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ABSTRACT

We study the motions of small solids, ranging from micron-sized dust grains to 100 m objects, in the vicin-
ity of a local density enhancement of an isothermal gaseous solar nebula. Being interested in possible applica-
tion of the results to the formation of planetesimals in the vicinity of clumps and spiral arms in a
circumstellar disk, we numerically integrate the equations of motion of such solids and study their migrations
for different values of their sizes and masses and also for different physical properties of the gas, such as its
density and temperature. We show that, considering the drag force of the gas, it is possible for solids, within
a certain range of size and mass, to migrate rapidly (i.e., within �1000 yr) toward the location of a local
maximum density, where collisions and coagulation may result in an accelerated rate of planetesimal
formation.

Subject headings: planetary systems: formation — planetary systems: protoplanetary disks —
solar system: formation

1. INTRODUCTION

It is generally believed that planet formation starts as a
secondary process to star formation by coalescence of small
bodies in circumstellar disks. With regard to our solar sys-
tem, two mechanisms have been proposed for the formation
of the giant planets in such a disk around our Sun: the
widely accepted core accretion model (Pollack et al. 1996),
and the disk instability scenario (Boss 2000). It has recently
been noted that a solar nebula massive enough to possibly
form giant planets via the core accretion model is likely mar-
ginally gravitationally unstable (Pollack et al. 1996; Boss
2000). The alternative approach, namely, the disk instability
mechanism, however, implies that such an instability could
lead to rapid formation of gas giant planets. It is therefore
of great importance to study how the dynamics of small sol-
ids will be affected in such an unstable environment and
what implications there will be on the collision and coagula-
tion process.

In general, in a rotating nonturbulent gaseous disk at
hydrostatic equilibrium, there is a radial gradient associated
with the gas pressure. This pressure gradient counteracts the
gravitational attraction of the central star and causes the
gas molecules to have slightly different velocities than Kep-
lerian circular. When the pressure gradient is positive, the
velocity of a gas molecule is greater than the local Keplerian
velocity. A solid in the gas, in this case, feels an acceleration
by the gas along its orbit, and consequently, the increase in
its orbital angular momentum forces the solid to a larger
orbit. In this case, we say that the solid feels a ‘‘ tail wind.’’
The opposite is true when the pressure gradient is negative.
That is, a solid body will be subject to a ‘‘ head wind ’’ and
will migrate toward smaller orbits.

One of the features of a rotating gravitationally unstable
disk is the appearance of spiral arms or clumps where the
density of the medium is locally enhanced. In the vicinity of
such density enhancements, the pressure of the gas may

change radially and cause the particles in the disk to migrate
toward the location of the maximum gas density. We are
interested in studying the dynamics of solids that undergo
such migration and in exploring the possibility of applying
the results to the formation of planetesimals in a marginally
gravitationally unstable disk. As the first stage of our proj-
ect, we present here the results of a systematic study of the
migration of solids subject to gas drag, around the location
of the maximum density of a circumstellar disk. To focus
attention on the dynamics of the solids and its association
with parameters such as the temperature of the gas, the sizes
of the objects, and also the values of their densities, we con-
sider a hypothetical solar nebula with a circularly symmetric
density function.

Studies of the motions of solids in gaseous mediums have
been presented by many authors. In a detailed analytical
analysis, Kiang (1962) studied the dynamical evolution of
solids in elliptical orbits subject to resistive forces propor-
tional to arbitrary powers of their relative velocities with
respect to the medium and also their distances to the star. In
his study, Kiang considered three cases of stationary, uni-
formly rotating, and also freely rotating gaseous mediums.
However, he did not consider the pressure gradient of the
gas. It was Whipple (1964) who first mentioned that the
rotation of the solar nebula deviates from Keplerian
because of counterbalancing the gravity of the Sun by the
internal pressure of the gas, which in turn results in inward/
outward migration of small solids. Whipple (1972) studied
the dynamics of such solids in the solar nebula, where, fol-
lowing an approximation by Probstein & Fassio (1969), he
also included the resistive effect of the gas. Whipple’s work
was subsequently expanded on and generalized by Weiden-
schilling (1977) for a variety of model nebulae and different
sizes of solids.

