth’s motion
around the Sun), and events in which the disk of the source
is differentially magnified (because of the finite size of the
source). Since only 10% of the events are exotic, one naively
expects a correction to the optical depth of at most 10%
from exotic lensing. However, as is shown in x 4.3, the effect
of exotic lensing is much stronger for blended events.
Because of this, exotic events have a potentially large effect
on the blending correction of the optical depth.

In xx 2 and 3 I derive the expressions for the rate (eq.
[14b]) and the contribution to the optical depth (eq. [21]) of
exotic microlensing events.

2. THE MICROLENSING RATE

The Einstein radius crossing time tE is the only physical
information that can be obtained from most microlensing
events. Once corrected for the experimental efficiency �ðtEÞ,
the tE distribution (or histogram) is an estimator d�̂�=dtE of
the differential microlensing rate d�=dtE:

d�̂�

dtE
¼ 1

� tEð Þ
1

NsrcTobs

dNmicr

dtE

� �
; ð3Þ

where Nsrc, Tobs, and Nmicr are the number of sources, the

1 The objects monitored by microlensing surveys are blends of many
stars whose seeing disks are overlapping. Any of these stars can be lensed.
Optical depth estimates include in general a blending correction.
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total observing time, and the number of observed micro-
lenses. A lensing event occurs whenever the magnification A
of a microlensing event exceeds a threshold Athr (in general,
Athr ¼ 1:34). For a given source, the locus of lens positions
for which A > Athr is called the ‘‘ microlensing tube ’’
(Griest 1991). It is easy to show that the number of lenses
dN at distance Dd entering the microlensing tube and cross-
ing an area dl dDd per unit time is

d� ¼ d2N

dt
¼ �dvt dl dDd cos �f ðvtÞvt dvt d� ; ð4Þ

where vt is the transverse velocity of the lens, f ðvtÞ is the dis-
tribution of vt ¼ jjvtjj, h is the angle of vt with respect to the
normal to the tube section, and dl is the elementary length
of the slice of the tube. The quantity vt is related to tE and
rE by

tE ¼ rE
vt

; ð5Þ

and dC is the number of lenses crossing inward through an
area dl dDd of the microlensing tube per second. Hence, this
is not the microlensing event rate, since a lens may enter the
microlensing tube several times. However, the difference
between these two rates is ignored until x 3.

The transverse velocity vt is the sum of two components:
the microlensing tube transverse drift velocity vd and the
velocity dispersion vdis:

vt ¼ vd þ vdis : ð6Þ

I assume hereafter that the velocity dispersion is distributed
according to

~ff ðvdisÞ ¼
1

2��x�y
exp �

v2disðxÞ

2�2
x

þ
v2disðyÞ

2�2
y

 !" #
; ð7Þ

where x and y are the eigendirections of the velocity disper-
sion tensor. The quantity ~ff is normalized byZ

~ff dvdisðxÞ dvdisðyÞ ¼ 1 : ð8Þ

The orientation of the microlensing tube is arbitrary relative
to the eigendirections of the velocity tensor. The transverse
velocity distribution has to be averaged over all the orienta-
tions of the microlensing tube.

If the velocity dispersion tensor is isotropic with �x ¼
�y ¼ �, the vt distribution is given by

f ðvtÞ ¼
1

2��2
exp � 1

2�2
v2t þ v2d � 2vtvd cosð� þ�� �Þ
� �� �

;

ð9Þ

where the angles �,�, and � are defined in Figure 1. Averag-
ing over 	 ¼ � � 
 at fixed �,�, and 
 gives

�ff ðvtÞ ¼
1

2�

Z 2�

0

d	 f ðvtÞ

¼ 1

2��2
exp � 1

2�2
v2t þ v2d
� 	
 �� �

I0
2vtvd
�2

� �
; ð10Þ

where I0 is a modified Bessel function.
The general expression of �ff is cumbersome and is derived

in the Appendix. It depends only on the kinematic variable

vd and is independent of the geometry of the microlensing
tube.

