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ABSTRACT

When a gravitational lens produces two or more images of a quasar’s radio jet the images can be compared
to reveal the presence of small structures along one or more of the lines of sight. If mass is distributed
smoothly on scales ofd107M�, independent bends in the jet images on milliarcsecond scales will not be pro-
duced. All three of the well-collimated multiply imaged radio jets that have been mapped on milliarcsecond
scales show some evidence of independent bends in their images. Using existing data, we model the lens sys-
tem B1152+199 and show that it likely contains a substructure of mass�105–107 h�1M� or a velocity disper-
sion of �10 km s�1. An alternative explanation is that an intrinsic bend in the jet is undetected in one image
and magnified in the other. This explanation is disfavored, and future observations could remove any ambi-
guity that remains. The probability of a radio jet being bent by small-scale structure both inside and outside
of the host lens is then investigated. The known populations of dwarf galaxies and globular clusters are far
too small to make this probability acceptable. A previously unknown population of massive dark objects is
needed. The standard cold dark matter model might be able to account for the observations if small mass
halos are sufficiently compact. In other cosmological models where small-scale structure is suppressed, such
as standard warm dark matter, the observed bent jets would be very unlikely to occur.

Subject headings: galaxies: jets — gravitational lensing — radio continuum: galaxies

1. INTRODUCTION

The standard � cold dark matter (CDM) cosmological
model has been very successful in accounting for observa-
tions on scales larger than around a megaparsec. However,
it appears that this model faces difficulties on the scales of
galaxies and dwarf galaxies (van den Bosch et al. 2000). One
such problem is that CDM simulations of the Local Group
of galaxies predict an order of magnitude more dwarf gal-
axy halos with masses greater than �107 M� than there are
observed satellites of the Milky Way (MW) and M31
(Moore et al. 1999; Klypin et al. 1999; Mateo 1998). These
simulations predict that 10%–15% of the virial mass of a gal-
axy halo is in substructures of masse107M�.

This overprediction of dwarf halos could be a sign that
there is something fundamentally wrong with the CDM
model. Proposed explanations include warm dark matter
(WDM), which smooths out small-scale structure in the
early universe (see, e.g., Bode, Ostriker, & Turok 2001),
unorthodox inflation models that break scale invariance
(Kamionkowski & Liddle 2000), and self-interacting dark
matter that causes substructures to evaporate within larger
halos (Spergel & Steinhardt 2000). Alternatively, CDM
could be correct and the small dark matter (DM) clumps
could exist but not contain stars, so as to escape detection as
observable dwarf galaxies. This situation can easily, perhaps
inevitably, come about through the action of feedback proc-
esses (radiation and supernova winds) from the first genera-
tion of stars in the universe (see, e.g., Bullock, Kravtsov, &
Weinberg 2000; Somerville 2002). For example, photoioni-
zation can prevent gas from cooling and thus inhibit star
formation in halos that are too small to be self-shielding.
Several authors (e.g., Metcalf 2002) have argued that the
overabundance of DM clumps is likely to extend down to
smaller masses and larger fractions of the halo mass than
have thus far been accessible to numerical simulations.

These nearly pure dark matter structures have largely been
considered undetectable.

Gravitational microlensing by stars has been observed in
the four-image system Q2237+0305 through the long-term
variations of the optical flux ratios (Irwin et al. 1989; Witt,
Mao, & Schechter 1995; Woźniak et al. 2000 and references
therein). Mao & Schneider (1998) first proposed larger scale
substructure as an explanation for the magnification ratios
of the four-image quasar lenses B1422+231, which do not
agree with any simple lens model. The modeling of
B1422+231 has since been improved in Bradač et al. (2002)
and Keeton (2002). It still appears that a substructure with a
mass of 104–107 h�1 M� near image A is required to explain
the difference between the radio and optical flux ratios in
this system. Metcalf & Madau (2001) showed that if CDM
substructure exists, it could be detected through the magni-
fication ratios of four-image quasar lenses. Concurrently,
Chiba (2002) modeled three four-image lenses and showed
that a significant amount of substructure was necessary to
make their magnification ratios agree with simple smooth
lens models. These ideas have been further investigated in
Metcalf & Zhao (2002) and Dalal & Kochanek (2002).
These studies all rely on the influence of substructure on
magnification ratios. This is a promising approach, but it is
strongly model dependent and susceptible to misinterpreta-
tion because of microlensing by ordinary stars in the lens
galaxy.

It was also predicted in Metcalf & Madau (2001) that
CDM substructure should occasionally distort multiply
imaged radio jets on milliarcsecond scales. This distortion
would not be reproduced in all the images, so it can be dis-
tinguished from structure in the jet itself. This effect had also
been suggested by Wambsganss & Paczynski (1992) as a
method for detecting a large abundance of me106 M�
primordial black holes. Previous to this Blandford &
Jaroszynski (1981) had considered the distortion of single
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imaged radio jets as a probe of galaxies under the assump-
tion that they are intrinsically straight. As will be
demonstrated, the method considered here has the impor-
tant advantages over magnification ratio methods of
avoiding any confusion with microlensing and avoiding any
strong dependence on the lens model.