A comprehensive study of the effect of gas drag on the
motions of solid bodies can also be found in the classic work
of Adachi, Hayashi, & Nakazawa (1976). In their paper,
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Adachi et al. (1976) studied the motion of a solid on an ellip-
tical orbit in a solar nebula whose density and temperature
vary inversely with different powers of the distance from the
Sun. They also presented a detailed analysis of the form of
the gas drag for different relative velocities and relative sizes
of solids, and also for different values of the gas Reynolds
number.

Among the studies of the dynamical evolution of solids in
a gaseous disk, one can cite Weidenschilling & Davis (1985)
and also Kary, Lissauer, & Greenzweig (1993) for their
papers on the study of the orbital dynamics of planetesimals
near a planet in a resistive medium, Malhotra (1993) for her
study of the resonance capture of planetesimals subject to a
drag force proportional to their velocities relative to the gas
as a barrier for the inward flow of solids to the accretion
zone of a planetary embryo in the solar nebula, Supulver &
Lin (2000) for their paper on the formation of icy planetesi-
mals subject to a linear combination of Stokes and Epstein
drags in an azimuthally symmetric, turbulent, and thin solar
nebula with a polytropic equation of state, and also Iwasaki,
Tanaka, & Emori (2001) for studying the stability/instabil-
ity of protoplanets subject to gas drag.

In this paper, we study the dynamics of solid bodies in a
nonuniform gaseous disk. Our model nebula consists of a
Sun-like star at its center and noninteracting collisionless
bodies scattered on its midplane. We also consider the effect
of the drag force of the nebula.

The outline of this paper is as follows. Section 2 intro-
duces the equations of motion and also the basic relations
concerning the drag force of the gas. Section 3 defines
the system of interest, and x 4 presents the results of our
numerical simulations. Section 5 concludes this study by
reviewing the results and discussing their applications.

2. BASIC RELATIONS

We consider a thin and isothermal gaseous disk with a
Sun-like star at rest, at the center of its midplane. A solid
object in this medium, in addition to the gravitational force
of the central star, is also subject to gas drag. In an inertial
coordinate system with its origin at the position of the star
and its axes on the midplane of the nebula, the equation of
motion of such a solid can be written as

mp€rrp ¼ �GMmp

�
rp
r3p

�
þ Fdrag ; ð1Þ

where mp and rp represent the mass and the position vector
of the solid, M is the mass of the central star, and G is the
gravitational constant. The quantity Fdrag in equation (1)
denotes the drag force of the nebula.

2.1. Gas Drag

In general, the drag force of a gaseous medium with a
density �gðrÞ on a spherical body with radius ap is propor-
tional to the square of the relative velocity of the body with
respect to the gas, V rel, and is given by (Landau & Lifshitz
1959; Adachi et al. 1976)

Fdrag ¼ �1
2CD�a

2
p�gðrpÞvrelV rel : ð2Þ

In this equation, vrel ¼ jV relj and V rel ¼ Vp � Vg, where Vp

is the velocity of the body and Vg, the velocity of the gas at

the location of the body, has a magnitude given by

v2g ¼
GM

rp
þ rp
�gðrpÞ

�
dPg

dr

�
r¼rp

: ð3Þ

In this equation, Pg is the pressure of the gas. As shown in
equation (3), the velocity of the gas differs slightly from its
Keplerian circular value (first term of the right-hand side)
due to the pressure gradient.

The quantity CD in equation (2) is the drag coefficient,
which is a dimensionless constant that depends on the gas
Reynolds number, the ratio of vrel to the speed of sound in
the medium (the Mach number), and also the relative size of
the solid compared to the mean free path of the gas mole-
cules (the Knudsen number). For a detailed analysis of the
drag coefficient, we refer the reader to Adachi et al. (1976).

For the cases in which the mean free path of the gas mole-
cules is smaller than the size of the object, we have (Whipple
1972;Weidenschilling 1977)

CD ’
24 Re�1 if Re < 1 ðStokes dragÞ ;
24 Re�0:6 if 1 < Re < 800 ;

0:44 if Re > 800 ;

8><
>: ð4Þ

where Re is the gas Reynolds number. For a gas with a
viscosity �,

Re ¼ 2

�
�gðrpÞapvrel ; ð5Þ

and

� ¼ 1

3

�
m0�vvth
�

�
; ð6Þ

where m0 and �vvth represent the mass and the mean thermal
velocity of the gas molecules and � is their collisional cross
section (Adachi et al. 1976; Weidenschilling 1977).

