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ABSTRACT

We consider the effects of vacuum polarization and proton cyclotron resonances on the propagation of
radiation through a strongly magnetized plasma. We analyze the conditions under which the photons evolve
adiabatically through the resonant density and find that the adibaticity condition is satisfied for most photon
energies of interest, allowing for a normal-mode treatment of the photon propagation. We then construct
radiative equilibrium atmosphere models of strongly magnetized neutron stars that includes these effects,
employing a new numerical method that resolves accurately the sharp changes of the absorption and mode-
coupling cross sections at the resonant densities. We show that the resulting spectra are modified by both
resonances and are harder at all field strengths than a blackbody at the effective temperature. We also show
that the narrow absorption features introduced by the proton cyclotron resonance have small equivalent
widths. We discuss the implications of our results for properties of thermal emission from the surfaces of
young neutron stars.
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1. INTRODUCTION

Vacuum polarization is a quantum electrodynamical phe-
nomenon that occurs in strong magnetic fields (Be1013 G)
and affects the interactions between the photons and the
electrons. In the presence of a plasma with a density gra-
dient, vacuum polarization gives rise to a resonance when
the normal modes of photon propagation change from
being mostly circularly polarized at high electron densities
to being mostly linearly polarized at low densities. This
occurs because, at low plasma densities, virtual pairs of the
vacuum dominate the interactions, and the photon-polar-
ization eigenstates do not correspond to the propagation
eigenstates. Thus, at a critical density that depends on pho-
ton energy, the conversion of photons between the two
polarization modes is highly enhanced, accompanied by a
change in the opacities of the normal modes (Adler 1971;
Tsai & Erber 1975; Mészáros & Ventura 1979; Kaminker,
Pavlov, & Shibanov 1982; see Mészáros 1992 for a review).
Another phenomenon that affects the propagation of pho-
tons in a magnetized plasma is the proton cyclotron reso-
nance that arises from the interaction of the protons in
strong magnetic fields with photons. When the field strength
is on the order of B � 1014 1015 G, the proton cyclotron
energy falls in the soft X-ray band and affects the spectral
properties of isolated cooling neutron stars.

Because of the sharp transition in the opacities of the nor-
mal modes of propagation through the resonances, it has
been difficult to include the effects of vacuum polarization in
calculations of photon transport in magnetized plasmas.
This phenomenon has been treated only recently in the con-
text of interactions of high-energy photons with a strongly
magnetized plasma by Bezchastnov et al. (1996) and Bulik
& Miller (1997) and included in a radiative equilibrium
model atmosphere of a neutron star by Özel (2001). It has

been shown that the enhanced absorption andmode conver-
sion give rise to broadband absorption features, which may
affect the spectra of high-energy bursts of soft gamma-ray
repeaters (Bulik & Miller 1997) and may be responsible for
the hard spectral tails observed in the quiescent X-ray emis-
sion of radio-quiet neutron stars, such as the anomalous
X-ray pulsars (Özel 2001). Proton cyclotron resonance has
also been addressed recently in the context of surface emis-
sion from strongly magnetized neutron stars (Zane et al.
2001; Ho & Lai 2001). However, a treatment that takes all
these effects into account has not yet been developed (also
see the Appendix).

All these radiative transfer calculations involve solving
two coupled radiative transfer equations for the two normal
modes of propagation. Treating the vacuum polarization
resonance in this formalism has some limitations. In partic-
ular, the large Faraday depolarization limit assumed in the
derivation of the two coupled transfer equation may not
hold and an exact treatment may require the solution of
four coupled equations for the four Stokes parameters that
describe the amplitudes and phases of the electromagnetic
waves (see x 2). However, if the propagation modes evolve
adiabatically, the normal mode treatment is valid at den-
sities infinitesimally away from the resonant density and has
allowed the derivation of the transfer coefficients in such
conditions (Mészáros & Ventura 1979; Pavlov & Shibanov
1979; Kaminker et al. 1982 and references therein). All
studies to date involve this treatment, which assumes the
adiabatic evolution of the propagation modes and thus
includes the enhanced conversion of photons between the
two polarization modes near the vacuum polarization reso-
nance. The condition of adiabaticity at the resonant density,
however, needs to be verified.

