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ABSTRACT

Using a reduced proper-motion discriminator, I obtain a sample of 4588 subdwarfs from the revised New
Luytens Two-Tenths (NLTT) Catalog of Salim &Gould. The ample statistics and low contamination permit
much more precise determinations of halo parameters than has previously been possible. The stellar halo is
not moving with respect to the local standard of rest (LSR) in either the vertical or radial direction, up to
uncertainties of 2 km s�1. This indicates that either the LSR is on a circular orbit or the Sun happens to lie
very close to an extremum of the LSR’s elliptical orbit. Similarly, tentative detections of vertical proper
motion of Sgr A* relative to the LSR are either incorrect or they reflect real physical motion of the central
black hole relative to the Galactic potential. The correlation coefficients of the halo velocity ellipsoid, which
would reflect any possible misalignment between its principal axes and the cardinal directions of the Galaxy,
vanish to within 2%. The halo subdwarf luminosity function peaks at MV � 10:5 with an FWHM of about
2.5 mag.

Subject headings:Galaxy: halo — stars: kinematics — stars: luminosity function, mass function —
stars: statistics — subdwarfs

1. INTRODUCTION

Samples of nearby halo stars can be analyzed to find the
bulk properties of the population: their velocity, spatial,
and metallicity distributions, as well as their luminosity
function (LF). The principal difficulty is obtaining a sample
that is large enough to draw statistically significant conclu-
sions while still not being contaminated with disk and thick
disk stars, which locally outnumber halo stars by a factor of
�103.

The most secure method to construct such a sample
would be to obtain parallaxes, proper motions, and radial
velocities (RVs) for a larger, unbiased sample of stars and
then select halo stars based on their space motions. The
GAIA satellite would be able to do this, but even under the
most optimistic projections, its data will not be available for
well over a decade.

In the absence of such ideal data sets, most nearby halo
samples have been culled from catalogs of high proper-
motion stars (although there are a few notable exceptions to
this rule). For example, Dahn et al. (1995) obtained trigono-
metric parallaxes for about 100 proper-motion–selected
stars, thereby determining their transverse velocities, distan-
ces, and absolute magnitudes. By rigorous selection on
transverse velocity (v? > 260 km s�1), they obtained a sam-
ple that was virtually free of disk and thick-disk contamina-
tion. The distances and absolute magnitudes then allowed
them to measure the LF. Of course, to do so they had to cor-
rect for the halo stars that were eliminated from their sample
(along with the unwanted disk stars) by their stringent
velocity criterion, and this in turn required a model of the
halo velocity distribution.

The best such model up to that date was constructed by
Casertano, Ratnatunga, & Bahcall (1990), who used maxi-
mum likelihood (ML) to decompose two proper-motion–
selected samples into disk, thick disk, and halo components
making use of both photometric and proper-motion data.
They thereby identified different populations within the

data, even though individual stars could not generally be
unambiguously associated with a specific population. In
particular, Casertano et al. (1990) showed that the likeli-
hood fit was significantly improved by allowing for a third
‘‘ intermediate ’’ or thick disk population rather than just
two. The kinematics of the halo when so fitted were more
extreme than in the two-component fit earlier obtained by
Bahcall & Casertano (1986) because thick-disk contamina-
tion was drastically reduced.

RR Lyrae stars are halo tracers selected on variability
rather than proper motion. Estimates of the RR Lyrae ab-
solute magnitude from statistical parallax automatically
yield the velocity ellipsoid. While this technique has been
applied for almost a century, only in the last decade or so
has it been realized that the RR Lyrae samples are
actually mixtures of thick-disk and halo stars. Since statisti-
cal parallax uses both RVs (whose spectra also yield metal-
licity information) and proper motions, and since it derives
distances for all stars, full kinematic as well as metallicity
information is generally available. In a series of papers,
Layden (1994, 1995, 1997) both systematized preexisting
data and obtained substantial new data, thereby laying the
basis for a new statistical parallax solution that clearly sepa-
rated the thick-disk and halo populations using a combina-
tion of kinematic and metallicity criteria (Layden et al.
1996). Popowski & Gould (1998a, 1998b) and Gould &
Popowski (1998, collectively PG3) introduced new mathe-
matical methods and on this basis conducted a thorough
overhaul of the Layden et al. (1996) sample, recalibrating
much of the old photographic photometry, incorporating
more modern extinctions, identifying suspicious astrome-
try, and developing a new method to incorporate non–
RR-Lyrae RVs into the analysis.

Of particular note in the present context, PG3 were the
first to measure five of the nine components of the halo
velocity ellipsoid: all previous analyses had measured the
three diagonal components of the velocity dispersion tensor
and the component of bulk motion in the tangential
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direction (the asymmetric drift), but had assumed that the
off-diagonal components as well as the bulk motion in the
radial and vertical directions were zero. While the PG3
measurements all turned out to be consistent with zero (in
the frame of the local standard of rest [LSR]), the error bars
were tantalizingly close to being able to probe some interest-
ing scientific questions.

The bulk motion of the halo in the radial and vertical
directions is more likely to coincide with the rest frame of
the Galaxy than is the motion of the LSR. The LSR could
well be on an elliptical orbit, in which case it would be mov-
ing toward or away from the Galactic center unless the Sun
happened to lie at an extremum of this orbit. Indeed, Blitz &
Spergel (1991) claimed that the LSR is moving outward at
14 km s�1 based on radial-velocity measurements of gas in
the outer Galaxy (assumed to be on circular orbits). On the
other hand, Metzger & Schechter (1994) concluded that the
LSR was moving inward at 6:6� 1:7 km s�1 based on RVs
of carbon stars in the outer Galaxy.

Similarly, if the Milky Way disk is warped, then one
would expect the LSR to be moving either up or down rela-
tive to the Galactic rest frame, unless the Sun happened to
be at an extremum of the warp. Backer & Sramek (1999)
found that Sgr A* is moving down at 17� 6 km s�1 relative
to the LSR. If the supermassive black hole associated with
Sgr A* is assumed to be at rest with respect to the Galaxy,
then this apparent motion would actually be a reflex of the
warped motion of the LSR. On the other hand, Reid et al.
(1999) find that Sgr A* is moving in the opposite direction
(although with much larger errors) at 15� 11 km s�1. New
more precise measurements are expected soon (M. Reid
2001, private communication).

For a roughly isotropic ensemble of Ns stars, the bulk
motionUi can be measured with a precision,

�ðUiÞ �

ffiffiffiffiffiffiffiffiffiffi
3 cii
ndNs

s
; ð1Þ

where cii is the dispersion in the ith direction and nd is the
number of components of the velocity measured for each
star. For the PG3 sample, Ns � 170 and nd ¼ 3, while
c11 � ð160 km s�1Þ2 and c33 � ð90 km s�1Þ2. Hence,
�ðU1Þ � 13 km s�1 and �ðU3Þ � 8 km s�1. Therefore, the
PG3 measurement errors were not quite small enough to
probe these interesting questions.

Of course, measurement of a difference between the bulk-
halo and LSR velocities would not be unambiguous evi-
dence of LSR motion (Oresme 1377). For example, the
angular momentum vector of material infalling onto the
Milky Way could have radically changed between the time
of the formation of the halo and disk. Therefore, the former
could, in principle, be rotating in a basically polar orbit
(albeit with low Mach number) relative to the latter. Hence,
any sort of relative motion would be intriguing evidence of a
nonsimple Galaxy whose exact origins would have to be
sorted out making use of other data and arguments.