For particles moving much slower than the gas mean
thermal velocity and with sizes smaller than the mean
free path of the gas molecules, Fdrag can be approximately
written as

Fdrag ¼ �4
3��gðrpÞa

2
p�vvthV rel : ð7Þ

Equation (6) is known as Epstein drag (Kennard 1938;
Epstein 1924).

As shown by equations (2) and (7), the resistive force of
the gas varies by the size of the object. Anticipating numeri-
cally integrating equation (1) for different values of ap, we
follow Supulver & Lin (2000) and combine equations (2)
and (7) by introducing f ¼ ap=ðap þ lÞ, where l is the mean
free path of the gas molecules. We now write

Fdrag ¼ �4
3�a

2
p�gðrpÞ½ð1� f Þ�vvth þ 3

8 fCDvrel�Vrel ; ð8Þ

which is particularly useful for transitional cases in which
the size of solids and the mean free path of the gas molecules
are comparable.

2.2. Equation ofMotion

The equation of motion of a solid in this study is given by
equation (1). For the purpose of numerical integrations, it is
more convenient to write this equation in a dimensionless
form. Introducing the quantities r0 and t0, which carry the
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dimensions of length and time, respectively, equation (1)
can be written as

€̂rr̂rr ¼ �k̂k

�
r̂r

r̂r3

�
þ F̂Fdrag ; ð9Þ

where rp ¼ r0r̂r; t ¼ t0t̂t; k̂k ¼ GMt20=r
3
0, and F̂Fdrag ¼ t20Fdrag=

mpr0. We choose r0 and t0 such that k̂k ¼ 1. For a solid
restricted to move on the midplane of the nebula, equation
(9), in a dimensionless form and in a plane-polar coordinate
system with axes on the midplane of the disk, is written as

Pr ¼ _rr ; ð10Þ
P� ¼ r2 _�� ; ð11Þ

_PPr ¼
1

r3
P2
� �

1

r2
� 4

3
�âa2p�̂�gðrÞPr

�
ð1� f Þ�̂vv�vvth þ

3

8
fCDv̂vrel

�
;

ð12Þ
_PP� ¼ � 4

3�râa
2
p�̂�gðrÞ

�
v̂v2rel � P2

r

�1=2½ð1� f Þ�̂vv�vvth þ 3
8 fCDv̂vrel� ;

ð13Þ

where Pr and P� are, respectively, the dimensionless radial
and angular momenta of the solid, �̂�gðrÞ ¼ r30�gðrÞ=
mp; v̂vrel ¼ vrelt0=r0, and âap ¼ ap=r0. In equations (10)–(13),
the hat signs for all other quantities have been dropped for
simplicity.

In writing the equations of motions of solids as in equa-
tions (10)–(13), the relative velocity V rel has been resolved
into dimensionless radial and transverse components as�

t0V rel

r0

�
radial

¼ _rr;

�
t0V rel

r0

�
transverse

¼ r _��þ
�
1

r
� r

�̂�gðrÞ
dP̂Pg

dr

�1=2
; ð14Þ

where P̂Pg ¼ Pgr0t
2
0=mp is the dimensionless pressure of the

gas. The dimensionless magnitude of V rel is therefore given
by

v̂v2rel ¼ P2
r þ

(
P�

r
þ
�
1

r
� r

�̂�gðrÞ
dP̂Pg

dr

�1=2)2

: ð15Þ

For small particles, the magnitude of v̂vrel is dominated by
the magnitude of its radial component, whereas for large
objects, it is the transverse components of their velocities
relative to the gas that have considerable contributions in
equation (15). Also, as shown in equation (12), it is the
radial component of the relative velocity that is important
for the radial migration of solids. The effect of the transverse
component of the relative velocity appears in the changes of
the angular momenta of solids (eq. [13]), which can have
important contributions when accretion is taken into con-
sideration.

3. THE PHYSICAL MODEL

We consider a gaseous nebula of pure molecular hydro-
gen with a uniform temperature T and a density given by

�̂�gðrÞ ¼ �̂�0e
��ðr=rm�1Þ2 : ð16Þ

In equation (16), �̂�0 ¼ r30�0=mp, where �0 is the magnitude of
the local maximum of the density. The quantities r and rm in

this equation are dimensionless, and the coefficient � is a
positive constant. Figure 1 shows �̂�gðrÞ for � ¼ 0:5 and 1.
For such isothermal nebula with a density given by equation
(16), the nebula’s surface density varies as r3=2 times the den-
sity of the midplane.