In this paper, we first discuss in full generality the propa-
gation of photons in a magnetized plasma in the presence of
resonances and determine the conditions under which a nor-
mal mode treatment that assumes adiabatic evolution can
be employed. We then explicitly show the terms in the1 Also Physics Department, HarvardUniversity.
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radiative transfer equations that describe the enhanced cou-
pling of the photon propagation modes in the presence of
vacuum polarization resonance and present a new numeri-
cal treatment of the resonances. We also take into account
the additional effects of proton cyclotron resonance and
present spectra from radiative equilibrium calculations of
strongly magnetized neutron star atmospheres when all
these effects are taken into account. In the Appendix we
address various technical aspects of photon propagation in
the presence of a resonance and clarify some issues that have
recently been raised in the literature.

2. ADIABATIC EVOLUTION OF NORMAL MODES IN
THE PRESENCE OF VACUUM POLARIZATION

In this section we discuss in full generality the propaga-
tion of photons through a magnetized plasma when vacuum
polarization effects are considered. Our treatment follows
closely the discussion in Mészáros (1992, x 6.1d ) and
Gnedin & Pavlov (1974). We show the derivation of the two
coupled equations that describe the transport of radiation
in the normal modes, emphasizing the assumptions made in
this approach as well as the physical phenomena captured
in the resulting equations.

We start by defining the correlation matrix of the compo-
nents of the electric field of the electromagnetic wave in
terms of the four Stokes parameters I ; Q; U , andV :

��� ¼ 1

2

I þQ U þ iV

U � iV I �Q

� �
; ð1Þ

so that the transfer equation that describes its evolution
takes the form

ðk̂k x

D

Þ��� ¼ �1
2

X
�

ðT����� þ ���T
þ
��Þ þ S�� : ð2Þ

In this equation, T�� is the transfer matrix that describes the
transition from one polarization to the other as well the
absorption and outscattering of radiation, whereas S�� is
the source matrix that describes emission and inscattering
processes. On the basis of eigenvectors of the transfer matrix
(which correspond to the normal modes of propagation),
the transfer equation becomes

ðk̂k x

D

ÞRij ¼ �gijRij þ Sij ; ð3Þ

where Rij and Sij are the projections of the correlation and
source matrices onto the eigenvectors and

gij ¼
1

2
ð�i þ �jÞ þ

i!

c
ðni � njÞ : ð4Þ

Here �i is the sum of the absorption and scattering coeffi-
cients, ! is the photon frequency, and ni is the refractive
index of the ith mode. Note that the two equations for the
diagonal terms of the correlation matrix Rii correspond to
the most general form of equation (14) of Lai &Ho (2002).

When

Im

Z
z

gij dz4Re

Z
z

gij dz ; ð5Þ

where Im and Re denote the imaginary and real parts of the
integral respectively, then the contribution of the nondiago-
nal terms of gij to the evolution of Rij is negligible because

the integral over this term oscillates rapidly. In this case, the
transport of radiation can be described in terms of only two
equations for the specific intensity of the two normal modes

ðk̂k x

D

ÞIi ¼ ��iIi þ Sii ; ð6Þ

i.e., the familiar polarized transfer equations. Here the term
Sii, which takes the form

Sii ¼
X
j

Z
d�0 d�ij

d�
ð�0 ! �ÞIjð�0Þ ð7Þ

when thermal effects are neglected, depends on the specific
intensities of both modes and contains information about
their coupling through the differential cross section d�ij=d�.
We will discuss the properties of Sii and specifically the
mode coupling in the presence of vacuum polarization
resonance in x 3.