Changing variables from vt to tE and integrating over h
gives

d� ¼ 2�d dl dDd
r3E
t4E

� �
dtE �ff

rE
tE

� �
: ð11Þ

Since �ff ðvtÞ is independent of the geometry of the lensing
tube, the integration over l is trivial:

d� ¼ 2�d l dDd
r3E
t4E

� �
dtE �ff

rE
tE

� �
: ð12Þ

For a PLPS, the microlensing tube section is a circle
with length l ¼ 2umin�rE, with umin given by

umin ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Athrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

thr � 1
q � 1

vuut :

For a general lens, the tube section is much more compli-
cated. On dimensional grounds, the length l of the lens-
ing tube can be written as

l ¼ 2�rEK Athrð Þ : ð13Þ

The K-factor is a function of both the magnification
threshold Athr and the geometry of the lens (e.g., the dis-
tance of the components in Einstein units and the mass
ratio of the components for a binary lens). The quantity
K is not in general linear in umin. For instance, for a
binary lens and Athr41, K is almost independent of umin

(see x 4.3).
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β = α + δ
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O

y x
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Fig. 1.—Section of the microlensing tube (thick line) perpendicular to
the line of sight. The point O and the (X, Y )-axes are arbitrary. The point P
is on the microlensing tube. The velocity tensor at P has principal axes (x,
y). The normal to the slice of the microlensing tube is shown by the dashed
line and is oriented outward. The angle between the X-axis and the x-axis is
	. The drift velocity of the tube projected onto a plane perpendicular to the
line of sight vd makes an angle � with theX-axis.
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Replacing l from equation (13) into equation (12) gives

d� ¼ 4�KðAthrÞ�d dDd
r4E
t4E

� �
dtE �ff

rE
tE

� �
ð14aÞ

¼ KðAthrÞ
d�

dtE

� �
0

dtE ; ð14bÞ

where ðd�=dtÞ0 is the rate obtained with point sources
and point lenses. Equation (14b), which was also found
by Baltz & Gondolo (2001), means that the lensing rate
for exotic lenses can be calculated by rescaling the lensing
rate for PLPS lenses with K. The quantity K can be cal-
culated for any observed microlensing event, provided
that the geometry of the event and the magnification
threshold Athr are known. Examples of calculations are
given in xx 4.1 and 4.2.

If source stars are not resolved and differential
photometry is used, the magnification threshold depends
on the magnitude of the source star and has to be found
on an event-by-event basis. From now on, I assume that
the microlensing events are found by monitoring a cata-
log of resolved objects and using a fixed magnification
threshold. The resolved objects are a blend of many stars.
If only a fraction f of the source object flux is magnified,
it is useful to define an effective magnification threshold
by

Aeff
thr ¼

Athr þ f � 1

f
: ð15Þ

3. ESTIMATION OF THE MICROLENSING
OPTICAL DEPTH

For the purpose of calculating � , it is convenient to calcu-
late a weighted average of tE. One gets from equation (3)
that

tEh i ¼
Z

1

K

d�

dtE
tE dtE ð16Þ

¼ 1

NsrcTobs

X
events

p

KðAthrÞ
tE

�ðtEÞ
: ð17Þ

Since d�=dtE is the number of lenses entering the micro-
lensing tube per unit time and unit tE, the observed events in
the right-hand side of equation (17) have (in general) to be
multiply counted. The multiplicity p is the number of
observed amplification threshold crossings.

The experimental efficiency takes into account the loss of
events due to selection cuts (see, e.g., Lasserre 2000) as well
as time sampling. It is generally calculated with simulated
microlensing light curves superposed on observed stable
star light curves. It is thus clear that the experimental effi-
ciency depends not only on tE but also on the geometry of
the lensing event and needs not be the same for binaries and
PLPS lenses.

Inserting equation (14b) into the right-hand side of equa-
tion (16) gives

1

NsrcTobs

X
events

p

K Athrð Þ
tE

�ðtEÞ

¼ �4�

Z
�d dDd

Z
r4E
t3E

� �
dtE �ff

rE
tE

� �
: ð18Þ

Changing variables from tE to w ¼ rE=tE, one gets

1

NsrcTobs

X
events

p

K Athrð Þ
tE

�ðtEÞ
¼ 4

Z
��dr

2
E dDd

Z
dww�ff ðwÞ

ð19Þ

¼ 4

Z
dww�ff ðwÞ


 �
� : ð20Þ

The integral over w is calculated in the Appendix. The right-
hand side of equation (20) is independent of vd , �x, and �y.
Equation (20) can be rewritten as

� ¼ �

2NsrcTobs

X
events

p

KðAthrÞ
tE

�ðtEÞ
: ð21Þ

Equation (21) is the main result of this paper and is fully
discussed in x 4. For PLPS lenses, K is simply umin. For
K ¼ umin ¼ p ¼ 1, equation (21) gives the formula used by
the microlensing surveys to derive � from the observed Ein-
stein radius crossing time distribution. As far as the author
knows, exotic microlensing events have always been either
summed up as ordinary events or just ignored. I now esti-
mate the values ofK for exotic lenses.

