
STABILITY AND ECCENTRICITY FOR TWO PLANETS IN A 1 : 1 RESONANCE, AND THEIR
POSSIBLE OCCURRENCE IN EXTRASOLAR PLANETARY SYSTEMS

Michael Nauenberg

Department of Physics, University of California, Santa Cruz, CA 95064; michael@mike.ucsc.edu
Received 2002May 13; accepted 2002 July 15

ABSTRACT

The nonlinear stability domain of Lagrange’s celebrated 1772 solution of the three-body problem is
obtained numerically as a function of the masses of the bodies and the common eccentricity of their
Keplerian orbits. This domain shows that this solution can be realized in extrasolar planetary systems similar
to those that have been discovered recently with two Jupiter-size planets orbiting a solar-size star. For an
exact 1 : 1 resonance, the Doppler shift variation in the emitted light would be the same as for stars that have
only a single planetary companion. But it is more likely that in actual extrasolar planetary systems there are
deviations from such a resonance, raising the interesting prospect that Lagrange’s solution can be identified
by an analysis of the observations. The existence of another stable 1 : 1 resonance solution that would have a
more unambiguous Doppler shift signature is also discussed.
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1. INTRODUCTION

In many extrasolar planetary systems discovered
recently, the observed Doppler shift of the emitted light
is well described by assuming that the central star is mov-
ing in a Keplerian elliptic orbit due to its gravitational
interaction with a single Jupiter-size planet. If residuals
are present in a least-squares fit to the data after possible
chromospheric fluctuations in the star have been taken
into account, these residuals signal the presence of an
additional planet or, possibly, several planets (Fischer et
al. 2001; Marcy et al. 2002). There is, however, an impor-
tant exception when such a star also travels on a Kepler-
ian orbit even though there are two planets orbiting it.
We have in mind Lagrange’s celebrated solution of the
three-body problem (Lagrange 1873), for which he won
the prize of the Royal Academy of Science of Paris. In
this solution, each body moves on a Keplerian orbit with
a common plane, period, eccentricity, and focus that is
located at their center of mass, in such a manner that at
all times the relative positions of these bodies form the
vertices of an equilateral triangle of variable size (see Fig.
1). This solution will be discussed in x 2. It is therefore
interesting to consider the possible occurrence of such a
1 : 1 resonance in extrasolar planetary system with two
Jupiter-size planets, particularly in view of the recent dis-
covery of a remarkable 2 : 1 resonance of two such large
planets in GJ 876 (Marcy et al. 2001). To be relevant to
current astronomical discoveries, however, it is necessary
that Lagrange’s solution be stable in the range of
observed masses and eccentricities. In the past, linear
stability analyses have been carried out that were primar-
ily focused on the restricted three-body problem (where
one of the three masses vanishes), which is applicable to
the study of the motion of asteroids, but these results can
also be extended to the general Lagrange solution, as will
be discussed in x 3. In this paper, we present the results
of a numerical analysis of the nonlinear stability domain
of Lagrange’s solution as a function of the masses of the
three bodies and the eccentricity of the common elliptical

orbits (see x 4). In practice, there will be deviations from
Lagrange’s solution, and the interesting question arises as
to whether there are distinct characteristics that would
distinguish these deviations from other types of perturba-
tions due to additional planets. While variations in the
eccentricity and major axis of the approximate elliptical
orbit are common to all perturbations caused by the
presence of a second planet, one of the most distinguish-
ing feature of a slightly off-resonance but stable Lagrange
solution is that the rotation rate of the axis of the elliptic
orbit of the star is much smaller than for other types of
perturbations (see Fig. 2). For example, for a 1% devia-
tion in the position of the lighter planet (Fig. 2, red ),
assumed to be about a Jupiter mass and half as large as
the heavier planet (green), we find that for a solar-mass
central star it takes about 800 periods to complete a rev-
olution of the major axis. In contrast, a fit to the recently
discovered 2 : 1 resonance in GJ 876 indicates that the
major axis of the planets should complete a revolution in
about 53 periods of the heavier planet (Nauenberg 2002).