Similarly, the off-diagonal elements of the velocity disper-
sion tensor (normalized to the diagonal elements) ~ccij could
potentially provide evidence of asymmetries of the Galaxy
that would reflect on its origins. The errors in these quanti-
ties are �ðndNs=3Þ�1=2, or about 8% for the RR Lyrae sam-
ple. To the best of my knowledge, no one has investigated
what might cause these quantities to differ from zero, so I do

not know whether their consistency with zero at the 8% level
challenges or confirms any theory. Nevertheless, it seems
interesting to try to probe the off-diagonal elements at
higher precision.

The status of the LF and local density of the stellar halo
are also somewhat controversial. Dahn et al. (1995) find
that the LF peaks at around MV � 12, in qualitative agree-
ment with the shape of the LF seen in undisturbed globular
clusters (Piotto, Cool, & King 1997). However, Bahcall &
Casertano (1986) and Gould, Flynn, & Bahcall (1998) find a
roughly flat LF over the interval 9dMVd13. While Dahn
et al. (1995) and Bahcall & Casertano (1986) both studied
local stars drawn from proper-motion catalogs, Gould et al.
(1998) adopted a radically different approach: they located
stars in Hubble Space Telescope images that were too faint
at their observed color to be in the disk and so were assigned
absolute magnitudes and distances based on a halo color-
magnitude relation. These stars were generally quite distant
(e3 kpc) and therefore perhaps not directly comparable to
the local samples. Sommer-Larsen & Zhen (1990) had ear-
lier suggested that the stellar halo actually has two compo-
nents, one roughly spheroidal and one highly flattened.
(The highly flattened component is not to be confused with
the thick disk: it is not rotating significantly.) In their model,
the two components have roughly equal densities at the
solar circle. Such a model predicts that the halo density
should be roughly twice as great in the solar neighborhood
as it is at a similar Galactocentric radius but a few kpc above
the Galactic plane. Indeed, Gould et al. (1998) found a halo
density that was lower than the Dahn et al. (1995) measure-
ments by just this fraction. Recently, Siegel et al. (2002) have
argued on the basis of a sample of 70,000 stars along multi-
ple pencil beams that even a two-component halo model is
inadequate to explain their star counts.

The newly released revised New Luytens Two-Tenths
(NLTT) Catalog (Gould & Salim 2003; Salim & Gould
2003) allows one to obtain a very large and very clean sam-
ple of halo stars. The reduced proper-motion (RPM) dia-
gram using the newly obtained V�J colors clearly separates
main-sequence stars, subdwarfs, and white dwarfs into dif-
ferent tracks (Salim & Gould 2002) in sharp contrast to the
RPM diagram constructed from the original NLTT (Luyten
1979a, 1980). Although the first release of this catalog cov-
ers only 44% of the sky, it contains more than 5000 local
halo stars, over an order of magnitude more than have ever
been cleanly distinguished from disk stars on a star-by-star
basis. This sample therefore opens the way to a much more
detailed study of the local halo population than has previ-
ously been possible. In its present form, the sample does
have some limitations. Since most of its stars lack RVs and
parallaxes, it is not possible to establish the absolute distan-
ces or the amplitude of the velocity ellipsoid based on the
revised NLTT catalog alone. Nevertheless, the amplitude of
the velocity ellipsoid is already known with a precision of
about 10% from previous studies, and by incorporating this
external information one can obtain much more precise
measurements of the five components of the ellipsoid that
are currently poorly measured: U1, U3, and ~ccij . Once the
velocity scale is set, the mean distances to the stars are also
determined, which permits one to measure the LF. The large
number of stars in the sample therefore offers the hope of
probing the bottom of the subdwarf sequence, which,
because of its dimness, is poorly represented in magnitude-
limited samples. Finally, the catalog contains a large
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number of stars from the Galactic plane to about
z � �VV?=llim � 350 pc above the plane, where �VV? � 300 km
s�1 is the typical transverse speed seen toward the Galactic
poles and llim ¼ 180 mas yr�1 is the proper-motion limit of
the catalog.While this distance is short compared to the sev-
eral kiloparsecs hypothesized as the height of the flattened
halo component, the large number of stars in the sample
may yield a statistically significant statement about the pres-
ence of a density gradient on these larger scales.

ML analysis is absolutely critical for extracting halo
parameters from this catalog. For example, since the mean
tangential velocity of stars seen toward the Galactic poles is
�200 km s�1, one might naively expect that the stars
selected toward the poles would have, on average, this
velocity. However, given the fact that the sample is proper-
motion limited, for all but the dimmest absolute magnitudes
the number of stars seen with velocities that are 1 � higher
than average (300 km s�1) is ð300=100Þ3 ¼ 27 times higher
than the number with velocities that are 1 � lower (100 km
s�1). This severe selection bias does not directly affect any
other parameters. However, it couples through the highly
uneven (but perfectly known) sky coverage from Two
Micron All Sky Survey (2MASS) to indirectly affect essen-
tially all other parameters. These effects can only be
removed by comparing the predictions of models with the
observations, asML does automatically.

Hence, I begin in x 2 by giving a careful summary of the
ML modeling procedure. In x 3, I present my results and
comment on various aspects of these whose interpretation
requires caution. Finally, in x 4, I compare my results to pre-
vious work and briefly discuss the implications of this com-
parison. I reserve to the Appendix a somewhat technical
discussion of the problems in determining the completeness
of the revised NLTT catalog and the impact of this com-
pleteness on parameter estimation.

2. MAXIMUM LIKELIHOOD FORMULATION

2.1. General Equation

I use ML to estimate the parameters of the stellar halo. In
general, a given data set is described bym observables zobs; i,
which I collectively denote zmobs. If this m-dimensional space
of observables is divided into bins of volume

Qm
i¼1 Dzobs; i,

then the likelihood of detecting nk objects in the kth bin is
Lk ¼ �nkk expð��kÞ=nk!, where �k ¼ PkðzmobsÞ

Qm
i¼1 Dzobs; i,

and Pk is the probability density predicted by a given model.
If the bins are now made sufficiently small that �k5 1, then
nk � 1 and hence nk! ¼ 1. The logarithm of the product of
the likelihoods from all the bins is therefore

lnL ¼
X
k

lnLk ¼
X
k

nk ln �k �
X
k

�k : ð2Þ

The last term is just the total number of detections expected
in the model, Nexp. Since the nk in the first term are either 0
or 1, equation (2) can be rewritten

lnL ¼
XNdet

k¼1

ln½PkðzmobsÞ
Ym
i¼1

Dzobs; i� �Nexp ; ð3Þ

where Ndet is the total number of detections. In general,
however, the probability density is not most naturally writ-
ten directly as a function of the observables zobs; i but rather
of the model coordinates, zmod; i, which are evaluated at the

observables. Equation (3) can be rewritten in terms of these,

lnL ¼
XNdet

k¼1

lnfPk½zmðzmobsÞ�Jg �Nexp þNdet

Xm
i¼1

lnDzobs; i ;

ð4Þ

where J is the Jacobian of the transformation from the
observables to the model coordinates. For a given set of
observations, the last term is the same for all models and so
can be dropped.