It is necessary to emphasize that the choice of density, as
given by equation (16), has been made solely to focus atten-
tion on the effects of the pressure gradient and gas drag of
the disk on migration of solids on both sides of the location
of the maximum density. In a more realistic system, in par-
ticular at the presence of spiral arms and clumps, the density
of the gas will have a much more complicated form. Exten-
sion of this work to such cases is the subject of upcoming
articles.

As mentioned earlier, we would like to study the dynam-
ics of a solid in a gaseous disk with a density given by equa-
tion (16) by numerically simulating its motion given by
equations (10)–(13). These equations require us to write cer-
tain quantities, such as the pressure of the gas, its mean ther-
mal velocity, the mean free path of its molecules, and also
the velocity of a solid relative to the gas, in terms of the gas
density �̂�gðrÞ. To do so, we assume that our model nebula
obeys the equation of state of an ideal gas, Pg ¼ nkBT ,
where n is the gas number density and kB is the Boltzmann’s
constant. The dimensionless mean thermal velocity of the
gas molecules is therefore given by

�̂vv�vv2th ¼ 8kBr0T

�GMm0
: ð17Þ

Substituting for T from the ideal gas law in equation (17),
the dimensionless pressure of the gas will be equal to

P̂Pg ¼ 1
8��̂vv�vv

2
th�̂�gðrÞ : ð18Þ

Substituting for P̂Pg from equation (18) in equation (15), the
relative velocity of a solid with respect to the gas can be writ-
ten as

v̂v2rel ¼ P2
r þ

(
P�

r
�
�
1

r
þ

�r�̂vv�vv2th
8�̂�gðrÞ

d�̂�gðrÞ
dr

�1=2)2

: ð19Þ

The mean free path of the gas molecules can also be writ-
ten in terms of the gas density. Recall that the quantity f in
equation (8), as defined in x 2.2, is dimensionless by defini-
tion. It is therefore not necessary in calculation of l to con-
sider dimensionless quantities. Assuming a diameter of a0
for the gas molecules, l ¼ 1=ð�a20nÞ. From the ideal gas law,
one can write

l ¼ m0

�a20�gðrÞ
: ð20Þ

For molecular hydrogen, a0 ¼ 1:5� 10�8 cm. The mean
free path of the molecules of our model nebula can therefore
be written as l ðcmÞ ¼ 4:72� 10�9=�gðrÞ (g cm�3).

4. NUMERICAL SIMULATIONS

We consider a gas density given by equation (16) with a
peak equal to 10�9 g cm�3 at 1 AU. The value of � is consid-
ered as a parameter in our simulations. As mentioned in x 3,
we choose our units such that k̂k ¼ 1. Therefore, the quanti-
ties r0 and t0 are related as t20 ¼ r30=GM. Introducing a new
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variable T0 ¼ 2�t0, we have

T0 ¼ 2�

�
r30

GM

�1=2

: ð21Þ

Equation (21) implies that T0 can be considered as the
period of an object rotating uniformly around the starM on
a circular path with radius r0. In our physical model, an
object at r ¼ rm has such a uniform circular motion. With
the location of the maximum density at 1 AU, we can now
consider r0 ¼ 1 AU, which implies rm is equal to unity and
therefore, from equation (21), t0 ’ 5:03� 106 s ’ 0:16 yr.

Another important quantity that has to be determined at
the start of our simulations is the drag coefficient CD. For
the values of Re smaller than 800, the magnitude of CD

varies with the position and the velocity of the object
through its dependence on the gas Reynolds number (eq.
[4]). Note that for the density function of equation (16), the
magnitude of the velocity of an object relative to the gas, as
given by equation (19), can be written as

v̂v2rel ¼ P2
r þ

(
P�

r
�
�
1

r
� 1

4
�rðr� 1Þ�̂vv�vv2th

�1=2)2

: ð22Þ

At the beginning of a simulation, for a given value of the gas
temperature and a solid’s radius, the initial value of the gas

Reynolds number is calculated for the initial position and
velocity of the object using equations (5) and (6). If the ini-
tial value of Re is smaller than 800, it is necessary to include
CD in equations (10)–(13) as a function of the position and
the momentum of a solid. The appropriate functional form
of the drag coefficient in such cases is obtained from equa-
tions (4), (5), and (6). During the numerical integration of
equations (10)–(13), the magnitude of the gas Reynolds
number is constantly monitored. If, before the object
reaches the location of the maximum density, Re changes its
magnitude in such a way that its new value is no longer
within its previous range, the integrations are continued
with another set of equations (10)–(13), whose drag coeffi-
cient has the appropriate functional form for the new range
of the gas Reynolds number. The initial conditions for this
set of equations are given by the position and velocity of the
object at the time that Re changed its range.