Lagrange’s solution is not the only 1 : 1 resonance for
the three-body problem. We also consider another solu-
tion that we found to be stable in the domain of masses
and eccentricities relevant to extrasolar planetary systems
(G. Laughlin 2002, private communication). In this case,
the two lighter bodies (planets) and the heaviest body
(star) have different orbits, and therefore the Doppler
shift data should be readily distinguishable from the case
of a single planet. The characteristic feature of this solu-
tion is that at each half-period the three bodies are
aligned, and if the heavier planet is in a nearly circular
orbit, the lighter planet moves in a highly eccentric ellip-
tical orbit (see Fig. 3). A periodic alignment of the two
planets and the star is also a characteristic of other reso-
nance solutions, as in the case of the 2 : 1 resonance in
GJ 876 (Laughlin & Chambers 2001; Rivera & Lissauer
2001; Lee & Peale 2002; Nauenberg 2002). The evolution
of this configuration when the planets are slightly off
resonance is shown in Figure 4, which illustrates the
clockwise rotation of the major axis of the eccentric orbit
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of the lighter planet for the case in which m3/m1 = 0.005
and m2/m1 = 0.001.

2. LAGRANGE’S SOLUTION OF A
THREE-BODY PROBLEM

In Lagrange’s solution (Lagrange 1873) of a three-body
problem, each body travels on a separate elliptic orbit with
a common period, eccentricity, and focus that is located at

their center of mass, in such a way that these bodies are
always at the vertices of an equilateral triangle of vari-
able size. An example is illustrated in Figure 1, where
m2/m1 = 0.2 andm3/m1 = 0.7 and the common eccentricity
is � = 0.5, showing the equilateral triangle for the relative
positions of the three bodies at apogee. Apart from the over-
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Fig. 1.—Lagrange’s periodic 1 : 1 resonance solution for the three-body
problem, showing the locations of the bodies at apogee on the vertices of an
equilateral triangle (solid lines). The dashed lines show the direction of the
major axis for each ellipse, and their intersection at the center of mass,
which is their common focus.
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Fig. 2.—Rotation of the axes of the ellipses in Lagrange’s solution after
800 periods, for a 1% deviation in the initial position of planet 2 from exact
resonance. The two pairs of orbital curves for the lighter (red ) and heavier
(green) planet cover the first and last period.
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Fig. 3.—Another 1 : 1 resonance solution for the three-body problem,
showing the inner heavier planet (green) on a nearly circular orbit, the
lighter planet (red ) on an eccentric elliptic orbit with eccentricity � = 0.8,
and the central star (blue), as they appear aligned at maximum elongation
of the ellipse.
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Fig. 4.—Evolution of the orbits shown in Fig. 3 for a small deviation
from 1 : 1 resonance, showing the rotation of the major axes of the planets
during 10 periods.
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all orientation of the system, these parameters uniquely
describe the solution. In this solution, the relation between
variables is somewhat different from the corresponding ones
in the two-body problem. For example, the common fre-
quency ! or period P = 2�/! of the motion is given by the
relation

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmð1þ �Þ3=R3

q
; ð1Þ

where G is Newton’s constant, m = m1 + m2 + m3 is the
total mass,m1 is the mass of the heaviest body (star),m2 and
m3 are the masses of the lighter bodies (planets), � is the
common eccentricity, and R is the maximum size of the
equilateral triangle on which the three bodies are located.
Then the major axis ai of each of the elliptic orbits is

ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j þm2
k þmjmk

q
mð1þ �Þ R ; ð2Þ

where the subscripts i, j, and k are permutations of the inte-
gers 1, 2, and 3, while the mean of the velocity of the star at
the maximum and minimum distance from the foci of the
ellipse is

K ¼
�
2�G

P

�1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þm2
3 þm2m3

q

m2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p : ð3Þ

If the planetary masses m2 and m3 are small compared with
the mass of the star, m1, then a2 � a3 � a, where a =
R/(1 + �) and ! � (Gm/a3)1/2 as in the corresponding two-
body problem. In principle, any fit to the data with a single
planet of massmp can also be attributed to two planets that,
according to equation (3) for K, have masses satisfying the
relationmp = (m2

2 + m2
3 + m2m3)

1/2, which is somewhat less
than the sum of the masses of the two planets. In practice,
however, it is unlikely that extrasolar planetary systems
would occur in an exact 1 : 1 resonance, and therefore the
presence of a second planet manifests itself in the occurrence
of residuals in a single Keplerian orbit fit to the data.