2.2. Jacobian

In the present case, for each star there are six observables:
the angular position on the sky ðl; bÞ, the proper motion
ðll ; lbÞ, and the two photometric magnitudes ðV ; JÞ.
There are also six model coordinates: the three spatial
coordinates r, the two components of transverse velocity v?,
and the absolute magnitude,MV . Hence,

J ¼
���� @ðr; v?; MV Þ
@ðl; b; ll ; lb; V ; JÞ

���� ¼ r4 cos b

���� @ðr; MV Þ
@ðV ; JÞ

���� : ð5Þ

To evaluate J, I write r and MV as implicit functions of
V and J, making use of the color-magnitude relation,
MV ¼ F ½ðV � JÞ0�,

r ¼ 100:2½V�AV ðrÞ�MV �þ1; MV ¼ F

�
V � J � AV ðrÞ

RVJ

�
: ð6Þ

Here AV ðrÞ is the extinction along the line of sight and
RVJ � AV=EðV�JÞ ¼ 1:38 is the ratio of total to selective
extinction. Partial differentiation of equation (6) yields the
matrix equation

r
5

ln 10
þ A0r

1
F 0A0

RVJ

0
BB@

1
CCA

@r

@V

@r

@J
@MV

@V

@MV

@J

0
BB@

1
CCA ¼

r 0

F 0 �F 0

� �
ð7Þ

whose determinant gives,

J ¼ ln 10

5
cos b r5F 0Q;

Q �
����1� ln 10

5

dAV

d ln r

�
F 0

RVJ
� 1

�����
�1

: ð8Þ

If the reddening vector were parallel to the subdwarf
sequence ðF 0=RVJ ’ 1Þ, then the additional term Q in equa-
tion (8) would be negligible. In fact, however, this ratio is
roughly F 0=RVJ � 2:6, which means that at typical distances
r � 300 pc and low Galactic latitudes, lnQ � 0:12, and so it
cannot be ignored. Note that the prefactor ð0:2 ln 10 cos bÞ
is an irrelevant constant and can be dropped in practical cal-
culations, so thatJ ! r5F 0Q.

2.3. Model Parameters

I model the stellar halo distribution as the product of an
LF, a velocity distribution, and a density profile. In addi-
tion, halo stars are assumed to obey a linear color-
magnitude relation

MV ¼ F ½ðV � JÞ0� ¼ aðV � JÞ0 þ b : ð9Þ

In principle, one might also assume that this relation has
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some intrinsic dispersion. However, for reasons that I dis-
cuss below, I do not include such a parameter in the model.
Finally, not all halo stars satisfying the selection criteria will
be detected. I therefore include in the model two parameters
ðVbreak; fbreakÞ that describe the completeness as a function
of apparentVmagnitude,

CðVÞ ¼ 1 ðV < 12Þ ;

CðVÞ ¼ ðVbreak � VÞ þ fbreakðV � 12Þ
ðVbreak � 12Þ

ð12 < V < VbreakÞ ;

CðVÞ ¼ fbreakð20� VbreakÞ þ ðV � VbreakÞ
ð20� VbreakÞ

ðVbreak < V < 20Þ : ð10Þ

This form is motivated by the fact that NLTT is known to
be complete to at least V ¼ 11 away from the plane, and the
revised NLTT catalog has captured essentially all of these
stars (Gould & Salim 2003). The completeness falls precipi-
tously at faint magnitudes, Ve18. The simplest hypothesis
is that it is linear over the intervening magnitudes.

I model the LFwith 13 free parameters, one for eachmag-
nitude bin centered atMV ¼ 3 15. I model the velocity dis-
tribution as a Gaussian ellipsoid with nine parameters:
three for the bulk motion Ui, three for the diagonal compo-
nents of the dispersion tensor cii, and three for the off-
diagonal components cijði < jÞ. In practice, I use the
normalized components of the latter (the correlation coeffi-
cients) ~ccij ¼ cij=ðciicjjÞ1=2. It is known that the halo velocity
distribution is highly non-Gaussian, with a kurtosis that is
higher than Gaussian in the vertical direction, lower than
Gaussian in the radial direction, and roughly Gaussian in
the direction of rotation (PG3). However, modeling the
non-Gaussian character of the distribution would be quite
complicated, and it is straightforward to show that a ML fit
of a non-Gaussian distribution to a Gaussian model returns
unbiased estimates of the first two moments. Hence, there is
no benefit to modeling the non-Gaussian form of the distri-
bution unless one wants to investigate the higher moments
of the distribution. Since these are not a focus of interest in
the current paper, I opt for the simpler Gaussian model.

I model the halo distribution as falling as a power
law with Galactocentric distance R and exponentially
with distance from the Galactic plane z, i.e.,
� ¼ �0ðR=R0Þ�� expð��jzjÞ. The spatial distribution is
therefore described by two parameters, � and �, where �
may be regarded as the inverse scale height. I adopt R0 ¼ 8
kpc.

Hence, I begin with 28 free parameters, 13 for the LF,
nine for the velocity ellipsoid, two for the color-magnitude
relation, two for the completeness function, and two for the
density profile. However, as I now explain, there is one
almost perfect degeneracy among these parameters, and
therefore one of them must be fixed. If the zero-point b of
the color-magnitude relation (eq. [9]) is increased by Db, and
all the bulk velocities Ui and dispersions ciið Þ1=2 are reduced
by 10�0:2Db, then all of the model’s predicted proper motions
will remain unchanged. The only difference will be that a
star’s absolute magnitude (inferred from its color) will be
increased by DMV ¼ Db, and so the inferred density of stars
of each resulting magnitude bin will be increased by 100:6Db.
Actually, this scaling remains perfect only in the limit

AV ! 0, but since the extinction is quite small, the degener-
acy is almost perfect.

I therefore fix

U2 ¼ �216:6 km s�1 ; ð11Þ

the value measured by Gould & Popowski (1998) for their
‘‘ kinematically selected ’’ sample of halo RR Lyrae stars.
Gould & Popowski (1998) also evaluated the velocity ellip-
soid for a ‘‘ non-kinematically selected ’’ sample of halo
stars, with U2 ¼ �198� 9 km s�1 somewhat less extreme
than given by equation (11). Similarly, the non-kinemati-
cally selected sample of Norris (1986) givesU2 ¼ �183� 10
km s�1. However, as I describe in x 2.5 below, the present
sample is effectively selected using a combination of kine-
matic and metallicity criteria, just as was true for the Gould
& Popowski (1998) ‘‘ kinematically selected ’’ sample.
Therefore, the scale of the velocity ellipsoid should be fixed
by the ‘‘ kinematically selected ’’ rather than the Gould &
Popowski (1998) ‘‘ non-kinematically selected ’’ sample.

Finally, as noted above, I do not include a parameter for
the dispersion in the color-magnitude relation despite the
fact that the halo is known to contain a range of metallicities
and, therefore, a range of absolute magnitudes at fixed color
and hence some dispersion �ðMV Þ. Since I do not include
this term, the velocity dispersions found by the ML fit will
be larger than the true dispersions by

Dcii ¼ ðU2
i þ ciiÞ½0:2 ln 10�ðMV Þ�2 : ð12Þ

Hence, in principle, if one knew the cii sufficiently well, one
could fix them (or one of them or their sum), and fit for
�ðMV Þ. However, as I show in x 3, the differences Dcii are
smaller than the present uncertainties in the cii, and therefore
this is not a practical possibility. Thus, the fit parameters that
I am calling ‘‘ cii ’’ are actually shorthand labels for cii þ Dcii.
This means that the derived parameters will not yield new
determinations for the cii. The best one can do is use these
measurements to place rough upper limits on �ðMV Þ. That
is, among the nine velocity-ellipsoid parameters Ui, cii, ~ccij,
new values will be obtained for only five:U1,U3, and ~ccij.