In x 2 the observations of mapped multiply imaged radio
jets are summarized. In x 3 general considerations related to
modeling multiply imaged radio jets are discussed, and spe-
cific models for one particular case are presented. The inter-
pretation of these results in terms of the level of small-scale
structure in the universe is addressed in x 4. General discus-
sion and conclusions are in x 5.

In this paper the Hubble parameter isH0 ¼ 65 h65 km s�1

Mpc�1.1 For quantities that do not have a simple depend-
ence onH0, a value h65 ¼ 1 is used. The present average den-
sity of matter in the universe in units of the critical density is
�m, and the cosmological constant in the same units is ��.
The ‘‘ concordance ’’ cosmological model (�m ¼ 0:3,
�� ¼ 0:7) will be assumed throughout.

2. OBSERVATIONS OF MULTIPLY
IMAGED RADIO JETS

Several lensed QSO radio jets have been imaged on milli-
arcsecond scales with the Very Long Baseline Array
(VLBA) and other Very Long Baseline Interferometer
(VLBI) configurations (Garrett et al. 1994; King et al. 1997;
Koopmans et al. 1999; Rusin et al. 2001; Xanthopoulos et
al. 2000; Ros et al. 2000; Kemball, Patnaik, & Porcas 2001;
Marlow et al. 2001; Rusin et al. 2002). In only three of these
cases is the jet collimated enough and the resolution high
enough that a bend or kink could in principle be detected.

The two-image gravitational lens B1152+199 was discov-
ered in the CLASS radio survey, and follow-up observa-
tions were done on the Keck II Telescope (Myers et al.
1999). The images are separated by 1>56, and the redshifts
of the source and lens are zs ¼ 1:019 and zl ¼ 0:439, respec-
tively. Subsequently, Rusin et al. (2002) observed
B1152+199 using the Hubble Space Telescope (HST), the
Multi-Element Radio-Linked Interferometer Network
(MERLIN), and VLBA. In the HST observations a faint,
indistinct lens galaxy can be seen along with a fainter object
that is interpreted as a dwarf galaxy companion. With VLBI
they were able to map the two images of the radio jet on
milliarcsecond scales. They discovered that in image A the
jet appears straight, while in image B it is bent. No formal
constraint on the significance of this bend is given in Rusin
et al. (2002), and further observations may be required to
make the detection certain. For the purposes of this paper,
we will take the observations at face value and assume that
the bend is not an instrumental effect. In x 3.2 lensing
explanations for this bend are investigated. The bend is
clearly not aligned with the direction to either image A or
the lens galaxy. Superluminal motion is a possible explana-
tion only if the jet’s shape can change on a timescale that is
smaller than the time delay between images. Rusin et al.
(2002) fit a variety of smooth models to the macroscopic
lens and get time delays of 41.1–70.6 h�1

65 days, which makes

this an unlikely explanation. They do not attempt to explain
the bend with their lens models.

The four-image lens MG J0414+0534 was observed with
global VLBI by Ros et al. (2000). The jet consists of a two-
component core and two radio lobes on either side. In
images A2 and B all the radio components are nearly collin-
ear, while in image A1 they are drastically misaligned. Only
two components are detected in image C so in this case the
alignment cannot be determined. The distortion of image
A1 could be caused by a substructure near the image, or it
might be due to the magnification of a small misalignment
in the other images (see x 3.2.1). The situation will be clari-
fied with further modeling of this particular source.

The double quasar Q0957+561 was the first gravitational
lens discovered (Walsh, Carswell, & Weymann 1979) and
has been studied extensively in the past two decades. The
VLBI maps of the radio jets appear to show a kink in image
A that is not reproduced in image B (near D� ¼ 20 mas,
D� ¼ 10 mas with respect to the core; Garrett et al. 1994;
Barkana et al. 1999). Although in this case the bend is much
less certain than in B1152+199 or MG J0414+0534—and
we will not try to reproduce it with a lens model here—it
does suggest that milliarcsecond kinks and bends are com-
mon. This has very important consequences in relation to
the discussion in x 4 because it implies that the bend in
B1152+199 is not just a rare coincidental alignment of the
image and a known type of substructure.

3. MODELING THE JET

3.1. Formalism

The radio jet will be treated as a one-dimensional curve
on the sky described by hsource sð Þ in the absence of lensing.
An image of the jet is described by hsource sð Þ. The curve of
the source jet is related to the curve of its image through the
lensing equation

yðsÞ ¼ xðsÞ �

D

 xðsÞ½ � ; ð1Þ

yðsÞ � Dlhsource sð Þ
�0

; x sð Þ � Dlhsource sð Þ
�0

; ð2Þ

where �0 is an arbitrary scaling length and s is the arc length
along the jet in the image plane measured in the same units
as x. The angular size distances to the lens, source, and from
the lens to the source will be denotedDl,Ds, andDls, respec-
tively. The lensing potential is related to the lens surface
density�(x) through the Poisson equationr2 ðxÞ ¼ 2�ðxÞ,
where � � �ðxÞ=�c. The critical surface density is defined
as�c ¼ ð4�GDlDls=c2DsÞ�1.