3. LINEAR STABILITY ANALYSIS

The first linear stability analysis of Lagrange’s solution
was carried out by Routh for the special case of circular
orbits (Routh 1875).1 Assuming that the attractive forces
between the bodies depends on the relative distance r as
1/r�, Routh demonstrated that Lagrange’s solution was
stable provided that the masses satisfied the inequality

� <
1

3

�
3� �

1þ �

�2

; ð4Þ

where

� ¼ m1m2 þm1m3 þm2m3

ðm1 þm2 þm3Þ2
: ð5Þ

For gravitational interactions where � = 2, the constant on
the right-hand side2 of equation (4) is 1/27, which implies

that the masses of the two lighter bodies (planets), m2 and
m3, must be much smaller than themass of the heaviest body
(star), m1. For example, setting m2 = 0, which corresponds
to the restricted three-body problem and applies to the
motion of asteroids such as the Trojans, this inequality
implies that m3/(m1 + m3) < 0.03852, which has become
known as Routh’s critical point. Neglecting quadratic terms
in the mass ratios m2/m1 and m3/m1, Routh’s inequality
becomes approximately (m2 + m3)/m1 < 1/27, indicating
that the stability depends to a very good approximation
only on the sum of the masses of the lighter bodies relative
to the mass of the heaviest one.

For the stable configurations, Routh obtained the fre-
quencies !1, !2, and !3 of the normal modes in the plane of
the orbits, which for � = 2 are given by

!1 ¼ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 27�

p
Þ

q
; ð6Þ

!2 ¼ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 27�

p
Þ

q
; ð7Þ

!3 ¼ ! ; ð8Þ

where ! is the fundamental Kepler frequency (eq. [1]), and
he determined the corresponding amplitudes for these
modes. While Routh did not discuss the stability with
respect to perturbations perpendicular to the plane of the
orbit, it is straightforward to show that for this case the
Lagrange orbits are linearly stable, and that these perturba-
tions oscillate at the fundamental Kepler period for all mass
ratios. Remarkably, he also briefly considered second-order
deviations, which he remarked could ‘‘ ultimately disturb
the stability,’’ but this part of his analysis was incomplete,
calling attention only to two of the possible commensur-
ability or resonance relations, !3 = 2!2 and !1 = 2!2, for
which � = 1/36 and � = 16/675, respectively.

For elliptic orbits, a linear stability analysis of Lagrange’s
solution was not carried out until some 90 years later, when
Danby (1964) numerically integrated the Floquet equations
for the first-order deviations from the Lagrange solution of
the restricted three-body problem (see also Bennett 1965).
Subsequently, a majority of stability studies have been con-
fined to this special case, but as we shall see, the results can
also be applied to the general solution (Marchal 1990). For
a modern discussion of the stability of the Lagrange solu-
tion, see Siegel &Moser (1971).

4. NONLINEAR STABILITY DOMAIN OF
LAPLACE’S SOLUTION

The nonlinear stability domain of Lagrange’s solution for
the three-body problem that is presented here was obtained
by integrating the equations of motion numerically and
determining whether, for a small initial deviation from the
solution, the orbits were either confined or unconfined after
a large number, n, of periods. The criterion for an uncon-
fined orbit was that the linear size of one of the planetary
orbits become 3 times the initial size or larger. Changing this
factor to 5 did not alter the results, and numerous spot
checks of such orbits indicated that if the integration time
were continued the orbital size would diverge further. We
found that when nwas increased from 400 to 800, there were
no significant changes in the results except near the critical
points discussed below, where we increased n until no fur-
ther changes occurred. For the deviations, we consider small

2 Routh found that he had been anticipated in this important result by
someone calledM. Gascheau in a thesis onmechanics.