2.4. Data Characteristics

Among the six observables ðl; b; ll ; lb; V ; JÞ only the
Vmagnitude has significant errors. The angular coordinates
ðl; bÞ are known to 130 mas, about 6 orders of magnitude
smaller than the scale on which there are significant density
gradients. The proper-motion errors are 5.5 mas yr�1 or 3%
of the NLTT proper-motion threshold. Since the intrinsic
dispersion in proper motions is of order unity, and since the
measurement errors add in quadrature to these, these errors
are utterly negligible. The V errors are about 0.25 mag
(Salim & Gould 2000). As discussed by Salim & Gould
(2003), these are multiplied by 2.1 when entering the RPM
and therefore cannot be ignored. Finally, the J errors are
typically 0.03 mag. Even though they enter the RPM with
somewhat higher weight (3.1), they are then added in quad-
rature to theV errors, and so are also negligible.

The errors in the original NLTT proper motions were 20
mas yr�1 (Salim & Gould 2003). These proper motions are
not used directly in the evaluation of the likelihood, but they
do have an indirect effect because they influenced Luyten’s
determination of which stars met his proper-motion thresh-
old of 180 mas yr�1 and thus which ones ultimately entered
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the revised NLTT catalog (Gould & Salim 2003; Salim &
Gould 2003).

2.5. Selection Criteria

One wishes to select as large a sample of halo stars as pos-
sible, while effectively excluding stars from other popula-
tions. Moreover, one would like to restrict selection to those
areas of the sky with homogeneous completeness character-
istics. To achieve the first goal, I make use of the discrimina-
tor � introduced by Salim &Gould (2003),

�ðVRPM; V � J; sin bÞ
¼ VRPM � 3:1ðV � JÞ � 1:47j sin bj � 2:73 ; ð13Þ

where VRPM ¼ V þ 5 logðlÞ is the RPM. Using the (V,
V�J) RPM diagram, Salim & Gould (2003) showed that
stars in the range 0 < � < 5:15 are mostly halo stars. To be
conservative, I restrict the selection by an additional magni-
tude on each end and require 1 < � < 4:15 (see Salim &
Gould 2003, Fig. 3). Completeness of the original NLTT
catalog deteriorates significantly in areas south of POSS I,
and Salim & Gould (2003) did not even attempt to recover
faint NLTT stars in this region because their method cannot
be applied there. I therefore require � > �32=4. Salim &
Gould (2003) showed that in the Galactic latitude interval
�0:2 < sin b < 0:3, NLTT completeness of main-sequence
stars is severely affected, dropping from neighboring zones
at higher latitude by a factor of�10.While the effect is much
smaller for subdwarfs (and perhaps negligible for white
dwarfs), to be conservative I restrict selection to stars out-
side this range. Finally, of course, the identifications by
Salim & Gould (2003) rely critically on 2MASS and so have
only been carried out for the 47% of the sky (57% of the
region � > �32=4) that is covered by the second incremental
2MASS release. Hence, the spatial selection function alone
is quite complex. This fact, together with the large number
of observables, implies that great care is required to evaluate
the likelihood function.

Note that the discriminator � (eq. [13]) is effectively a
function of both kinematics and metallicity. That is, �
increases both with higher transverse velocity and with
lower metallicity (and so lower luminosity at fixed color). It
is for this reason that I said in x 2.3 that the sample is
selected using a combination of kinematic and metallicity
criteria.

2.6. Likelihood Evaluation

In order to find the model parameters that maximize the
likelihood, one must compare in a consistent way the likeli-
hood of observing the data given different sets of model
parameters. This statement is so obvious that it would
appear not worth mentioning. However, achieving such
consistency is by nomeans trivial.

The first term in equation (4) is relatively straightforward
to calculate because it depends only on differential probabil-
ity functions that are multiplied together. However, the sec-
ond term, the total number of stars expected to enter the
sample for a given model is quite complicated in several
respects. First, as discussed in x 2.5 the selection criteria
themselves are complex. Second, to estimate Nexp requires
an integral over nine dimensions: six for the model coordi-
nates ðr; v?; MV Þ, plus three for the measurement errors
ðV ; ll;NLTT; lb;NLTTÞ. Recall that even though I am not

making use of the NLTT proper-motion measurements,
they still enter the likelihood function because they affect
the sample selection.

Integration over more than four dimensions is in general
more efficiently carried out byMonte Carlo than directly. In
the present case, the complexity of the 2MASS coverage fur-
ther reinforces the advantages of Monte Carlo integration.
However, such an approach poses significant difficulties
when comparing likelihood estimates at different locations
in parameter space: Monte Carlo integration introduces
Poisson fluctuations into the evaluation of Nexp, which are
of order the square root of the size of the random sample.
While these fluctuations can to some extent be suppressed
by insisting that all realizations have the same sample size,
the induced fluctuations remain of the same order. To be
certain that these do not induce roughness in the ML sur-
face of order unity would require Monte Carlo samples of
Oð107Þ, which would be computationally prohibitive.

To counter this problem, rather than directly assembling
a separate catalog of fake stars for each model, I assemble a
single catalog of fake stars and assign the stars different
weights according to the model. That is, I first choose a
baseline model that is reasonably close to the final model.
For each magnitude bin, I assign an absolute magnitude
drawn uniformly over this bin, a physical location drawn
uniformly from the volume within 1 kpc of the Sun, and a
transverse velocity drawn randomly from the two-
dimensional Gaussian projected-velocity distribution
expected in the baseline model. I note the Gaussian proba-
bility of each such fake star but do not at this point make
use of it.

Next I determine the observational characteristics of the
star. For example, I use the color-magnitude relation of the
baseline model and the star’s distance to obtain the true
(V�J)0 color and V0 magnitude. I draw the error in the
observed V magnitude from a Gaussian distribution and
redden both the color and magnitude according to a simpli-
fied extinction law,

AV ðr; bÞ ¼ 0:075 j csc bj½1� expð�r sin jbj=hdÞ� ; ð14Þ

where hd ¼ 130 pc is the dust scale height. Similarly, I
obtain the true proper motion from the distance and trans-
verse velocity and draw the two NLTT proper-motion
errors from a Gaussian distribution. If the NLTT proper
motion exceeds 180 mas yr�1, and the RPM discriminator �
lies within somewhat expanded bounds ð�1 < � < 6:15Þ as
calculated within the baseline model, I accept the star into a
master list of fake stars. For each model I examine each star
on this master list and recalculate (V�J) using the model’s
color-magnitude relation. I accept only stars satisfying the
selection criterion ð1 < � < 4:15Þ as calculated within the
model. Next, I determine Nexp by counting all of the fake
stars thus accepted and assigning each one a weight that
depends on the model. The weight is a product of factors:
ðR=R0Þ�� for proximity to the Galactic center, expð��jzjÞ
for distance from the Galactic plane, CðVÞ to take account
of completeness, as well as a factor for the luminosity func-
tion of the star’sMV bin. In particular, I evaluate the proba-
bility of the transverse velocity given the model and divide
this by the tabulated probability of the baseline model. In
this way, Nexp is evaluated stochastically for an ensemble of
models, without introducing random noise into the relative
values obtained for different models.
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For purposes of finding the best-fit model, I use a catalog
of fake stars drawn from a model that is 100 times denser
than the actual stellar halo, so that the stochastic character
of the fake catalog introduces errors in the parameter esti-
mates that are 10 times smaller than the Poisson errors. I
use the bootstrap method to calculate the errors in the
parameters; i.e., I evaluate the scatter in model fits to 25
realizations of the data formed by drawing randomly from
the actual data with replacement. Each realization is tested
against the same catalog of fake data. For this purpose, I
use a fake catalog drawn from a model that is 10 times
denser than the actual stellar halo.