4. DISCUSSION

As explained in x 1, many types of exotic microlensing
events have been observed. The Earth’s motion in its orbit
around the Sun (parallax) is detected as a small asymmetry
on the light curve of microlensing events. The weight for
parallax events is simply K ¼ 1, because the K-factor is
independent of the lensing tube drift velocity vd . By the same
argument, ‘‘ xallarap ’’ events, which are the motion of the
source around a companion, also haveK ¼ 1.

The main effects that require a nontrivial value of K are
the finite sizes of source stars and binary lenses. To give spe-
cific values, I now take as an example the events found by
the MACHO collaboration (Alcock et al. 1997, 2000a)
toward the LMC. Three events in the MACHO sample are
possible exotic events (Dominik & Hirschfeld 1996; Alcock
et al. 2000b), LMC-1 (finite size or binary lensing), LMC-9
(binary lensing), and LMC-10 (binary lensing). The asym-
metric light curve of LMC-10 strongly suggests that this
event can also be interpreted as a background with an erup-
tive variable source star. Note that LMC-9 and LMC-10
were used for estimating the microlensing optical depth
toward the LMC in the 2 yr sample (Alcock et al. 1997) but
were discarded in the 5.7 yr sample (Alcock et al. 2000a).
The magnification threshold was Athr ¼ 1:75 in the 2 yr
sample and Athr ¼ 1:49 in the 5.7 yr sample. Event LMC-1
can be taken as unblended. Event LMC-9 has blending coef-
ficients in the R and B bands of fR ’ 0:26 and fB ’ 0:17
(Alcock et al. 2000b), so that its effective magnification
threshold is Aeff

thr ’ 3:4: Event LMC-10 has blending coeffi-
cients of fB ¼ fR ¼ 0:15, and the effective magnification
threshold isAeff

thr ’ 4:3:

4.1. Finite Size of Source Stars

The magnification of extended sources depends in a com-
plicated way on � ¼ rsDs=rEDd (Witt &Mao 1994), where rs
is the source star radius. MACHO event LMC-1 shows a
deviation from the simplest PLPS microlensing model. This
deviation has been modeled by various authors (Witt &
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Mao 1994; Dominik & Hirschfeld 1996) as the effect of the
source disk finite extent. A value of � ’ 0:18 has been fitted
by Dominik &Hirschfeld (1996).

The microlensing light curve with extended sources has
been calculated by Witt & Mao (1994). In the limit �5 1,
they find that the extended source light curve is a simple
extension of the PLPS light curve (eq. [A4], Witt & Mao
1994):

AMACHO
thr ¼ 2þ K2

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ K2

p þ �2 4 1þ K2ð Þ
K3 4þ K2ð Þ5=2

: ð22Þ

Solving equation (22) for K and comparing with the usual
impact parameter umin, which is the solution of

AMACHO
thr ¼

2þ u2min

umin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ u2min

q ; ð23Þ

givesK fs
LMC 1 ¼ 1:008umin.

The K-correction is thus within 1% of umin in spite of the
relatively large �-value assumed here. However, as shown in
x 4.3, the K-correction for a finite source effect may become
important for a strongly blended source star.

4.2. Binary Lenses

In cases more complicated than the finite-size effect, such
as binary lenses (Schneider &Weiss 1986; Mao & Paczyński
1991; Dominik 1999), the microlensing tube has a compli-
cated shape. The total length l of the tube section has been
calculated by aMonte Carlo algorithm. A small ‘‘ rod ’’ with
length � is generated in the source plane and rotated around
its center. The magnification is calculated at both ends of
the rod. The fifth-order equation giving the magnification of
binary lenses (Witt & Mao 1995) is solved numerically. The
points selected are those for which one end of the rod is
above threshold and the other is under. These points cover
an areaA of width 2� having the shape of a ribbon located
along the tube slice boundary, equally spread on each side
of this boundary. The length l is thus found by l ¼ A=ð2�Þ.