The tangent and normal vectors of the jet are given by

tðsÞ � @x

@s
; nðsÞ � @2x

@s2
: ð3Þ

The magnitudes of these vectors are tðsÞ ¼ 1 and
nðsÞ ¼ 1=RðsÞ, where R(s) is the radius of curvature. For
convenience, we define the matrices

Aij � �ij �
@2 

@xi@xj
; Mijk � � @3 

@xi@xj@xk
: ð4Þ

Now we can find the curvature and normal vectors to the
1 On a couple of occasions when quoting other peoples work the conven-

tionH0 ¼ 100 h km s�1Mpc�1 is used.
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source jet by taking derivatives of the lens equation

TðsÞ � @y

@s0
¼ @s

@s0
@y

@s
¼ u

juj ; ð5Þ

NðsÞ � @2y

@s02
¼ @s

@s0

� �2@2y

@s2
þ @2s

@s02
@y

@s
¼ 1

juj2
v� uðv x uÞ

juj2

" #
;

ð6Þ

ui �
X
j

Aijtj; vi �
X
j

Aijnj þ
X
jk

Mijktjtk ; ð7Þ

where s0 is the arc length on the source plane. The vectors
T(s) and N(s) must be the same for all images of the jet so
they can be used as constraints on the lens model. Along
with the position coordinates on the source plane this makes
four constraints per point on the jet [T(s) and N(s) must be
perpendicular and jTðsÞj ¼ 1].

Let us estimate the relative size of the terms in equatiion
(6). For any spherically symmetric lens, the Einstein ring
radius �E is the solution to

�2E ¼ Mð�EÞ
��c

; ð8Þ

where Mð�EÞ is the mass within a projected distance of �E.
Images that are significantly magnified form near the Ein-
stein radius for a spherical lens or, more generally, near crit-
ical curves (the curve x where det½AðxÞ� ¼ 0). The
magnitude of the deflection angle near �E is �ðxÞ � �E=�0
so if an image is formed both near the Einstein radius of a
host halo and near the Einstein radius of a subclump, their
contributions to the deflection will differ by a factor of
��clump

E =�hostE � ð�clump=�hostÞ2. The matrices (eq. [4])
involve further derivatives of the lensing potential so that at
the same point the two contributions to Aij(x) will be
roughly equivalent, while the contribution to Mijk from the
subclump will be larger than the host’s by a factor of
��hostE =�clump

E � ð�host=�clumpÞ2 � Mhost=msub. For dwarf
galaxy–sized substructures, this is �100–10,000. From
equation (6) we see that to generate a curvature radius of
order of the jet size �s, �sMijk=ð�0jujÞ needs to be e1.
Roughly speaking, only objects with Einstein radii of order
of the source size can create a noticeable bend.

As a working definition we will say that substructure is
present in the lens when the bending matrix M in equation
(6) is important. The effect of a smooth lens on the shape of
a small source can then be describe by the magnification
matrix A alone. This definition will clearly be dependent on
the size of the source and the resolution of the observations.

If we believe that a significant gravitational bending of a
jet is rare enough that it is unlikely to happen to both of a
pair of images (at least at the same point on the jet), then the
equations can be significantly simplified. The image without
substructure will be labeled image 2. By expanding the lens-
ing equation (1) around a point on image 1 and the corre-
sponding point on image 2 and equating the position on the
source plane, we can arrive at an equation analogous to
equation (6) but relating the curvature of one jet image to
the curvature of the other:

nð2Þ ¼ 1

j~uuj2
~vv�

~uuð~vv x ~uuÞ
j~uuj2

" #
: ð9Þ

The tildes signify the quantities in equation (7) only with the
matrices ~AA ¼ A�1

ð2ÞAð1Þ and ~MM ¼ A�1
ð2ÞMð1Þ substituted.

We can see from equation (9) that in the absence of sub-
structure a jet that is straight in one of its images will also be
straight in its other images. However, the intrinsic curvature
of the jet can be magnified or demagnified without substruc-
ture. In some cases the curvature could be observed in one
image but be too small in another image to be detected,
resulting in the erroneous conclusion that substructure must
be present. For this reason, it is important to quantify by
how much the curvature can be changed without substruc-
ture. In this case ~MM ¼ 0, and from equation (9) we can find
the curvature magnification factor:

C � jnð2Þj
jnð1Þj

¼ 1

j~uuj2
j~vv�j2 � ð~vv� x ~uuÞ2

j~uuj2

" #1=2
; ð10Þ

where ~vv� is ~vv with n(1) replaced with the unit vector ~nn 1ð Þ. This
quantity can be calculated with a smooth lens model fitted
to the image positions and the tangent vectors to the jet
images.