3. RESULTS

The best-fit model to the 4588 subdwarfs selected accord-
ing to the criteria described in x 2.5 has the following charac-
teristics.

3.1. Velocity Ellipsoid Parameters

For the bulk halo motion relative to the Sun, I find

U1 ¼ 11:4� 2:2 km s�1 ; U3 ¼ �5:4� 2:4 km s�1 ;

ð15Þ

in the (outward) radial and (upward) vertical directions.
Since the Sun moves relative to the LSR at �10:0� 0:4 km
s�1 and 7:2� 0:4 km s�1 in these directions (Dehnen &
Binney 1998), this implies that the LSR is moving relative to
the halo at �1:4� 2:2 km s�1 radially and �1:8� 2:4 km
s�1 vertically. That is, both components are consistent with
zero. If the halo is assumed to be stationary in both direc-
tions relative to the Galactic potential, then either the devia-
tions of the LSR from a circular orbit must be very small, or
the Sun must lie close to the extrema of these deviations. On
the other hand, if the halo is not stationary, then it just hap-
pens to have almost exactly the same motion as the LSR,
which would be a most surprising coincidence.

The errors in equation (15) include only the statistical
errors within the fit and not the systematic errors induced by
fixing the amplitude of the velocity ellipsoid using the Gould
& Popowski (1998) value for U2 ¼ �216:6 km s�1. How-
ever, as I now show, this systematic error is relatively small.
First, the statistical error of U2 is 12.5 km s�1 or 6%. This
induces a systematic error in U1 also of 6%, that is, 0.7 km
s�1, which is small compared to the statistical error. There is
a second source of error because, while both the present
sample and the Gould & Popowski (1998) sample were
chosen based on a combination of kinematic and metallicity
criteria, those criteria are not identical nor even easily com-
parable. Hence, the values of U2 for the two samples need
not be identical. It is difficult to judge the size of this system-
atic error, but it is probably also of order 10 km s�1, i.e.,
about 5%, and therefore again much smaller than the statis-
tical error. The systematic errors scale withUi and therefore
are about half as big for the vertical motion as the radial
motion.

The three off-diagonal components to the velocity-
dispersion tensor are

~cc12 ¼ 0:024� 0:014 ; ~cc13 ¼ 0:005� 0:023 ;

~cc23 ¼ � 0:004� 0:026 : ð16Þ

That is, all three are consistent with zero at about the 2%

level. (Because there are five velocity-ellipsoid parameters
being fitted, the 1.7 � ‘‘ detection ’’ of ~cc12 cannot be regarded
as even marginally significant.)

Finally, the three diagonal components areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cii þ Dcii

p
¼ ð162:4� 1:4 ;

105:8� 1:7 ; 89:4� 1:9Þ km s�1 ; ð17Þ

where Dcii is defined by equation (12). This can be com-
pared to values of cii found by Gould & Popowski (1998)
for kinematically selected RR Lyrae stars.ffiffiffiffiffi
cii

p
¼ ð171� 10 ; 99� 8 ; 90� 7Þ km s�1 ;

ðRR LyraesÞ : ð18Þ

If the errors in equation (18) were sufficient small, it
would be possible to determine the Dcii in equation (17)
and so characterize �ðMV Þ (the scatter in MV at fixed
V�J color; see eq. [12]). However, given the errors, it is
immediately clear that �ðMV Þ is consistent with zero. To
find out what upper bound can be put on �ðMV Þ, I first
note that because c22=U

2
2 � 5, most of the potential infor-

mation comes from the tangential component. At the 1 �
level, ðDc22Þ1=2 < 55 km s�1. Hence, from equation (12),
�ðMV Þ < 0:5. This is not a very interesting 1 � limit.
Moreover, I have not yet incorporated the statistical or
systematic uncertainties in the amplitude of the velocity
ellipsoid as discussed following equation (15). Hence,
equations (17) and (18) present a reasonably consistent
picture but do not significantly constrain �ðMV Þ. I do
note, however, that the comparison of these two equa-
tions shows that the choice for normalizing the velocity
ellipsoid, U2 ¼ �216:6 km s�1, cannot be off by more
than about 15%. If it were, then the fitted values for
ðcii þ DciiÞ1=2 would also change by 15%, and these would
then be inconsistent at high significance with the c11 and
c33 as measured for RR Lyrae stars. For reference, the
dispersions ciið Þ1=2 from the non-kinematically selected
samples of Gould & Popowski (1998) and Norris (1986)
are (160� 7, 109� 8, 94� 5) km s�1 and (131� 6,
106� 6, 85� 4) km s�1, respectively.

3.2. Halo Profile Parameters

The halo density is not expected to vary much over the
small (�300 pc) volume that is being probed. As discussed
in x 2.3, I therefore model the density profile simply as
� ¼ �0ðR=R0Þ�� expð��jzjÞ. I find

� ¼ 3:1� 1:0 ; � ¼ 0:022� 0:057 kpc�1 : ð19Þ

The estimate of � is consistent with many previous determi-
nations, which because they are measured over longer base-
lines, have much smaller errors. For example, Gould et al.
(1998) find � ¼ 2:96� 0:27. The � measurement is quite
interesting despite the fact that (or rather precisely because)
it is consistent with zero. At the 2 � level, this constrains the
scale height to be ��1 > 7 kpc. If the local halo were com-
posed of two components, one highly flattened and one
roughly round, then one would expect the density to fall off
locally over distances that are short compared 7 kpc. Hence,
this result should help constrain two-component halo
models.
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3.3. Color-Magnitude Relation

I fit for a color-magnitude relation of the form
MV ¼ aðV � JÞ0 þ b (eq. [9]) and find

a ¼ 3:59 ; b ¼ 0:69 : ð20Þ

The formal uncertainties on these parameters are very small,
of order 0.01 mag. However, recall from the discussion
above equation (11) that b is completely degenerate with the
amplitude of the velocity ellipsoid, which was fixed for pur-
poses of the fit but which actually has a statistical uncer-
tainty of 6% (and a comparable systematic error). Hence,
the true error in b is about 0.2 mag. The total error in a is
probably not much larger than the formal error.