1 In this paper, Routh incorrectly attributed Lagrange’s solution to
Laplace.

2334 NAUENBERG Vol. 124



displacements of the position of one of the planets in the
plane of the orbit and also perpendicular to this plane. As
we shall see, except in the case when !3 = 2!2, only initial
deviations in the plane of the orbit gave evidence for some
of the expected nonlinear instabilities near the commensur-
ability relations for the three fundamental frequencies,
equations (6)–(8).

Starting with a small deviation in the velocity of one of
the lighter bodies of the order of 1% in the direction perpen-
dicular to the plane of the orbits, our numerical result for
the nonlinear stability domain is shown in Figure 5, where
the unstable regions are indicated by small squares. In
agreement with the linear stability analysis (see x 3), we
found that the nonlinear stability domain depends only on
the common eccentricity � of the orbits (horizontal axis),
and the Routh parameter �, equation (5) (vertical axis). This
parameter is determined by the ratios m2/m1 and m3/m1 of
the masses of the lighter bodies (planets) to the mass m1 of
the heaviest body (star). We have verified this result by com-
puting this domain for different fixed values of the ratio of
the masses of the planets, without observing any changes
when plotting the results with Routh’s parameter �. For
example, the computation shown in Figure 5 was carried
out for m2/m3 = 1, while the boundary curves shown are
the linear stability computations of Danby and Bennett
(Danby 1964; Bennett 1965), which were originally obtained
for the restricted three-body problem where either m2 or m3

is set equal to zero.
This nonlinear stability domain looks surprisingly similar

to the stability domain of the Mathieu equation (Grimshaw
1990, p. 62) with an additional nonlinear restoring or damp-
ing term. Indeed, for the restricted three-body problem, a
linear stability analysis of the equations of motion, to first
order in the common eccentricity �, in a frame of reference
rotating with the frequency of the orbits, yields a bifurcation
at !3 = 2!2 which can be viewed as a parametric resonance

between the fundamental orbital frequency for elliptic
motion and the oscillation frequency of the first-order
deviations of the massless body. In the general case, we
have seen that this bifurcation occurs for � = 0 at
� = 1/36 = 0.02777. For the restricted problem, m2 = 0,
this corresponds to D0 = 2

ffiffiffi
2

p
/3 � 0.9428, where D =

(m1 � m3)/(m1 + m3) and m3/m1 � 0.02944. We evaluated
the instability domain to first order in the eccentricity � and
found that it lies inside the wedge

D0 � �� � D � D0 þ �� ; ð9Þ

where � = 3/20
ffiffiffi
2

p
� 0.10606. This wedge is shown in

Figure 6, together with the corresponding nonlinear domain
where the orbit actually becomes unstable. These linear
boundaries mark the onset of a bifurcation in which the
orbits first become aperiodic, filling out a confined region of
space. The vertical axis in this figure is shown as the variable
� = (m2 + m3)/m1, although this calculation was carried
out for the case m2 = 0. Inside the stable domain � is
approximately the same as the Routh parameter �, equation
(5) [the exact value of � can be obtained from this figure by
setting � = �/(1 + �2)].

An enlargement of the stability domain near the critical
point at � = 0 and � = 1/27 � 0.037037 is shown in
Figure 7, which displays our results for the case that
m2 = m3. This critical point is often discussed in connection
with the stability of the Lagrangian points for the restricted
three-body problem in a frame of reference rotating with
the frequency of the circular orbits, and has been applied to
the study of the Trojan and other asteroids (Murray &
Dermott 1999, p. 77). As in the previous case, however, this
critical point marks only a bifurcation to an aperiodic but
confined motion, while numerically we find that the nonlin-
ear instability begins at a somewhat higher value of
� � 0.0391, corresponding for m2 = 0 to m3/m1 � 0.0425.
A curve quadratic in the eccentricity fits well the boundary
of the upper part of the nonlinear instability domain, as
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Fig. 5.—Stability domain for Lagrange’s solution as a function of the
eccentricity � and the Routh parameter � (eq. [5]), obtained for initial devia-
tions perpendicular to the plane of the orbit.
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Fig. 6.—Enlargement of the stability domain shown in Fig. 5 near the
critical point for the parametric resonance at !3 = 2!2.
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shown in Figure 7, while a linear curve fits the lower part of
the domain with a slope that is somewhat higher than the
one that we calculated analytically in the linear approxima-
tion (eq. [9]), but in good agreement with the numerical
linear stability results of Danby (1964) and Bennett (1965).