In a plasma with gentle density and temperature gra-
dients, condition (5) becomes

� �
Im

R
z gij dz

Re
R
z gij dz

¼ 2!ðni � njÞ
ð�i � �jÞc

41 ; ð8Þ

which is generically referred to as the limit of large Faraday
depolarization. In all the calculations of photon propaga-
tion in magnetized plasmas to date, the normal mode treat-
ment has been employed at the limit of large Faraday
depolarization. This requires that condition (5) holds, i.e.,
that the propagation modes evolve adiabatically through
any density gradient in the plasma, including at the vacuum
resonance. In Figure 1, we evaluate the magnitude of the
quantity � to verify the validity of this assumption. We use

Fig. 1.—Quantity � that measures the degree of Faraday depolarization
at different photon energies, evaluated at the vacuum critical density and
the corresponding temperature in a magnetized neutron star atmosphere
with Teff ¼ 0:5 keV. The two curves labeled with the photon direction of
propagation l correspond to B ¼ 1015 G, while the third curve is obtained
for ld0:7 at B ¼ 5� 1014 G. Since � > 1 for Ee1 keV, the adiabaticity
condition holds at these photon energies. [See the electronic edition of the
Journal for a color version of this figure.]
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the model atmosphere calculations discussed in x 4 for neu-
tron stars with magnetic fields B ¼ 5� 1014 G and B ¼ 1015

G and effective temperatures Teff ¼ 0:5 keV to calculate �
numerically at the resonant density and the corresponding
temperature for each photon energy. Note that the quantity
� plotted in this figure includes the effects of both scattering
and absorption (see x 3 for these expressions; cf. Lai & Ho
2002, eq. [16] ).

As Figure 1 shows, the adiabaticity condition holds for
photon energies Ee1 keV for all directions of photon prop-
agation and the magnetic field strengths of interest here but
breaks down at smaller energies. However, the vacuum res-
onance for these low energies occurs at high optical depths
in both modes (see Özel 2001), ensuring that both modes are
thermalized and have the same local radiation field density
because of high number of interactions. As a result, not
including the off-diagonal terms of Rij and gij in the descrip-
tion of the radiation field at these energies does not affect
the results of the transfer calculations.

3. ENHANCED COUPLING BETWEEN NORMAL
MODES IN THE PRESENCE OF VACUUM

POLARIZATION

Another phenomenon related to the vacuum polarization
resonance in strong magnetic fields is the drastic enhance-
ment of the mode-coupling terms in the source matrix
d�ij=d�, i 6¼ j, which describes the redistribution of photons
into different directions of propagation and different polar-
ization states. The derivation of the absorption and scatter-
ing coefficients �i, as well as of the matrix d�ij=d�, are given
in detail in, e.g., Mészáros & Ventura (1979) and Mészáros
(1992). The standard procedure involves combining the
sourceless Maxwell’s equations into a wave equation, cast-
ing it in the form of the transfer equation, and identifying
the various terms with the elements of the matrices gij and
Sij (eq. [3]). Therefore, these terms take into account all the
mode-changing processes in a plasma, whether or not they
arise from a single scattering or, as discussed in detail in
Mészáros (1992, p. 97), from nonlinear effects near the
vacuum resonance (assuming adiabatic mode evolution).

Because we are specifically interested in the off-diagonal,
mode-changing terms of the photon redistribution matrix
d�ij=d�, we highlight two interesting phenomena that have
a significant contribution to these terms (see also Ho & Lai
2002). The photons interact with both the electrons and the
protons in the plasma. When the field strength is sufficiently
high (B � 1014 1015 G), the proton cyclotron energy lies in
the keV range and affects the X-ray spectra of magnetized
sources. Just like the electron cyclotron resonance, the pro-
ton cyclotron resonance gives rise to enhanced mode cou-
pling due to its effect on the normal modes of propagation
(see below) and to absorption features in the spectra of
photons emerging frommagnetized plasmas.