We numerically integrated equations (10)–(13) for differ-
ent values of the gas temperature, solids’ radii and densities,
and also different values of �. In all our simulations, the
objects were initially placed on the x-axis (� ¼ 0) and were
given a Keplerian circular velocity. Figures 2 and 3 show the
radial migration of solids ranging from micron-sized par-
ticles to 100 m objects initially at 2 AU (inward migration)
and 0.25 AU (outward migration) for a gas density given by
equation (16) with � ¼ 1. The densities of the objects are

Fig. 1.—Graphs of the density of the gas for � ¼ 0:5 (left) and � ¼ 1 (right) in the disk midplane

No. 2, 2003 PRESSURE GRADIENTS AND RAPID MIGRATION 999



Fig. 2.—Inward migration of solids with radii ranging from 1 lm to 100 m and densities equal to 2 g cm�3. The disk is isothermal at 1000 K, and its density
is given by eq. (16) with � ¼ 1. Note the different scales on time axes.

Fig. 3.—Outwardmigration of solids with radii ranging from 1 lm to 100m and densities equal to 2 g cm�3. The disk is isothermal at 1000K, and its density
is given by eq. (16) with � ¼ 1. Note the different scales on time axes.



equal to 2 g cm�3. As expected, small particles spend more
time with the gas and take longer times to migrate inward/
outward. As the sizes of the particles increase, while their
densities stay constant, the rate of radial migration also
increases. One can see from Figures 2 and 3 that for the
abovementioned physical properties of the gas and solids,
the graphs of the 10 cm and 1 m objects show the most rapid
radial migration, comparable to the timescale of the growth
of nonaxisymmetries in disk instability models. Figure 4
shows a comparison of the times of migration for these two
cases. Increasing the radius of the solids to 10 m or higher,
one observes that the rate of migration decreases again.

Figure 4 also shows that the rates of inward and outward
migrations for meter-sized objects at equal distances on
both sides of 1 AU are different. The inward migrations
starting at 1.75, 1.5, and 1.25 AU occur more rapidly than
the outward migrations from 0.25, 0.5, and 0.75 AU. Our
simulations indicate similar results for larger objects as well.
This can be attributed to the fact that for two identical
objects at equal distances on both sides of the maximum of
the density, the rate of change of angular momentum of the
object given by equation (13), is larger for the farther object.
As a result, the angular momentum of this object is
decreased more rapidly, which in turn results in its faster
approach to the location of the maximum density.

The rate of radial migration also varies with the density
of solids. Figure 5 shows the migrations of solids with radii
of 10 cm and 10 m for three different values of 1, 2, and 5 g
cm�3 for the solid’s density. The physical properties of the
gas in this figure are identical to Figure 2. Our simulations
show that the rate of radial migration increases by increas-
ing the solid’s density for centimeter-sized and smaller par-
ticles, and it decreases for meter-sized and larger objects.
The reason for this can be found in the contribution of the
drag force (eq. [8]) to the change of the radial and the angu-
lar momenta of the solid given by equations (12) and (13).
Recall that �̂�gðrÞ is a dimensionless quantity with a numeri-
cal value equal to r30�gðrÞ=mp. For a constant value of ap,
increasing the density of the object will result in increasing
its mass and, consequently, in decreasing the dimensionless
density �̂�gðrÞ. In case of centimeter-sized and smaller
objects, the radial component of the velocity of the solid rel-
ative to the gas (i.e., Pr, as given by eqs. [14]) is more domi-
nant than its transverse component, which implies that the
effect of decreasing �̂�gðrÞ, which from equation (12) results
in an increase in the rate of migration of the solid, is larger
for larger solids densities. On the other hand, for meter-

sized and larger objects in which the transverse component
of the object’s relative velocity with respect to the gas is
quite large, the decrease in the numerical value of �̂�gðrÞ for
higher values of the densities of solids appears largely in the
rate of change of the angular momentum of the object given
by equation (13). An increase in the object’s density results
in a smaller absolute value for the rate of change of its angu-
lar momentum, which implies that the object becomes more
reluctant to lose/gain angular momentum and migrate
inward/outward.