Up to now, we have considered only initial deviations in
the direction perpendicular to the plane of Lagrange’s
orbits. In Figure 8, we show the nonlinear stability domain
obtained by taking an initial displacement dx = dy = 0.001
in this plane for one of the two lighter bodies. This result

was obtained by fixing the ratio m2/m3 = 1, but the same
results are obtained for other values of the ratios of these
masses when the results are plotted as a function of the
Routh parameter � (eq. [5]). We see evidence in this figure
for the instabilities at the nonlinear resonances !1 = 2!2

and !3 = 3!2, corresponding to � = 16/675 � 0.02370 and
� = 32/2187 � 0.01463. Also, the domain of stability
shrinks in the upper wedge with indications of additional
resonances in this region. This is confirmed by an enlarge-
ment of this region, which shows the tail of the instability
due to the resonance at 3!1 = 4!2 corresponding to
� = 576/16875 � 0.03413, as well as other resonances (see
Fig. 9).

5. ANOTHER 1 : 1 RESONANCE SOLUTION

Lagrange’s solution is not the only stable 1 : 1 resonance
system for the three-body problem. Another solution is
illustrated in Figure 3, in which the two lighter bodies or
planets are traveling on two different orbits that are approx-
imately elliptic in such a way that the central star and the
planets are aligned when located at the maximum or mini-
mum distance from the center of mass (G. Laughlin 2002,
private communication). We found these orbits by a new
method based on an expansion of the coordinates in a Four-
ier series with a common period, where the Fourier coeffi-
cients of this expansion were determined by finding the
minima of the action integral with respect to these coeffi-
cients by an efficient iterative process (Nauenberg 2001). A
characteristic feature of these orbits is that when the heavier
of the two planets is in a nearly circular orbit, the lighter
planet is in an elliptical orbit with a very large eccentricity,
which rises slowly with increasing mass of the heavier
planet. This is shown in Figure 10 for the case in which
m2/m1 = 0.001.
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Fig. 7.—Enlargement of the stability domain shown in Fig. 5 near the
critical point at !1 = !2.
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Fig. 8.—Stability domain for Lagrange’s solution as a function of the
eccentricity � and the Routh parameter � (eq. [5]), obtained for initial devia-
tions in the plane of the orbit.
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Fig. 9.—Enlargement of the stability domain for Lagrange’s solution in
the upper wedge shown in Fig. 8 as a function of the eccentricity � and the
Routh parameter � (eq. [5]), obtained for initial deviations in the plane of
the orbit.

2336 NAUENBERG Vol. 124



In contrast to Lagrange’s solution discussed previously, a
small deviation from exact 1 : 1 resonance in this case leads
to a relatively rapid rotation of the major axis of the ellipti-
cal orbit, as illustrated in Figure 3. This leads to characteris-
tic modulations in the Doppler shift oscillations of the light
emitted by the star. An example is shown in Figure 11,
where we fixed the velocity scale by assuming that the mass
of the central star is one-third of a solar mass, and the period
of the planetary orbit is 60 days. As in the case of Lagrange’s
solution discussed in the previous section, we found that
these orbits are stable over a range of masses relevant to

extrasolar planetary systems (see Fig. 12). This stability
domain was generated with initial 1 : 1 resonance configura-
tions obtained by a general method to evaluate periodic
orbits discussed in Nauenberg (2001). For the case in which
the masses of the two planets are approximately equal and
there is a small deviation from exact resonance, the planets
exchange their orbital eccentricity each time the major axis
rotates through 180�.