3.4. Luminosity Function

The LF is parameterized by 13 separate 1 mag bins, with
centers fromMV ¼ 3 to 15. I find (as did Gould, Bahcall, &
Flynn 1997 when they studied the disk LF) that ML esti-
mates of the LF tend to magnify Poisson fluctuations
according to the following mechanism. First suppose that
the true LF has a dip at a certain bin. Observational errors
will scatter stars from the two neighboring bins into this bin,
thus tending to wash out the dip. Hence, aML fit, when con-
fronted by a dip in the observed distribution will tend to
accentuate it as it reconstructs the underlying (true) LF.
Now suppose that the true LF is flat over three adjacent bins
but because of Poisson fluctuations the central bin is
depressed. ML will also accentuate this dip in an attempt to
reconstruct the ‘‘ true ’’ LF. Hence, particularly for bins
with low total counts, ML can introduce structure that is
not really present. I handle this potential problem by impos-
ing a ‘‘ roughness ’’ penalty DL ¼ 16 (difference/sum)2,
where ‘‘ sum ’’ and ‘‘ difference ’’ refer to the sum and differ-
ence of the LF in each pair of neighboring LF bins. This is
equivalent to imposing a D�2 ¼ 1 penalty when neighboring
bins differ by 35%. Thus, if the data really demand a steep
gradient, this penalty will permit one, but it will squash
spurious gradients.

Figure 1 shows the resulting LF. This LF is significantly
correlated with the completeness parameters (see eq. [10]),
which are derived simultaneously,

fbreak ¼ 43%� 6% ; Vbreak ¼ 18:27� 0:04 : ð21Þ

In the Appendix, I consider arguments that might lead one
to suspect that this estimate of fbreak could be substantially
too low. I find that these arguments are not compelling and
therefore adopt the LF calculated using equation (21) as the
best estimate. Nevertheless, in order to gain a sense of the
possible role of such a systematic effect, I also show in Fig-
ure 1 the LF under the assumption that fbreak ¼ 65%, the
highest value that I consider to be plausible.

Figure 2 compares the derived LF (with fbreak ¼ 43%) to
those of several previous measurements of the halo LF:
those of Bahcall & Casertano (1986), Dahn et al. (1995),
and Gould et al. (1998), which were all previously compared
by Gould et al. (1998). As explained there, the first two LFs
are labeled ‘‘ BC/CRB ’’ and ‘‘DLHG/CRB ’’ to indicate
that they have been corrected from the originally published
LFs to take account of the kinematic selection using the
velocity ellipsoid of Casertano et al. (1990), which is very
similar to the ellipsoid of Gould & Popowski (1998) and to
the one derived for the present sample. The present mea-

surement is in reasonably good agreement with the DLHG/
CRB determination over the range 9 � MV � 14 covered
by the latter. It disagrees strongly with both the BC/CRB
and Gould et al. (1998) determinations (which are in good

Fig. 1.—Logarithm of the LF derived from 4588 subdwarfs from
the revised NLTT catalog (Gould & Salim 2003; Salim & Gould 2003).
The solid curve and open symbols with error bars represent the best fit. The
dashed curve and crosses represent the fit under the assumption that the
derived catalog completeness has been seriously underestimated. The main
features of the LF remain the same. The faintest two bins should be
interpreted cautiously (see x 3.4).
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Fig. 2.—Comparison of four halo LFs. The original determinations by
Dahn et al. (1995, DLHG) and Bahcall & Casertano (1986, BC) have been
rescaled by Gould et al. (1998) using the velocity ellipsoid of Casertano et
al. (1990, CRB). The present work confirms the ‘‘ bump ’’ in the LF found
by DLHG at MV � 11, as well as the fall-off toward brighter mags
found by Bahcall & Casertano (1986) but with much smaller error bars in
both cases.
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agreement with each other). The new measurement extends
over a much wider magnitude range and has substantially
smaller error bars than any previous determination.

The LF evaluations at MV ¼ 15, and to a lesser extent at
MV ¼ 14, should be interpreted cautiously because they
depend sensitively on model assumptions. To understand
this point, one should consider howML ‘‘ thinks ’’ when fit-
ting the LF. To zeroth order, it forms an LF in the naive
way: by counting the number of stars whose dereddened
observed (V�J)0 color and the color-magnitude relation
put them in a correspondingMV bin, and dividing this num-
ber by the total effective volume probed by the survey for
stars of that MV . There are, respectively, 40 and 18 stars in
the final two bins, but only roughly 20 and 6 of these are
assigned to these bins by the final ML LF fit shown in Fig-
ures 1 and 2. What prevents ML from assigning much
higher densities to the LF at these faint magnitudes? In the
next brightest bin there are 159 stars. This is about 4 times
larger than in the MV ¼ 14 bin despite the fact that the LF
is roughly the same because the effective volume grows rap-
idly with luminosity at these faint magnitudes. As described
above, ML takes this as a zeroth-order estimate for the
number expected in this bin. It then considers how many of
these are expected to scatter into neighboring bins because
the color errors �ðV � JÞ ’ �ðVÞ ¼ 0:25 induce errors in
MV of a�ðVÞ � 0:9. That is, roughly 15% of these 159 stars
are expected to scatter into the MV ¼ 14 bin and a few per-
cent into the MV ¼ 15 bin. It is by accounting for this scat-
ter, as well as scatter from brighter bins, that ML achieves
its final estimate. This estimate therefore depends quite sen-
sitively on the adopted value of �ðVÞ, which is described
very simply in the model but could, in principle, actually be
a function ofV or of other variables.

In addition, because of the very small number of detected
stars in these final bins, there is a potential problem of
contamination from nonhalo stars. Contamination is not
generally a problem because, as I argued in x 2.5, the dis-
criminator � is limited to regions well away from main-
sequence stars and white dwarfs. However, the density of
the very dim halo stars on the RPM diagram is extremely
low (see Salim & Gould 2003, Fig. 3), so even the low
residual level of contamination could play a role.

To establish the LF at MV � 14 more securely, and since
the total number of stars in the last two bins is very small
(58), the simplest approach would be to obtain V-band
photometry for all of them. If the ML result is correct, the
majority of these will be found to have scattered in from
brighter bins. Metallicities and RVs from spectra of the
truly red stars could then resolve issues of contamination.
The LF of the final two bins would then rest on much firmer
ground.

4. DISCUSSION

4.1. Kinematics

To high precision (roughly 2 km s�1) the LSR is not mov-
ing with respect to the halo in either the radial or vertical
directions. If the halo itself has no radial motion, the first
result sharply contradicts the conclusion of Blitz & Spergel
(1991) based on gas motions that the LSR is moving out-
ward at 14 km s�1. On the other hand, it is reasonably con-
sistent with the radial-motion estimate of Metzger &
Schechter (1994) based on carbon stars. More specifically, I

find that the halo is moving at 11:4� 2:2 km s�1 relative to
the Sun, and they find that the outer-Galaxy carbon stars
are moving at 15:6� 1:7 km s�1.

I find that all three off-diagonal components of the veloc-
ity dispersion tensor are small, within�2% of zero. The only
previous measurements of these quantities (PG3) were con-
sistent with zero but with errors that were about 4 times
larger. To date, I am not aware of any effort to predict the
off-diagonal terms from theory.

4.2. Luminosity Function

The measurement presented here of the LF confirms the
basic peaked shape found by Dahn et al. (1995), but with
about 40 times more stars and therefore covering a magni-
tude interval that is roughly twice as large. It is inconsistent
with the flat LF found by Bahcall & Casertano (1986) and
Gould et al. (1998; however, in principle, since the latter
determination was based on stars away from the solar
neighborhood, it cannot be rigorously ruled out by my mea-
surement). The present measurement is in rough agreement
with that of Bahcall & Casertano (1986) at brighter magni-
tudes,MV < 9.