Numerical integrations have also been carried out for dif-
ferent values of the temperature of the gas. The effect of a
change in temperature appears in the thermal velocity of the
gas, which in turn results in changes in the value of the gas
viscosity and eventually its drag coefficient, and also affects
the pressure gradient and the magnitude of the velocity of

 

Fig. 5.—Migration of a 10 cm particle and a 10 m object with densities
equal to 1, 2, and 5 g cm�3. Note the different scales on time axes.

Fig. 4.—Among the solids of Figs. 2 and 3, the ones with 10 cm and 1 m radii undergo rapid migrations. Note the different scales on time axes.
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the solids relative to the gas. Figure 6 shows the rates of
migrations of a 1 cm particle and a 1 m object for different
values of the gas temperature. The densities of both objects
are equal to 2 g cm�3 and � ¼ 1. As shown here, the rates
of migrations of objects increase by increasing the gas tem-
perature, a familiar result that is a consequence of an
increase in the pressure gradient for a higher value of the
temperature.

5. SUMMARY AND DISCUSSION

We have studied the motions of small solids in the vicinity
of a density enhancement in a rotating nonuniform gaseous
disk. We assume that the gas is isothermal and ideal. In this
case, an enhancement in the gas density corresponds to a
maximum in its pressure. As expected, because of the pres-
sure gradient associated with the radial change of the gas
density, solids on both sides of the location of the maximum
pressure (or density) undergo inward/outward migrations.
We have studied such migrations in a model solar nebula
where solids, in addition to the gravitational attraction of
the central star, are also subject to gas drag.

In general, the rate of the migration of a solid in a gaseous
medium due to the pressure gradient varies with the solid’s
mass and also with the physical properties of the gas such as

its density and temperature. As shown in x 2, changes in the
gas temperature and density will affect the mean thermal
velocity and also affect the mean free path of the gas mole-
cules. Such changes show their effects in the drag force of
the gas through its Reynolds number and also through the
relative velocity of the solid with respect to the gas and
result in different rates of migration. An analytical study of
the general dependence of the rate of migration of a solid on
the physical properties of the solids and the nebular gas is
currently underway.

As mentioned earlier, our motivation for initiating this
study was to seek the possibility of the application of the
results to the formation of planetesimals in marginally grav-
itationally unstable disk models. As shown by Boss (2000),
the disk instability scenario suggests rapid formation of
giant gaseous protoplanets followed by sedimentation of
small solids at the location of spiral arms and clumps of a
gravitationally unstable disk, all in about 1000 yr. In our
study, we considered a simple model of the solar nebula in
order to focus our attention solely on the times of migration
of solids and their variations with physical parameters of
the system. Our results indicate that it is indeed possible for
solids within certain ranges of size and density to migrate
quite rapidly to the locations of maximum values of the gas
density. For the model studied here, solids with densities
of a few g cm�3, and with radii ranging from several
centimeters to a few meters, migrate a radial distance of
1 AU during a time (�103 yr) comparable with the giant
planet formation timescale implied by the disk instability
model.

Regardless of whether disk instability can form gas giant
planets, the likelihood that the solar nebula was marginally
gravitationally unstable implies that the processes studied
here may have enhanced the growth rates of solid
planetesimals.

In closing, we would like to mention that the calculations
in this study have been done for two-dimensional motions
and for a solar nebula thatmaynot fully reflect the properties
of a more realistic environment. In this study, we focused on
the motion of solids as isolated objects without including
their mutual interactions. To obtain a better understanding
of the dynamics of solids and the times of their migrations,
it is necessary to extend such an analysis to a three-dimen-
sional case and to allow for interactions between the objects.
It is also important to consider temperature and density dis-
tributions for the nebular gas that portray the physical
properties of a gravitationally unstable disk in a more realis-
tic way. In a complete treatment of the problem, it is also
important to take the gravitational attraction of the nebula
into account. Such considerations are currently underway.

We would like to thank the referee, Stu Weidenschilling,
for his valuable comments and suggestions. This work is
partially supported by the NASA Origins of the Solar Sys-
tem Program under grant NAG5-10547 and by the NASA
Astrobiology Institute under grant NCC2-1056.
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