6. CONCLUSIONS

The nonlinear stability domain for Lagrange’s solution of
the three-body problem shown in Figure 8 indicates that
there is a wide range of Jupiter-size planetary masses
(including brown dwarfs) and eccentricities for which such
solutions can exist in extrasolar planetary systems. For
example, for an eccentricity of � � 0.6, the ratio of the total
mass of the two planets to the mass of the star for which the
solutions are stable is 0.004, except for a small region where
nonlinear resonances occur. This mass correspond to 4.2
Jupiter masses for a 1 M� star, while for smaller eccentric-
ities, � � 0.2, there is a wedge of stable solutions for higher
mass ratios up to approximately 0.04. In principle, any
Doppler shift data that can be fitted under the assumption
that only a single planet is orbiting the central star can
equally well be attributed to two planets orbiting the star
according to Lagrange’s solution. In practice, however, it is
very unlikely that two planets are in an exact 1 : 1 resonance,
and therefore one expects to find residuals in the data that
signal the present of a second planet. One of the main effects
due to the perturbations caused by a second planet is the
secular rotation of the major axes of the approximate Kep-
lerian ellipses that characterize the orbits of the planets and
the star. This effect, however, would not occur in the case of
an exact 1 : 1 Lagrangian resonance, and it is strongly sup-
pressed in the case in which the resonance is approximate. It
may be thought that in view of the greater number of

0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

m3

Fig. 10.—Dependence of the eccentricity of the lighter planet on the
mass of the heavier planet for the 1 : 1 resonance solution shown in Fig. 3.
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Fig. 11.—Doppler shift as a function of time for the 1 : 1 resonance
configurations discussed in x 5.
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Fig. 12.—Stability domain for the 1 : 1 resonance configurations
discussed in x 5.
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degrees of freedom present in Lagrange’s solution, a better
least-squares fit to the data should be readily available. This
is not the case, because Lagrange’s equations also allow for
unphysical solutions in which the mass of one or even both
of the planets can have negative values, provided the total
mass is positive. Indeed, in a preliminary attempt to obtain
a least-squares fit to data which show residuals, the optimal
mass of the smaller of two Lagrange planets turned out to
be negative, which ruled out this solution.

The stability domain for the type of 1 : 1 resonance solu-
tion discussed in x 5 is shown in Figure 12, demonstrating
that this solution also encompasses the possibility of two
Jupiter-size planets orbiting a solar-size star. In this analy-
sis, we restricted the heavier planet to be in a nearly circular
orbit and found that the lighter planet is in a highly eccentric
orbit with � � 0.8 (see Fig. 4). If this restriction is relaxed,
we also find similar stable solutions, and for equal masses
the two planets exchange eccentricity when the major axis
rotates through 180�.

In summary, it is likely that extrasolar planetary systems
that have several Jupiter-size planets that are close enough
to give rise to significant gravitational perturbations will be
in resonance, because numerical investigations have shown
that such systems can be stable. In such cases, the planets
and the central star are periodically aligned. An interesting
exception is the 1 : 1 resonance solution of Lagrange, where

the planets and the star are located at all times on the verti-
ces of an equilateral triangle of varying size. It would be very
exciting if this solution, discovered by Lagrange 230 years
ago, and realized thus far only in the motion of the Trojan
and other asteroids in our solar system (Murray & Dermott
1999, p. 77), were also present in the orbits of planets in
extrasolar systems. Likewise, a search should also be under-
taken to find two planets in extrasolar systems that are in a
1 : 1 resonance of the type discussed in x 5, which does not
occur in our solar system.

Note added in manuscript.—After the completion of this
paper, I received a preprint from G. Laughlin on his recent
work with J. E. Chambers on the 1 : 1 resonances (Laughlin
& Chambers 2002). I also learned that a search is underway
at the Appalachian State University (Caton 2002) to find a
Trojan planet in binary stars by observing the photometric
signature of an eclipse near the Lagrangian equilateral
points. The nonlinear stability domain evaluated here pro-
vides limits for the ratio of the two masses in a binary star
that are suitable for such a search.

I would like to thank Richard Montgomery and Carles
Simo for useful references to the vast literature on the
Lagrange solution of the three-body problem, and Greg
Laughlin for discussions.
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