The second and most interesting effect in strong magnetic
fields arises from the presence of virtual pairs that change
the interaction of the photons with the plasma and thus its
index of refraction. This happens through the effect of the
virtual pairs on the normal modes of propagation as dis-
cussed earlier. The expressions for the absorptive and
dispersive properties of the plasma under these conditions
were derived by Adler (1971) and Tsai & Erber (1975).

When the plasma electrons and protons as well as the
vacuum polarization effects are considered, the parameter

that determines the ellipticities of the normal modes of
photon propagation take on the form

q ¼ sin2 �

2 cos �
ð1� upÞ

ffiffiffi
u

p
1�W

u� 1

u2

� �
; ð9Þ

where u ¼ E2
b=E

2; up ¼ E2
p=E2; Eb is the electron cyclotron

energy, Ep is the proton cyclotron energy, and E denotes the
photon energy. The vacuum parameter W represents the
correction to the index of refraction due to vacuum polar-
ization and has two limiting forms; for B < Bcr ¼
4:41� 1014 G it is given by

W ¼ �

15�

B

Bcr

� �2 Eb

Epl

� �2

¼ 3� 1028 cm�3

Ne

� �
B

Bcr

� �4

;

ð10Þ

while for B > Bcr, it can be written as
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where we used the expansions of the electromagnetic
Lagrangian given in Tsai & Erber (1975, eqs. [38a]–[38b]).
In these expressions, � is the fine-structure constant, Epl is
the plasma frequency, and Ne is the electron density. Given
the ellipticities of the normal modes of propagation, it is
straightforward to calculate the absorption and scattering
terms in equation (6).

The quantity q determines directly the polarizations of
the normal modes and thus all the elements of d�ij=d�,
which involve the moduli of the cyclic projections of the
unit polarization vectors onto the coordinate axis with a
given magnetic field direction. In Figure 2, we plot the
off-diagonal terms of d�ij=d� as a function of electron
density for different photon energies and directions of
propagation.

Figure 2 shows a remarkable enhancement in the off-
diagonal terms of the scattering matrix near the vacuum res-
onance density. These terms describe true changing of prop-
agation modes and can significantly alter the spectrum and
angular distribution of radiation propagating through a
magnetized medium. This is because they can convert a pho-
ton from a mode with a small mean-free path to one with a
large mean-free path and vice versa. As the different panels
of Figure 2 show, the conversion probability and the width
of the resonance depends on the photon energy and direc-
tion of propagation.

These rapidly changing off-diagonal terms are difficult to
handle numerically when modeling the transport of radia-
tion. A number of different approaches have been employed
to date, which we discuss in the next section.

4. NUMERICAL TREATMENTS OF THE RESONANCE
AND MODE COUPLING

As discussed in x 3, vacuum polarization introduces nar-
row resonances in the opacities and cross-mode interaction
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terms. Given that the radiative equilibrium calculations
require an energy grid that extends over 4 orders of magni-
tude and a depth grid that spans 10 orders of magnitude,
resolving the resonance by using an arbitrarily large number
of grid points in these two variables is computationally pro-
hibitive. Instead, the solution requires new numerical meth-
ods, which can sample the resonance region with high
accuracy. The accuracy of the solutions depends on a
correct calculation of the total optical depth under the
resonance.