I find that the K-correction for LMC-1 is consistent with
1 at the 1% level in both MACHO binary models 1a and 1b.
TheK-corrections for LMC-9 and LMC-10 are

KLMC 9ð1:75Þ ¼ ð1:49� 0:04Þumin ; ð24aÞ
KLMC 10ð1:75Þ ¼ ð1:11� 0:03Þumin ð24bÞ

for the 2 yr analysis and

KLMC 9ð1:49Þ ¼ ð1:31� 0:06Þumin ; ð25aÞ
KLMC 10ð1:49Þ ¼ ð1:06� 0:01Þumin ð25bÞ

for the 5.7 yr analysis.
First assume that the efficiencies and blending corrections

calculated with PLPS lenses can be used on binary lenses.
Then the optical depth contributed by events LMC-9 and
LMC-10 can be obtained by dividing the values in Table 7
of Alcock et al. (1997) and Table 8 of Alcock et al. (2000a)
by the relevant K-factors. The microlensing optical depth of
Alcock et al. (1997) is changed from � ¼ 2:9� 10�7 to
2:65� 10�7, an 8% effect. The optical depth of analysis B of
Alcock et al. (2000a) is lowered by only 2%. In both cases,
the effect is much smaller than the systematics quoted in the
papers.

However, the reductions of the optical depth by 8% and
2% are only lower limits, because the blending corrections
increase the detection efficiency of binaries such as LMC-9
and LMC-10 more than that of PLPS lenses. This can be
seen by calculating the K-factors at the effective magnifica-
tion threshold Aeff

thr instead of the magnification threshold
Athr. TheK-factors are

KLMC 9ð3:4Þ ¼ ð2:9� 0:1Þumin ; ð26aÞ
KLMC 10ð4:3Þ ¼ ð1:9� 0:1Þumin : ð26bÞ

The increase in the lensing rate of binary lenses relative to
PLPS (measured by K) has to be taken into account in the
blending correction of the detection efficiency.

An important question is whether lenses with distant
companions (‘‘ wide binaries ’’) have any K-corrections,
since a large (�50%) fraction of the stars are members of
binary systems. The simulation shows that the K-correction
for a binary star with mass ratio q and projected separation
a is within 1% of 1 (assumingAthr ¼ 1:34), as long as

qr2E
a2

< 0:1 : ð27Þ

Assuming that the projected separation is half the space
separation and using Kepler’s third law, this condition can
be recast as a constraint on the period P of the binary:

P > 452 qxð1� xÞ½ �3=4 Md

M�

� �1=4
Ds

10 kpc

� �3=4

yr ; ð28Þ

where x ¼ Dd=Ds. Taking q ¼ 0:5, Md ¼ 0:2 M�, and typi-
cal values 1� x ¼ 6� 10�2 (x ¼ 0:85) for LMC (Galactic
center) lenses, the constraint on P becomes P > 50 yr. The
logP distribution for binaries is roughly Gaussian with an
average period Pav � 6� 104 days and �logP ¼ 2:3
(Duquennoy & Mayor 1991). Thus, roughly 62% of the
binary lenses do not need a K-correction for an unblended
source and a magnification threshold Athr ¼ 1:34. As is seen
in x 4.3, the conclusion that a large fraction of wide binaries
do not need to be corrected remains valid for blended
sources.

4.3. Blending

The examples of LMC-9 and LMC-10 show that K=umin

can be much larger than 1 for blended sources. This can be
easily understood for binary lenses, since the length of the
microlensing tube tends to be twice the caustics length at
highAthr (neglecting the finite size of the source) instead of 0
for PLPS lenses. For wide binaries in the high-Athr limit, the
caustic length is �8

ffiffiffi
2

p
qðrE=aÞ2rE (Dominik 1999) so that

theK-factor is

K

umin
’ 8

ffiffiffi
2

p

�umin
q

�
rE
a

�2

’ 3:6qAthr

�
rE
a

�2

: ð29Þ

For a strongly blended source star with Aeff
thr � 1000, the

condition K=umin > 1 gives a constraint on the period
P > 104 yr. In other words, even with Aeff

thr � 1000, one-
third (roughly) of binary lenses need not beK-corrected, but
the correction for the other binary lenses, especially
intermediate-type binaries such as MACHO LMC-9, may
be very large.

The finite size of blended source stars can give nonnegli-
gible values for K=umin � 1: Numerically, K=umin is found

No. 1, 2003 EXOTIC CORRECTIONS TO MICROLENSING OPTICAL DEPTH 281



to depend only on �Athr, where � is defined in x 4.1. The var-
iation of K=umin as a function of �Athr is shown in Figure 2.
Figure 2 is very similar to Figure 3 of Schneider (1987), and
the underlying physics is of course the same.