It is useful to have concrete models for the lenses. For a
spherically symmetric lens with a power-law mass profile
[MðrÞ / rn], or at least a power law near the location of the
image, the matrices (eq. [4]) can be calculated directly:

�ð~xxÞ ¼ �E
�0

~xx

~xx2�n
; ð11Þ

Aij ¼ �ij �
1

~xx2�n
�ij � ð2� nÞ

~xxi~xx j

~xx2

� �
; ð12Þ

Mijk ¼ �0
�E

� �
ð2� nÞ
~xx3�n

�ij~xxk þ �ik~xxj þ �jk~xxi

~xx
� ð4� nÞ

~xxi~xxj~xxk

~xx3

� �
;

ð13Þ

where ~xx � ðx� x0Þ�0=�E is the image position relative to
the center of the lens. Also useful is the convergence or
dimensionless surface density at the Einstein radius in these
power-law models: �ð�EÞ ¼ n=2. For a singular isothermal
sphere (SIS) lens, n ¼ 1 and

�E ¼ 4�
�

c

� �2DlDls

Ds
; �ðrÞ ¼ �2

2�Gr2
: ð14Þ

For a point mass, n ¼ 0 and �E ¼ m=ð��cÞ½ �1=2.
As an example, Figure 1 shows the curvature magnifica-

tion factor C for an SIS lens with no substructure. This
quantity depends on both the position of the source and the
tangent vector to one of the images (in this case the outer
image is chosen). The factor is generally larger for jets that
are radial (in which case the outer image is more bent) or
tangential (where the opposite is true). Cases with C much
different from 1 tend to have smaller magnification factors
in the sense that the outer image is much brighter. Because
of this, there will be a bias toward cases in which C is near 1.
To fit real lens system, a more complicated, asymmetric lens
model must be used and C must be calculated for each pair
of images separately. This quantity can be evaluated at the
center of a jet image or at a kink in a jet image to determine
if the bend is consistent with an intrinsic feature in the jet
itself or requires substructure as an explanation.
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3.2. Modeling of B1152+199

Two explanations for the apparent bend in image B of
B1152+199 will be explored. One is that image A actually
has a small undetected curvature that is magnified in image
B where it is detected. The second explanation is that image
A is straight and image B is bent by the influence of a sub-
structure near it. Investigating both of these hypotheses
requires fitting a host lens model to the positions of the
images and the center of the lens. Since there are only two
images in this case, a complicated host lens model is not well
constrained by the positions alone. Rusin et al. (2002) fitted
to each VLBI image a point source for the core and a Gaus-
sian for the jet; these positions are used as constraints. We
choose to use a simple SIS model with a background
shear—�1ðxÞ ¼ �½x1 cosð2	�Þ þ x2 sinð2	�Þ�,
�2ðxÞ ¼ �½x1 sinð2	�Þ � x2 cosð2	�Þ�. The shear breaks the
azimuthal symmetry of the host lens, which is necessary for
it to fit the observed lens position. No attempt is made to
incorporate the possible dwarf companion of the lens galaxy
that appears as a very faint smudge in the HST image. We
do not expect that this object is large enough to significantly
change the surface potential except in its near vicinity, and
the images are well separated from it. In addition, the qual-
ity of the fit discussed in x 3.2.1 gives us confidence that the
model accurately reproduces the local magnification matrix
at the positions of the images, which is the only thing needed
here. With the reported redshifts the critical density for this
lens is�c ¼ 2:65� 109 h65M� kpc�2.

3.2.1. No Substructure

A smooth model is fitted to the positions of the lens gal-
axy, the radio cores of the images, and the center of the jet
images. A model is found that fits all the positions to better
than 0.1 mas. In addition, the magnification ratio of the
radio core agrees with the observed one to better than 10%
despite this not being used as a constraint on the model.
This signifies that the local magnification matrix ~AA is being

accurately reproduced by the model. The velocity dispersion
of the lens is �host ¼ 247 km s�1, and the background shear
is � ¼ 0:102. This velocity dispersion is not unusual for a
lens galaxy. The estimated circular velocity is
Vcirc ¼

ffiffiffi
2

p
�host. The magnifications at the positions of the

radio cores are lA ¼ 3:8 and lB ¼ �1:5—a negative magni-
fication indicates a one-dimensional parity flip in the image.
This model gives a curvature magnification factor of
C ¼ 4:9 at the center of the jet with image B being the more
curved of the two images as observed. If the jet in image A
has a curvature of 1=C times the curvature in image B and it
is in the right direction, then the observations can be
explained without substructure. Figure 2 shows some
attempts to model the jet in this way. From visual inspection
it appears that the jet in image A is not bent enough to
explain the bend in image B. The curve should follow the
crest of the jet’s surface brightness, but a jet that is bent
enough requires the end of the jet to be shifted by�3–4 mas
from the crest of the straight jet. The positional uncertainty
is dominated by beam smearing, so it is ��beam= 4SNRð Þ1=2,
where SNR is the signal-to-noise ratio, making the uncer-
tainty in the position of the crest of the jet in the vertical
direction (declination) �0.5 mas. Such a big bend would be
easily detected.