Here we introduce a new algorithm to overcome this
problem that involves sampling the resonance region with a
very large number of points on an auxiliary grid (denoted
by prime) in order to compute accurately the total optical
depth. We then smooth the redistribution matrix elements
on the main grid according to

d�n
ij

d�
ð	esÞ ¼

Z
d�ij

d�
ð	 0esÞ

1ffiffiffiffiffiffiffiffiffiffi
2��2

p exp
�ð	es � 	 0esÞ

2

2�2
d	 0es ; ð12Þ

Fig. 2a Fig. 2b

Fig. 2c

Fig. 2.—Off-diagonal, mode-coupling terms of the scattering matrix d�ij=d�, in units ofNe�T , as a function of particle density in the atmosphere. In all the
panels, solid lines show the terms when vacuum effects are included, and the dashed lines show the case when these effects are neglected. Coupling of photons
with different directions of propagation and different energies are shown in panels (b) and (c), respectively. Vacuum polarization resonance significantly enhan-
ces mode coupling. [See the electronic edition of the Journal for a color version of this figure.]
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where d�n
ij=d� denotes the new smoothed matrix elements,

and the smoothing factor � in the Gaussian is chosen based
on the number of points in the main depth grid. The number
of points on the auxiliary grid can be arbitrarily large with-
out increasing significantly the computational time. (Note
that we also compute the absorption coefficients in this
way). This method allows the sharp features to be resolved
on the discrete grid while preserving the total optical depth
across the resonance. As a result, it yields the most accurate
solution allowed for a chosen number of grid points, as well
as smooth spectra. In the calculations presented in x 4, we
employ a depth grid of 400 points and an energy grid of 80
points.

4.1. Comparison with PreviousMethods

We now compare the above algorithm to the numerical
methods that have been developed earlier to treat the
transfer of radiation through the vacuum polarization
resonance.

1. Monte Carlo Methods.—Bulik & Miller (1997) used a
Monte Carlo technique to follow the propagation of pho-
tons through a hot, ultramagnetized plasma. Since Monte
Carlo methods are not grid-based but follow the trajectories
of individual photons, they have little difficulty in handling
the sharp vacuum resonances. They also allow an easy
implementation of noncoherent (Compton) scattering,
which was important for the high-temperature plasmas con-
sidered by Bulik & Miller (1997). This method, however,
suffers from small number statistics that produces numerical
noise in the calculated spectra. It is also not suitable for
steady state calculations in which the radiative equilibrium
condition is required throughout the medium, as in the case
of a cooling neutron star atmosphere.
2. Grid-based Methods.—Grid-based methods facilitate

the construction of atmosphere models in steady state in
which the radiative equilibrium condition is imposed. Such
methods are not constrained by small number statistics and
can resolve sharp features given a carefully chosen grid. In
the presence of vacuum polarization and cyclotron resonan-
ces, the choice of grid is crucial in capturing the effects dis-
cussed in x 3. A typical resonance in the off-diagonal terms
of the scattering matrix is illustrated in Figure 3, along with
three different choices of grid that have been recently
employed.

Ho & Lai (2002) used a scheme, the equal-grid method, in
which for every energy grid point, the vacuum resonant den-
sity corresponds to a depth grid point (Fig. 3a). This choice
ensures a uniform sampling of all resonant features and thus
the smoothness of the resulting spectra. However, because
the vacuum features are very narrow, such a choice always
overestimates significantly the total optical depth across the
resonance as is evident in the figure. Indeed, even though
the calculated spectra are smooth, they have artificial
‘‘ absorption-like ’’ features that are reduced as the number
of grid points increases (see Ho & Lai 2002, Fig. 9). Note,
however, that even at the highest number of grid points used
by Ho & Lai (2002), the artificial features are still present in
the spectra that have not approached the true solution. It is
likely that this effect is also responsible for the discrepancy
at low energies between the ‘‘ no-conversion ’’ and ‘‘mode-
conversion ’’ solutions presented in Figures 11 and 12 of Ho
& Lai (2002). When the alternate definition of modes is

used, as in the latter calculations of Ho & Lai (2002), the
resulting systematic overestimation of the total optical
depth is reduced but not removed.