4.3. Distance Scale

A shortcoming of the present approach is that there is no
information about distances within the data set, so the scale
of the velocity ellipsoid must be set by external information.
The distance scale could be set by obtaining either RVs or
trigonometric parallaxes for a representative (i.e., random)
subset of the stars in the sample. The former would yield a
statistical parallax solution. I stress ‘‘ representative ’’
because if the subsample is biased—for example, is weighted
toward stars with extreme kinematics and/or low metallic-
ities—then the scale of the velocity ellipsoid will be overesti-
mated by statistical parallax because the stars with RVs
move faster than those in the sample as a whole. It would be
misestimated by trigonometric parallax because the selected
stars would be both faster and more subluminous than the
sample as a whole. Hence, one must choose a fair sample
and then make use of archival data only for stars within that
sample.

From the standpoint of maximizing the precision of the
distance-scale measurement with the minimum effort, statis-
tical parallax is to be much preferred over trigonometric
parallax. Even velocity errors of �20 km s�1 are quite
adequate for a statistical parallax measurement with the
limiting precision �ð�Þ=� ¼ 0:65N�1=2 (Popowski & Gould
1998a). Here N is the number of stars in the statistical
parallax sample and � is the distance-scale parameter. Even
assuming perfect parallaxes, the limit for the trigonometric
parallax technique is �ð�Þ=� ¼ 0:2 ln 10�ðMV ÞN�1=2. Given
the large number of halo stars in the revised NLTT catalog
and the relative ease of making RV compared to trigono-
metric parallax measurements, the modest per-star advant-
age of trigonometric parallax will be overwhelmed by the
mass-production techniques available for RVs. However,
good trigonometric parallaxes would provide information
on the luminosity of individual stars, which cannot be
obtained from statistical parallax techniques. Thus, the two
approaches are complementary.
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4.4. Comparison with Parallax Data

Parallaxes are currently available for a small subset of the
Luyten Half-Second (LHS) catalog (Luyten 1979b), which is
itself a subset of NLTT. LHS is reasonably complete for
l > 500 mas yr�1 (see the Appendix) and contains a number
of stars somewhat below this nominal limit. Monet et al.
(1992) measure parallaxes for 69 LHS stars, and Gizis
(1997) assembles parallaxes from various sources for an
additional 60. Of these 129 stars, 70 are cross-identified in
the revised NLTT catalog, of which 63 have J-band data
from 2MASS. Figure 3 is an RPM diagram and a color-
magnitude diagram (CMD) for these 63 stars. (For these
plots, I use the CCD V photometry available fromMonet et
al. 1992 and Gizis 1997 in place of the generally photo-
graphic photometry from the revised NLTT.) The RPM
diagram also shows all 2037 LHS stars from the revised
NLTT catalog that have 2MASS J data. From this diagram,
it is clear that the parallax stars are not a representative sam-
ple of LHS. Moreover, since they are assembled from heter-
ogeneous sources, it would be quite difficult to determine
their selection function. Hence, the CMD cannot be used
to make a rigorous measurement of the color-magnitude
relation.

Nevertheless, it is possible to glean important informa-
tion from the CMD. I first fit linear color-magnitude rela-
tions to each of two subsets of the data: 1 < � � 4:15 (open
circles), and 0 < � � 4:15 (open circles and squares). In both
cases, I remove the two stars with V�J > 4:13 since this
condition is also effectively applied when obtaining the
results in x 3. That is, the bottom of the last bin is
MV ¼ 15:5, which, according to the derived color-
magnitude relation (eq. [20]), corresponds to
ðV�JÞ0 ¼ ðMV � bÞ=a ¼ 4:13. (These two stars are quite
interesting, and I return to them below.) In each case, I add
an intrinsic scatter �ðMV Þ in quadrature to the measure-
ment errors to force �2=dof ¼ 1, which I find to be
�ðMV Þ ¼ 0:63 mag and �ðMV Þ ¼ 0:67 mag, respectively.
The resulting fits are shown as solid lines in the CMD and
can be compared to the relation (eq. [20]) derived from the
ML analysis, which is shown as a dashed line.

The first sample (1 < � � 4:15) corresponds to the selec-
tion used in the ML analysis. Recall that the lower boun-
dary of this range has been set conservatively in order to
reject disk stars. The sample is thus biased toward sublumi-
nous stars, a bias that is taken into account in theML analy-
sis but not here. One might therefore expect the derived
color-magnitude relation to underestimate the luminosities.
The second sample (0 < � � 4:15) goes to the disk/halo
boundary advocated by Salim & Gould (2003) and thus
eliminates this potential bias but at the cost of possible con-
tamination by disk stars. One might therefore expect the
derived color-magnitude relation to overestimate the lumi-
nosities. In fact, both relations are extremely close to equa-
tion (20), differing by 0.3 and 1.2 �, respectively. Indeed, the
first sample’s relation is so close that the two can hardly be
distinguished on the plot.

I now turn to the two red stars that were excluded from
the fits, LHS 1742a (circle) and LHS 1166 (square). The
CMD shows that they are brighter than the extrapolation of
the adopted color-magnitude relation by 1.2 and 3.1 mag,
respectively. Hence, these two stars may indicate that the
color-magnitude relation, which is roughly linear at brighter
magnitudes, could be turning sharply redward at the faint

end. However, the 1.2 mag deviation of LHS 1742a is less
than 2 � and therefore not in itself remarkable, while the dis-
criminator of LHS 1166 is � ¼ 0:08, meaning that it could
plausibly be a disk star. Hence, I examine the available
information for each more closely.

Gizis (1997) classifies LHS 1742a as esdM5.5, an extreme
subdwarf; it lies in the extreme part of all three CaH/
TiO5 diagrams. He assigns it a metallicity ½m=H� ¼ �2:0.
This star also has extreme kinematics: ðU ; V ; WÞ ¼

V−J
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Fig. 3.—RPM diagram and CMD for 63 LHS stars with parallaxes and
J-band data. Point types are by the discriminator �: crosses (� � �1, secure
disk stars), stars (�1 < � � 0, probable disk stars), squares (0 < � � 1,
probable halo stars), open circles (1 < � � 4:15, secure halo stars), and
filled circles (� > 6:15, secure white dwarfs). (There are no stars in the white
dwarf/halo boundary region, 4:15 < � � 6:15.) The points in the RPMdia-
gram show 2037 LHS stars with J data from the revised NLTT catalog. The
dashed line in the CMD is the color-magnitude relation derived in x 3.3.
The two solid lines are fits to the CMD halo stars either including (upper
line ) or excluding (lower line) those with 0 < � � 1 (squares). These fits
exclude the reddest two halo stars, LHS 1742a (circle) and LHS 1166
(square), whose CMDpositions probably indicate that the color-magnitude
relation bends toward the red atV�J � 4.
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ð�229; �263; 108Þ km s�1. The intrinsic scatter �ðMV Þ
derived above is due to differences in metallicity, with metal-
weaker stars being fainter at fixed color (Gizis & Reid 1990).
The fact that LHS 1742a is substantially brighter than the
extension of the color-magnitude relation despite the fact
that it is extremely metal-weak should therefore be regarded
as evidence of a turn in that relation.