Another way of evaluating this is to realize that

C ’
	Ajet
	Bjet

 !2
�B

�A
; ð15Þ

where hjet is the length of the jet image and � is the maximum
deviation of the crest from a straight line. Judging from
Rusin et al. (2002), 	Bjet ’ 10 mas, 	Ajet ’ 22:0 mas, and
�B ’ 2 mas, giving �A ’ 2 mas with the derived curvature
magnification factor. This is around 4 times the positional
uncertainty, as estimated above, along the full length of the
jet. A more conclusive determination will probably require
improved observations.

3.2.2. Substructure

The substructure is modeled by adding either SIS or point
masses to the smooth model described above. Several differ-
ent methods for fitting the jet shape were tried. An essential
difficulty is that besides the core there are no clear localized
features along the jet that can be identified in both images.
The positions of these features along with the tangent and
curvature at such points could have been used as constraints
were they present. Another difficulty arises from the large
number of local minima in any 
2 function that was tried—
there are different ways of bending a straight image by either
‘‘ pushing ’’ or ‘‘ pulling ’’ at different points.

It was found that the best and most unambiguous results
were obtained by first fixing the smooth, or host, lens model
to the one discussed in x 3.2.1. A straight line representing
the jet in image A is then mapped to image B using the
model. The substructures are added near image B by trial
and error assisted by minimizing a 
2 based on the positions
of the core and jet center until a curve in image B is obtained
that best reproduces the qualitative features of the VLBI
map. This method does not use the observed magnification
ratio of the cores as a constraint so any possible contamina-
tion from microlensing by stars is entirely avoided. Figure 3
shows the results of this fitting. The resulting lens model is
not unique in any quantitative sense, but there are clear

Fig. 1.—Curvature magnification factor (10; solid contours) for a singu-
lar isothermal sphere as a function of the radial position of the source in
Einstein ring radii and the tangent vector to the outer jet image. The source
position y is the magnitude of the vector defined in eq. (1). The tangent
angle is defined so that zero is a radial jet and �=2 is tangentially oriented.
For C > 1, the inner image is more curved, and for C < 1, the opposite is
true. For y�0 > �E, there is only one image. The dotted contours show ab-
solute value of the magnification ratio of the inner image to the outer
image.
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things that can be learned from this fitting process about the
kind of substructure that is capable of producing the bend.

When a point mass is used as a substructure the shape of
image B is comparatively easy to reproduce. A point mass
can be considered an approximation to any substructure
that is very compact relative to its own Einstein radius such

as a tidally truncated dark matter halo. Such a substructure
can cause a strong deflection near its center while having a
limited range of influence. This enables the point mass sub-
structure in Figure 3 to displace the lower end of the jet
while leaving the position of the core end of the jet relatively
unchanged. Note that the substructure has the effect of

Fig. 3.—Diagrams showing the reconstruction of image B from a line segment representing image A using the two lens models discussed in the text. The
position of the point mass substructure is marked by the triangle, and the positions of the SIS substructures are marked by squares. The jets corresponding to
each substructure model are marked with arrows. The dotted curve in the right-hand panel is the image without any substructure. In the background are the
Rusin et al. (2002) VLBImaps.

Fig. 2.—Models for the jet shape with no substructure. Using the best-fit smoothmodel, the arc in image A is mapped onto the B image. The radio core is at
the origin in both cases, and the jet center is marked. The three arcs have curvatures of jnAj ¼ 0, 0.029, and 0.043 mas�1 in image A and are designed to pass
through both the core and the jet center. The model curves are overlaid on the Rusin et al. (2002) VLBI map. The lowest contour is 3 times the rms noise, and
each contour is increased by a factor of 2. The beam is 3:6� 1:9 with the larger axes being in the vertical x2 direction.
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attracting the image rather than repelling it, as would nor-
mally be the case. This attraction happens in only one
dimension and is a result of one of the eigenvalues of the
magnification matrix derived from the host lens being nega-
tive (image B is reflected in one dimension with respect to
image A). The mass is most naturally calculated in units of
the mass of the host lens within its Einstein radius, which in
this case is ME ¼ ð�=cÞ4G�1�cðzs; zlÞ�1 ¼ 1:6� 1011

h�1
65 ð�=247 km s�1Þ4 M�. The favored model has a substruc-

ture mass of m ¼ 2:5� 10�5ME. Other model parameters
are summarized in Table 1. A point mass with mass much
more than 10�4ME tends to displace the lens without creat-
ing a bend, and a mass ofd10�6ME cannot produce a bend
on a large enough angular scale.

When an SIS model is used for the substructure it is diffi-
cult to reproduce the jet shape. The tendency is that when
the SIS is massive enough to displace the lower end of the jet
sufficiently it also displaces the core end of the jet so that a
significant bend is not created—i.e., the SIS model is not
compact enough. We partially get around this problem by
using two SIS substructures in Figure 3 and Table 1, but
even this does not produce very satisfactory results, and
considering the discussions in x 4, this seems an improbable
explanation. It is possible that if the host lens model were
allowed to vary along with the sublens model, an explana-
tion could be found that requires only one SIS substructure.
However, including the host lens in the fitting process
greatly increases the number of local minima in 
2, and after
significant experimentation we have been unable to find a
model that is a qualitative improvement on the one in Fig-
ure 3 using a single SIS substructure. The two-SIS model
requires a precarious balance between the effects of two rela-
tively massive substructures. A small change in the positions
or masses causes the jet to be rather drastically distorted.
We conclude that substructures as diffuse as SISs are an
unlikely explanation for the observations.