Özel (2001) approached this problem by devising a satu-
ration scheme that truncates the sharp resonant features
(Fig. 3b). In this method, a large number of grid points in
column depth are used to ensure that for every energy, at
least one depth grid point samples the saturated value of the
resonant feature. This method underestimates the optical
depth across the resonance, but, for the same number of grid
points, the error introduced is much smaller than the equal
grid method (see Fig. 3). It also converges faster to the true
solution as the number of grid points increases. Note that in
Özel (2001), a saturation value and the corresponding num-
ber of grid points were chosen such that the solutions
reached an asymptotic limit and did not depend on the
particular choices.

Note, however, that the computed optical depth under
the vacuum feature, which determines the accuracy of the
solutions, is not preserved in either method discussed above.
This is in contrast to the new method presented in this
paper, which is shown in Figure 3c.

Finally, the ‘‘ step-function ’’ method involves matching
and exchanging the opacities of the two polarization modes
below and above the resonance without resolving the transi-
tion region. It was first introduced by Zane et al. (2001) in
the case of ultramagnetized neutron star atmospheres and is
also used in Ho & Lai (2002) in their ‘‘ complete mode con-
version ’’ calculations. This approximate method is inaccu-
rate and provides no advantages over the equal-grid
method in resolving the sharp change of the absorption
coefficients near the resonance as it equally misestimates the
total optical depth across the resonance.

Fig. 3.—Schematic representation of three different grid choices for
resolving a vacuum resonance feature: (a) the equal-grid method of Ho &
Lai (2002), (b) the saturation method of Özel (2001), and (c) the Gaussian-
smoothing method presented here. Only the Gaussian-smoothing method
yields the correct optical depth. Note that in real calculations, a larger num-
ber of grid points is used than what is depicted here. [See the electronic edi-
tion of the Journal for a color version of this figure.]
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5. THE EFFECT OF VACUUM POLARIZATION AND
PROTON CYCLOTRON RESONANCES ON

RADIATION SPECTRA

We now discuss the effect of the vacuum polarization and
proton-cyclotron resonances on the spectra of emission
from the surface of a strongly magnetized neutron star.
Computing the spectrum of surface radiation requires the
solution of the two coupled equations that describe the
propagation of the photons through the magnetized
plasma, subject to the condition of radiative equilibrium in
a hydrostatic atmosphere. In the calculations presented
here, we follow the methods described in Özel (2001) with
the addition of the new algorithm for handling resonances
discussed in x 4. Briefly, we use a modified Feautrier method
for the solution of the angle- and polarization-mode
dependent radiative transfer problem and ensure radiative
equilibrium with a temperature correction scheme based on
the Lucy-Unsöld algorithm. The implementations of these
methods are given in Özel (2001).

Figure 4 shows the spectra of surface emission from a
neutron star with B ¼ 1014 1015 G and with an effective
temperature of Te ¼ 0:5 keV. The spectra at all field
strengths are harder than a blackbody at Te ¼ 0:5 keV.
However, the shape of the continuum as well as the narrow
features that appear because of the proton cyclotron
resonance depend strongly on the magnetic field.

The shape of the continuum is determined by both the
vacuum polarization and the proton cyclotron resonances.
As discussed in Özel (2001), the vacuum resonance introdu-
ces a layer of enhanced interactions and brings the thermal-
ization depth of all photons with Ee2 keV closer to the
outermost layers of the atmosphere. The sudden increase in
the opacity at these photon-energy–dependent critical den-
sities leads to broadband absorption-like features in the

spectrum. However, because this resonance has a strong
dependence on photon energy that causes less attenuation
of the flux at higher photon energies, it leads to a hardening
of the spectrum at Ee2 keV for Be1014 G as well as to
increased flux at photon energies Ed1 keV, as discussed in
Özel (2001) and Bulik & Miller (1997). Note that the reso-
nance does not soften the spectrum but indeed is responsible
for the hard tails at E > 2 keV.