Unfortunately, a search of SIMBAD1 reveals no new
observations of LHS 1166 following the parallax measure-
ment byMonet et al. (1992). This measurement showed that
its transverse velocity is 224� 22 km s�1, making the proba-
bility that it is a halo star very high. If so, the star’s position
on the CMD would show that the disk and halo color-

magnitude relations either cross or merge at this point.
Spectroscopic observations of this star to determine its spec-
tral type, metallicity, and RVwould help clarify this issue.

In brief, the linear color-magnitude relation adopted here
is compatible with the parallax data for the colors
V�J < 4:13 to which it is applied in the ML analysis of the
revised NLTT catalog. However, there is evidence that the
relation turns redward for later stars. While this evidence
comes from only two stars and is incomplete for one of
these, it nevertheless appears fairly convincing.

I thank Samir Salim for invaluable discussions about
both the content and presentation of this paper. The com-
ments and suggestions by the referee, John Gizis, improved
the paper considerably. This work is supported by JPL con-
tract 1226901 and by grant AST 02-01266 from the NSF.

APPENDIX

COMPLETENESS

The principal source of systematic errors in this analysis is incompleteness (or rather, possible misestimation of the com-
pleteness) of the revised NLTT catalog. As shown in Figure 1, such misestimation can significantly affect the determination of
the LF. However, I find that it does not affect the estimate of the velocity ellipsoid.

In principle, catalog completeness could be a function of all six observables, i.e., theV and Jmagnitudes, the proper motion,
and the position on the sky. While the relative completeness of the revised NLTT compared to the original NLTT is very well
understood (Salim & Gould 2003), there is substantially less information available about the absolute completeness of the
underlying NLTT.

The completeness of NLTT can be tested either externally or internally. An external check requires an independent search
for high proper-motion stars, either over the whole sky or some fraction of it. By comparing to theHipparcos (ESA 1997) and
Tycho-2 (Høg et al. 2000) catalogs, Gould & Salim (2003) concluded that NLTT is nearly 100% complete for Vd11 and for
Galactic latitudes jbj > 15�. Even near to the plane, completeness is close to 100% for l > 400 mas yr�1. Monet et al. (2000)
searched for high proper-motion (l > 400 mas yr�1) stars to faint magnitudes toward 1378 deg2 and found 241 stars, only 17
of which (their Tables 2 and 3) they could not match to NLTT. In fact, two of these 17 are actually NLTT stars, namely, 58785
and 52890, which correspond to entries 1 and 8 from Table 3. Thus, over these surveyed areas, NLTT is 94%� 2% complete
for l > 400 mas yr�1. However, LHS (Luyten 1979b), a subset of NLTT that actually extends somewhat below 500 mas yr�1,
is almost certainly substantially more complete than is the NLTT at lower proper motions, so this measurement cannot be
regarded as representative of NLTT as a whole.

Unfortunately, there are no systematic studies comparing NLTT detections with an independent search for proper-motion
stars in the range 180 mas yr�1 < l < 400 mas yr�1 and at faint magnitudes. In the absence of such external checks, Flynn et
al. (2001) conducted an internal completeness determination, whose approach is very closely related to the completeness
measurement carried out here by ML. For a complete sample drawn from a stellar population that is uniformly distributed in
space, the number of stars in the phase-space volume ½l1; l2� 	 ½V1; V2�, should be (up to Poisson statistics) exactly 8 times
the number in the volume ½2l1; 2l2� 	 ½V1 � 5 log 2; V2 � 5 log 2�. This is because the former physical volume is 8 times
larger, while the physical velocities being probed are exactly the same. Flynn et al. (2001) made a series of such comparisons at
0.5 mag intervals and, by multiplying these together, found that the completeness at RNLTT ¼ 18:5 is 65% that at RNLTT ¼ 13
(which latter they assumed to be 100%).

Monet et al. (2000) pointed out that any effect that reduced detections of more distant, slower moving stars (relative to faster
nearby ones) could masquerade as incompleteness of fainter (relative to brighter) stars under this test. In particular, they
argued that more distant stars would, being on average farther from the plane, have reduced density. Even a small difference
of 4% in mean density per comparison could lead to the ‘‘ observed ’’ fbreak ¼ 65% completeness at RNLTT; break ¼ 18:5, since
it would be multiplied together 11 times between RNLTT ¼ 13 and 18.5. That is, ð1� 0:04Þ11 � 65%. Monet et al. (2000) pre-
sented a figure showing that when the procedure is carried out on stars at lower Galactic latitude, the effect is much reduced.

This critique is important because the two-parameter characterization of incompleteness that I use here (see x 2.3) in essence
embodies the Flynn et al. (2001) method. As noted in x 3.4, I find fbreak ¼ 43%� 6% at Vbreak ¼ 18:27. This fraction is
consistent with the Flynn et al. (2001) result at the 1.5 � level when account is taken of the fact that I have assumed 100% com-
pleteness at V ¼ 12 rather than RNLTT ¼ 13. The magnitude Vbreak is slightly brighter than the value found by Flynn et al.
(2001), but this is to be expected, since the revised NLTT catalog depends on 2MASS J-band cross identification.

However, theMonet et al. (2000) critique cannot account for the result found in equation (21) for several reasons. First, one
does not expect the density of halo subdwarfs to fall off significantly within the volume probed by NLTT. Second, the ML fit
actually allows for such a fall-off, so that even if the actual density did not satisfy this theoretical expectation, the fit would
automatically take account of the fall-off. (In fact, according to eq. [19], the best fit is consistent with uniform density.) Third,

1 See http://simbad.u-strasbg.fr.
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Flynn et al. (2001) are unable to reproduce Figure 3 from Monet et al. (2000) and instead find relatively comparable results
when they apply their test to high-latitude and low-latitude stars.

Nonetheless, it remains possible that there is some other effect that reduces the counts of distant relative to nearby stars
of the same class. One such effect would be incompleteness as a function of proper motion, rather than magnitude. Such
incompleteness could be very pernicious because if the more distant (and hence slower moving) stars were under-represented
by a mere 4%, then (as outlined above) the effect would be exponentiated and would generate a large apparent incompleteness
as a function of magnitude. I therefore tested this hypothesis by including a proper-motion term for the completeness within
the ML fit. However, this term did not improve the fit even slightly. One is thus left without any plausible explanation for the
relative lack of more distant, slower stars, other than incompleteness as a function of magnitude.

The little direct information we have on the completeness of NLTT at faint magnitudes and relatively low proper motions is
reasonably consistent with the ML estimates of completeness derived here. Reid (1990) searched for high proper-motion stars
in a single Schmidt field toward the north Galactic pole. He recovered 63 stars from NLTT as well as 15 stars that met NLTT
selection criteria but were not in NLTT. This appears to correspond to a mean completeness of 81%. However, three of the 15
have proper motions 180 mas yr�1 < l < 200 mas yr�1, i.e., within 1 � (Salim & Gould 2003) of the NLTT limit. Stars that
scatter across the selection boundary are already taken into account in the modeling procedure and should not be counted as
due to ‘‘ incompleteness.’’ Hence, the true mean completeness of NLTT in the Reid (1990) survey area is more like 84%� 5%.
If one restricts consideration to stars V < Vbreak (beyond which the revised NLTT catalog is more sensitive to the incomplete-
ness of 2MASS than NLTT), then fbreak ¼ 43%� 6% corresponds to a mean completeness of halo stars of 78%� 3%, in 1 �
agreement with the value just derived from the Reid (1990) study.

In brief, there is no strong evidence to challenge the completeness estimate given by theML fit.
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