By modeling the lens, general conclusions can be made,
but the specific form of the substructure is not tightly con-
strained. This modeling demonstrates that the bend in
Q0957+561 can be reproduced by a sufficiently compact
substructure. If the host lens model were changed to some-
thing other than an SIS+shear model, substructure would
still be needed if the jet is truly straight in image A and
curved in image B. The newmodel would also need to repro-
duce the positions of the center of the jet relative to the core
and the magnification ratio of the cores. Because of this the
magnification, matrix ~AA could not be drastically different.
The size, position, and structure of the subclumps needed
may change somewhat with the host model, but the general
conclusions would still be the same.

4. IMPLICATIONS FOR DARK MATTER
AND COSMOLOGY

The structures responsible for the bend in image B of
B1152+199 and the possible kink in image A of Q0957+561
are not terribly unusual in their mass or size. There are
dwarf galaxies and globular clusters orbiting our galaxy that
would fit the description. The importance lies in the likeli-
hood of such a structure being close enough to the image to
cause observable bending.

4.1. Estimated Substructure Densities

To estimate the probability of a jet like the one in
B1152+199 having an observable bend, we will consider the
bending effect of a single clump acting by itself. The host
lens probably enhances the effect of the clump to a small
degree. This will not change the results of this section by a
large amount and so this extra complication will be
neglected.

If we consider a straight line in the source plane that
passes by a spherically symmetric lens centered at x0 with an
impact parameter of b, the lensing equation (1) can be
reduced to

b ¼ r� �rðrÞ½ � cos 	; r > 0 ; ð16Þ

where r � jx� x0j, h is the corresponding axial coordinate,
and �r(r) is the radial deflection, which is less than 0. The
positive sign is used for ��=2 < 	 < �=2—the primary
image—and the negative sign otherwise—the secondary
image. We are concerned here only with the primary image;
secondary images appear to form rarely in compound lens-
ing with the mass scales considered here (Metcalf & Madau
2001), and they will generally be demagnified.

The curvature of the image can be calculated by taking
derivatives of the curve (eq. [16]). At the point 	 ¼ 0 the cur-
vature is nð	 ¼ 0Þ ¼ 1=r2ð Þ d2r=d	2ð Þ � r½ �x̂x. For our two
models for the subclump, this is

nð	 ¼ 0Þ ¼ �1
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where xb � b=	E. For the point mass, 	E ¼ m=ð�D2
l�cÞ

� 	1=2
,

and for the SIS, 	E ¼ �Eð�Þ=Dl .

TABLE 1

Substructure Model Parameters

Model m/ME

�

(km s�1)

x1

(mas)

x2

(mas) � lcore

Point mass ....... 2.5 � 10�5 . . . �7.0 �11.0 0.86 �1.19

SIS ................... . . . 9.6 �5.0 �1.0 1.05 �1.07

. . . 21.0 �7.0 �14.0 1.05 �1.07

Note.—The positions x1 and x2 are the center of the substructure with respect to
the core in image B. The surface density � and the magnification lcore are evaluated at
the core in image B.
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A clump will not make an observable bend in a jet of
length hjet if the Einstein ring radius is either too big or too
small. From equation (17) we see that the maximum curva-
ture a clump can produce is hE(z)

�1. When hE(z) is larger
than the length of the jet the deviation from a straight line is
at most �	2jet=8	E. This must be larger than the smallest
measurable scale, hres, which is set by either the resolution of
the observations or the width of the jet. Applying this crite-
rion to the curvature as a function of b, equation (17) gives
an upper limit on the impact parameter. A small clump will
influence a region of the jet of size �hE. If the smallest scale
hres is of order the circumference of the Einstein ring, then
its bending effects will be on too small a scale to be observed.
These constraints are summarized as

	res
2�

d	Ed
	2jet
8	res

; jnðxbÞje
8	res

	2jet
: ð18Þ

The first of these inequalities can be used to find the range of
velocity dispersions or masses that could be responsible an
observable bending of the jet in B1152+199:

6 km s�1d�d13 km s�1 ; ð19Þ

7:1� 104 h�1
65 M�dmd2:7� 107 h�1

65 M� ; ð20Þ

where the values 	jet ¼ 15 mas and 	res ¼ 3 mas have been
used. This range is consistent with the � derived in x 3.2. The
true ranges are probably a bit larger because of the influence
of the host lens, which will increase the sensitivity to smaller
mass objects. The second of the inequalities (eq. [18]) puts
an upper limit on the impact parameter b as a function of �
or m through equation (17). By plugging in the smallest
allowed clump we can find the largest possible impact
parameter—bd1:6 mas ¼ 10 h�1

65 pc for the SIS and
6:9 mas ¼ 28 h�1

65 pc for the point mass. The clump needs to
be quite well aligned with the image.