The spectra in Figure 4, however, do not all show these
hard tails because the proton cyclotron resonance also
affects the shape of the continuum through its modification
of the ellipticities of the normal modes and its contribution
to the opacities. In particular, it gives rise to a broad
absorption feature that reduces the continuum flux around
the proton cyclotron energy for Befew� 1014 G. For
B � 5� 1014 G, the cyclotron absorption modifies the peak
of the spectrum, leading to a sharper fall-off at E � 2 keV,
while for B � 1015 G, it suppresses the spectral tail in the
5–10 keV energy range.

The narrow features at the proton cyclotron energy, on
the other hand, arise from the enhanced interaction of the
protons with the photons at that energy. These features are
weak in the presence of the vacuum polarization resonance:
the thermalization depth of the photons in nearby energies
are brought closer to the thermalization depth at the cyclo-
tron energy because of the vacuum polarization resonance,
thus reducing the contrast between the flux at these photon
energies. The resulting features have small equivalent
widths at all field strengths considered here: at B ¼ 5� 1014

G, the equivalent width is �80 eV, while at B ¼ 1015 G, the
equivalent width is �0.2 keV. These features are likely to
have even smaller equivalent widths as seen by an observer
at infinity because of the effects of phase averaging and red-
shifts on the observed spectra.

6. CONCLUSIONS

In this paper, we have considered the various effects of
vacuum polarization and proton cyclotron resonances on
the propagation of photons through a strongly magnetized
plasma. Given that the treatment of photon transport by
solving two coupled transfer equations for two normal
modes of propagation assumes large Faraday depolariza-
tion, we have first checked whether this condition is satisfied
at the resonant densities for all photon energies. We have
found that for photon energies Ee1 keV, the assumption is
satisfied, i.e., the modes evolve adiabatically through the
resonance, for all directions of propagation at the magnetic
field strengths considered here. The resonant layer for pho-
tons with smaller energies lies deeper in the atmosphere than
their thermalization depths and thus does not affect their
propagation. Employing a normal mode treatment to calcu-
late the properties of radiation emerging from a magnetized
plasma is therefore justified.

We then constructed radiative equilibrium atmosphere
models of strongly magnetized neutron stars that include
the effects of vacuum polarization and proton cyclotron res-
onances. We have introduced a new numerical method that
resolves accurately the sharp changes of the absorption and
mode-coupling cross sections at the resonant densities. In
particular, this method involves sampling the resonance
region with a very large number of points on an auxiliary
grid and thus allows for an accurate computation of the
total optical depth across the resonances. Using this method

Fig. 4.—Spectra of radiation emerging from a strongly magnetized
neutron star atmosphere of Te ¼ 0:5 keV, when proton cyclotron and
vacuum resonances have been taken into account. [See the electronic edition
of the Journal for a color version of this figure.]
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in addition to those described in Özel (2001) for the solution
of the transfer problem subject to the radiative equilibrium
condition, we have calculated the spectral energy distribu-
tions of a cooling neutron star atmosphere.

We have shown that the resulting spectra are harder at all
magnetic field strengths than a blackbody at the effective
temperature, but the shape of the continuum depends
strongly on the field strength, shaped by the broadband
absorption due to both resonances. In particular, the sup-
pression of the flux due to the proton cyclotron resonance
dramatically reduces the hard tails at E > 3 keV that arise
from the vacuum resonance at B ¼ 1015 G. In contrast, it
only modifies the peak of the spectrum at B ¼ 5� 1014 G
and, together with the vacuum resonance, gives rise to a
hard tail of photon index � � 2 3 in the 2–6 keV range.
Note that hard tails have been observed in this energy range
in a number of sources that are currently the best candidates
for being ultramagnetized neutron stars, such as the anoma-
lous X-ray pulsars and soft gamma-ray repeaters. However,
a conclusive statement can bemade by comparing the obser-
vations of these sources to spectral models that take into
account the effects of the gravitational redshift and phase-
averaging.