An LMC lens with Md ¼ 0:1 M� located at 300 pc in
front of the source has an Einstein radius rE ’ 0:5 AU.
The parameter � ranges from 0.1 for a red giant source
to 10�3 for an M dwarf. These relatively high �-values
may give nontrivial K-factors. For instance, a solar-type
star inside the seeing disk of a giant star contributes only
�1=100 of the total light. The magnification threshold

for such a star is thus �100, and the K-factor is �1:2umin

from Figure 2.
A 0.1M� lens located 1500 pc in front of the Galactic cen-

ter has an Einstein radius of rE ’ 1 AU, so that the orders
of magnitude are similar to those discussed in the previous
paragraph.

In microlensing surveys, the raw efficiencies and Einstein
radius crossing time are generally modified to take the
blending of sources into account (Alcock et al. 2001). The
K-factors generally increase the efficiency for detecting
blended sources and thus tend to decrease the optical depth.

5. CONCLUSION

Exotic microlensing events such as binary lensing or
source finite-size effects contribute differently from the
simplest point lens–point source events to the optical
depth. Taking this effect into account leads to a reduc-
tion in the measured optical depth. The finite size of
blended stars may give a reduction of up to 30% of the
microlensing optical depth. The effect of binaries may
be even larger. However, the fraction of binary micro-
lensing events found by large statistics searches is not
greater than �10% (Alcock et al. 2000b; Jaroszyński
2002). The fraction of exotic lenses may be underesti-
mated because of the imperfect time coverage of the
microlensing events (Di Stefano 2000). However, the
events that give the largest correction to the optical
depth are the least likely to be misidentified as ordinary
lenses. Thus, it is probable that the correction to the
optical depth from exotic lenses is not more than a few
percent and is smaller than the 30% error on the micro-
lensing optical depth toward the LMC (Alcock et al.
2000a) or the 15% error on the optical depth toward
the Galactic bulge (Alcock et al. 2000c).

I am grateful to Andy Gould, Jacques Haissinski, and
Jim Rich for many interesting comments. I also thank
Clarisse Hamadache for helpful suggestions.

APPENDIX

The direction of the principal axis of the velocity dispersion tensor relative to an arbitrary (X, Y )-axis is given by the angle
	. The direction of drift is given by the angle � ¼ 	þ 
. One has

vðdisÞx ¼ vt cosð� þ�� 	Þ � vd cos 
 ; ðA1Þ
vðdisÞy ¼ vt sinð� þ�� 	Þ � vd sin 
 : ðA2Þ

Rotating the microlensing tube is equivalent to rotating the (X,Y )-axis system or 	. Hence, using equation (7), averaging over
	, and keeping �,�, and 
 fixed gives

�ff ðvtÞ ¼
1

ð2�Þ2�x�y

Z 2�

0

exp � 1

2

vt cos	� vd cos 
ð Þ2

�2
x

þ vt sin	þ vd sin 
ð Þ2

�2
y

" #( )
d	 ; ðA3Þ

where �ff depends only on vd and is independent of the geometry of the microlensing tube. In x 2 it was shown that � is equal toP
events 1=KðAthrÞ½ � tE=�ðtEÞ½ � up to a numerical factor that is the integral

Ið �ff Þ ¼
Z

dww�ff ðwÞ : ðA4Þ

Fig. 2.—Plot of the K-factor vs. magnification threshold Athr times �.
The quantity �, defined in x 4.1, is the ratio of the source size to the projec-
tion of the Einstein radius of the lens onto the source plane.
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Defining w0, 	0, 
0, and v0d as

w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 	

�2
x

þ sin2 	

�2
y

s
w ; ðA5Þ

tan 	0ð Þ ¼ �x

�y
tanð	Þ ; ðA6Þ

tan 
0ð Þ ¼ �x

�y
tanð
Þ ; ðA7Þ

v0d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 


�2
x

þ sin2 


�2
y

s
vd ðA8Þ

and changing variables from (w, 	) to (w0, 	0) gives

Ið �ff Þ ¼ 1

ð2�Þ2

Z 1

0

dw0 w0
Z 2�

0

d	0 exp � 1

2

�
w0ð Þ2þ v0dð Þ2�2w0v0d cos 	0 � 
0ð Þ

�� �
: ðA9Þ

Next, integrating over 	0 gives

Ið �ff Þ ¼ 1

2�

Z 1

0

dw0 w0 exp � 1

2

�
w0ð Þ2þ v0dð Þ2

�� �
I0 w0v0dð Þ : ðA10Þ

Using equation (11.4.29) of Gradshteyn &Ryzhik (1980) finally yields

Ið �ff Þ ¼ 1

2�
: ðA11Þ
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