The probability of a subclump bending the jet will be
taken to be p / 	jetdb within the allowed range of b. The
probability or expected number of important clumps per jet
is

p ’ 2	jet
c
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whereN is the three-dimensional number density of clumps
and EðzÞ ¼ ½�mð1þ zÞ3 þ �Rð1þ zÞ2 þ ���1=2, �R ¼ 1�
�m � ��. In the case of SIS lenses m can be replaced with �
and bmaxð�; zÞ can be found explicitly. For the point mass
case, bmax(m) must be found numerically.

To get a simple estimate of the number density of clumps
required, we can take them to all lie within the host lens and
give them all the same velocity dispersion. In this case equa-
tion (21) reduces to

p ’ 2	2jetD
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where �(�) is the two-dimensional number density of
clumps. The range of allowed � given in equation (19) gives
a range �ð�Þ=p ’ 32 111 h265 kpc

�2. This is the number den-
sity of substructures required to make the bending com-

monplace. The same exercise with point masses in the range
m ¼ 105 107 M� gives a range of �ð�Þ=p ’ 130 260 h265
kpc�2 or � ¼ 1:3� 107 2:6� 109 M� kpc�2, where the
higher mass density is for larger mass clumps. In units of the
critical density this is � ¼ 0:005 0:99. This value is any-
where from a few percent to more than all of the surface
density of the host lens. The lensing effect of the host lens
may reduce these estimates by a factor of roughly jlj�1=2—
an estimate of the eigenvalues of the magnification matrix—
which is 0.3–0.9 for the model found in x 3.2.

Instead of fixing the mass of the substructure, we can
guess at a realistic mass function. One expects that the num-
ber density of small mass clumps will be proportional to the
density of all matter � averaged over a larger scale than the
clumps being considered—constant Lagrangian number
density. CDM simulations and analytic estimates predict a
power-law mass function for the low-mass range important
here,

1

�

dN

dm
¼ 1

M0m0

m

m0

� ��
; ð23Þ

where m0 and M0 are normalization constants. Fitting the
mass function from �CDM N-body simulations to the
observed velocity distribution in the range Vcirc ¼ 20 400
km s�1 gives the relation � ’ 100 km s�1 (m=3:0� 1011

M�)
1 /3. For SIS substructures, this relation is used to con-

vert equation (23) into a distribution of velocity dispersions
where it is extrapolated below Vcirc ¼ 20 km s�1. In �CDM
simulations the dark matter clumps have � ’ �1:91 and
M0 ¼ 4:8� 1012 h�1 M� for m0 ¼ 3:0� 1011 M� (Klypin et
al. 1999). The exponent for the � distribution is �� ¼ �3:73
in this case. This distribution fits the observed distribution
of dwarf galaxies near � ¼ 50 100 km s�1 above which the
contribution to equation (21) is small.

Using the full range of masses in equation (19) and keep-
ing all the subclumps at the redshift of the host lens results
in a probability of p ’ 3:2�, where � is the surface density of
the host lens, � ¼ 0:35 and 0.85 for the model in x 3.2. Fig-
ure 4 shows p and the fraction of the halo mass density con-
tained in substructure as a function of a lower mass cutoff in
themass function. The smaller mass clumps contribute most
of the probability but little of the mass density. This mass
fraction is a lower limit in that if the internal structure of the
subclumps is less centrally concentrated, it will require more
mass to reach the same probability. For SIS substructures
that are not tidally truncated, p ¼ 1:9� 10�3�. To increase
this probability by a factor of 10 would require the entire
mass density of the host lens to be composed of SISs in the
range of equation (19). Any tidal truncation will reduce SIS
substructures’ lensing effect.

Objects that are not in the host galaxy but happen to lie
near the line of sight could also cause bending of the jet. To
estimate this contribution, we integrate equation (21) with
the mass function equation (23) assuming that � along the
line of sight is given by the average density of the universe.
For SIS structure, p ¼ 1:3� 10�4, and for point masses with
the same mass function, p ¼ 0:65. This extragalactic popu-
lation is only an important contribution to the probability if
the clumps are very compact, in which case it is comparable
to the contribution from substructures inside the lens.

The CDMmodel does seem capable of accounting for the
bent jets, provided that DM halos are relatively compact. If
the radius is small compared to the Einstein radius of a
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point mass of the same mass [rd	E ¼ 11ðm=106 M�Þ1=2
h
1=2
65 pc], less than�10% of the mass need be in substructure.

However, any less concentrated clumps will require more
total mass. The SISs require muchmore mass. TheNavarro,
Frenk, & White (NFW) profile (Navarro, Frenk, & White
1997), �ðrÞ ¼ �cr

3
s r�1ðrs þ rÞ�2, is believed to be more realis-

tic for pure dark matter halos. If rs is small compared to the
above limit and a large fraction of the mass is within this
radius, then the mass fraction might get down to the levels
shown in Figure 4. The scale length according to the stan-
dard structure formation scenario is rs ¼ 2:17�
103c�1 h

�2=3
65 ðm200=106 M�Þ1=3 pc, where c is the concentra-

tion andm200 is the virial mass. If the concentration is 100 or
larger, then the core is compact enough, but in this case the
mass within rs is less than 10% of m200. In addition, c ’ 100
is a bit high for a straightforward extrapolation of the simu-
lations (Bullock et al. 2001)—no simulation has been done
with a resolution high enough to resolve these mass scales.
To achieve the same probability for bending the jet, it seems
that any realistic CDMmodel will require significantly more
mass—at least before tidal stripping occurs—to be in small-
scale structure than is required in the point mass model used
here.