Finally, we have shown that the narrow absorption fea-
tures introduced by the proton cyclotron resonance have

small equivalent widths. The vacuum polarization reso-
nance significantly suppresses the strengths of these lines by
bringing the thermalization depth of photons that have
energies in the vicinity of the cyclotron energy farther out in
the atmosphere and thus closer to that of the photons at the
cyclotron energy. These small equivalent widths may help
explain the lack of narrow absorption features in the obser-
vations of anomalous X-ray pulsars and soft gamma-ray
repeaters (Juett et al. 2001; Patel et al. 2001). However, for a
direct comparison with observations, the effects of general
relativity, rotation, and the geometry of the system need to
be taken into account as they all alter the widths and shapes
of the observed line profiles. Deeper observations of these
sources, especially with instruments that have higher sensi-
tivity at Ee5 keV range, may help reveal some of these fea-
tures and thus the nature of these intriguing objects.

I thank John Bahcall for his valuable input and discus-
sions on the physics of mode evolution across resonances. I
also thank Dimitrios Psaltis for many discussions on the
treatment of resonances in radiative transfer problems and
Ramesh Narayan for useful suggestions. This work was
supported in part by a fellowship of the Keck Foundation
and an NSF grant PHY-0070928.

APPENDIX

ON THE ADIABATIC MODE EVOLUTION AND MODE CONVERSION NEAR THE
VACUUM POLARIZATION RESONANCE

In a recent paper, Lai & Ho (2002) discussed the physics of vacuum polarization resonance and pointed out the effects of
adiabatic evolution and enhanced polarization-mode conversion that take place through the resonant density (see the
references in x 1). They argued that this effect was not treated in previous studies and evaluated the conditions under which the
large Faraday depolarization assumption and hence the adiabatic evolution of modes breaks down. In a subsequent work, Ho
& Lai (2002) further claimed that they included for the first time the effect of this new phenomenon on the spectra of a
magnetized neutron star atmosphere in radiative equilibrium.

In this appendix, we clarify the effects of vacuum polarization resonance on the normal-mode description of photon trans-
port in magnetized media. We argue that the effects discussed by Lai &Ho (2002) have been taken into account in the previous
calculations of photon transport through a plasma (Bulik &Miller 1997; Zane et al. 2001; Özel 2001). In particular, as long as
a normal-mode treatment is employed, the physics included in the calculations is the same, independent of the nomenclature
with which one describes modes above and below the resonant density. Below, we address some of the points in their
discussion.

First, adiabatic evolution is not an additional effect that needs to be included in calculations of radiative transport; it is by
definition part of the calculations. In fact, as we discussed in x 2, solving the transfer equation in the two normal modes
requires that the modes evolve adiabatically. The nomenclature of modes may change across the resonant density, but this
does not affect the transfer equations that are written for the normal modes of propagation and not for polarization eigenstates
(the so-called extraordinary and ordinary modes) as we discussed above. For the same reasons, it is, in fact, impossible to
‘‘ include ’’ or to ‘‘ neglect ’’ mode conversion because neglecting the adiabatic mode evolution does not describe any physical
situation. The difference in the results between these two cases most likely arises from the different numerical treatments the
authors employ in each case, both of which are highly inaccurate, as discussed in x 4.

Second, equations (2.27) and (2.43) of Ho & Lai (2002), which describe the two different definitions of normal modes, yield
mathematically identical results. Both of these equations describe a change in the polarization eigenstate of the photon across
the resonance and give rise to the same energy and polarization distribution of photons emerging from the atmosphere.

Ho & Lai (2002, x 2.4) also claim that in the limit of nonadibaticity, the radiative transfer formalism breaks down and
cannot describe the evolution of photons. In that case, one simply needs to solve all four equations (3) in x 2 rather than the
two equations for the diagonal terms of Rij. We emphasize that this case is not relevant for the problem discussed here but, in
general, can be easily addressed by keeping the equations for the off-diagonal terms.
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