Also, the survival of substructure in the host lens is a com-
plicated issue. Clumps withme107 M� are not likely to sur-
vive within the inner few kiloparsecs because they lose
orbital energy to dynamical friction and fall into the center
of the galaxy where they are destroyed by tides. This upper
mass cutoff can significantly change the local fraction of
mass in substructures while not affecting the lensing proba-
bility greatly.

4.2. Contribution from Known Structures

There are about 40 known dwarf galaxies in the Local
Group (Mateo 1998; Klypin et al. 1999). Most of these are
within �300 kpc of either the MW or M31. About 28 of
these have circular velocities above 10 km s�1. This gives an
estimated surface number density of �3:5� 10�5 kpc�2 if

they were uniformly distributed in this volume. There are
about 200 globular clusters in the MW with masses of 104–
106 M�, making their number density an order of magni-
tude larger. The concentration of dwarfs and globular clus-
ters toward the center of the galaxy and observational
incompleteness might increase this estimate by a factor of
several, but nowhere near enough to reach the required
number densities derived in the previous section.

Another way of estimating the contribution from dwarf
galaxies is to use the mass function (eq. [23]) converted to
velocity dispersion. For the observed galaxies within 200
h�1 kpc of the MW and M31, �� ¼ �2:35� 0:4 and
m0 ’ Mð< 200Þ=6:32 for �0 ¼ 10 km s�1, where M(<200)
is the total mass within 200 h�1 kpc (Klypin et al. 1999). We
will useMð< 200Þ ¼ 1012 M�. With SIS dwarf galaxies this
velocity distribution gives a probability for bending the jet
of p ¼ 3:9� 10�6� if the dwarfs are in the host lens. Figure
4 shows p as a function of a lower � cutoff, which is con-
verted into mass by � ¼ 100 km s�1ðm=3:0� 1011 M�Þ1=3.
If the same velocity distribution is used for the entire line of
sight at the average mass density, p ¼ 2:7� 10�7. Dwarf
galaxies are not compact enough to be considered point
mass lenses, but by treating them as point masses we can get
an (probably greatly inflated) upper limit on the probability.
In this case p ¼ 8:9� 10�5�.

Known types of substructure within the host lens are
inadequate to explain B1152+199. If the structures in the
lens and in intergalactic space are similar in number and
central density to those observed in the Local Group of gal-
axies, they fall short of the estimates derived in x 4.1 by at
least a factor of 105.

5. DISCUSSION

These observations have important consequences for the
WDM model. The standard WDM model is engineered to
reproduce the dwarf galaxy distribution under the assump-
tion that a galaxy forms in every small halo. It was shown in
x 4.2 that the number density of dwarf galaxies is extremely
unlikely to have produced the observed bent radio jets. The
standard WDM model is thus ruled out if the bend in
B1152+199 is real. A more accurate lower limit on the DM
particle mass will require more observations andmore simu-
lations of small-scale structure formation in these models.

Higher resolution observations of B1152+199 are possi-
ble. These would make certain that the jet in image B is
indeed bent and improve the constraints on the substructure
mass. Also interesting would be high-resolution images of
other multiply imaged jets. In the present sample of three all
appear to show some evidence of bending. A moderately
larger sample would greatly increase the power of this
method to probe structure on small scales. It is possible that
scattering by compact ionized regions in the lens galaxy
could affect the jet morphologies. There is no evidence for
this in B1152+199, but in general this effect would be wave-
length dependent so observations at multiple frequencies
would very useful.

It has been found here that a significantly larger number
of small-scale objects are needed if the observations of
B1152+199 are to be simply interpreted. Structures as dif-
fuse as SIS are disfavored both by direct modeling of
B1152+199 and on statistical grounds. If the structures are
compact (on the scale of their own Einstein radius) and
small in mass (d107M�), they need not contain a large frac-

Fig. 4.—Probability of substructures causing an observable bend in a
radio jet like the one in B1152+199 assuming the distribution of substruc-
tures described in the text. For the SIS substructures, the velocity dispersion
is converted to mass by m ¼ 3:0� 1011 M�ð�=100 km s�1Þ3. The fraction
of the host halo surface density contained in point mass substructure is also
plotted. The host lens surface density is � ¼ 0:6 1:4 for the model of
B1152+199 discussed in x 3.2.
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tion of the mass in the universe. However, such concen-
trated halos come about in the CDM model only through
the tidal stripping of halos that originally contained �10
times more mass. This means that in intergalactic space
these clumps would contain a large fraction of the mass, per-
haps most of it.
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