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ABSTRACT

Occultation and microlensing are different limits of the same phenomenon of one body passing in front of
another body. We derive a general exact analytic expression that describes both microlensing and occultation
in the case of spherical bodies with a source of uniform brightness and a nonrelativistic foreground body. We
also numerically compute the case of a source with quadratic limb darkening. In the limit that the gravita-
tional deflection angle is comparable to the angular size of the foreground body, both microlensing and
occultation occur as the objects align. Such events can be used to constrain the size ratio of the lens and source
stars, the limb-darkening coefficients of the source star, and the surface gravity of the lens star (if the lens and
source distances are known). Application of these results to microlensing during transits in binaries and
giant-star microlensing is discussed. These results unify the microlensing and occultation limits and should
be useful for rapid model fitting of microlensing, eclipse, and ‘‘micro-occultation ’’ events.

Subject headings: binaries: eclipsing — eclipses — gravitational lensing — occultations

1. INTRODUCTION

When two stars (or other bodies) come into close align-
ment on the sky, the foreground star may either eclipse or
microlens the background star. As the stars align, if the
angular size of the foreground star is much larger than its
gravitational deflection angle, then the foreground star can
eclipse; if the contrary is true, then it canmagnify.More pre-
cisely, gravitational lensing by a point mass produces two
images of a distant object, one interior and one exterior
to the Einstein radius in the lens plane, RE ¼
½4RgDlðDs �DlÞ=Ds�1=2 where Rg ¼ GM=c2 is the gravita-
tional radius for a lens of massM, and Dl,s are the distances
to the lens or source. Both images move toward the Einstein
radius as the lens and source approach, so the outer image
will be occulted during the approach if the radius of the lens
is larger than the Einstein radius. The inner image, however,
starts off near the origin and thus is occulted when the
source is far from the lens. As the lens and source approach,
the inner image can become unocculted if the lens is smaller
than the Einstein radius (Fig. 1). Occultation is most impor-
tant in microlensing if RE � Rl , where Rl is the radius of the
lens star (assumed to be spherical). In Galactic microlens-
ing, typically Rl5RE, so occultation of the inner image
occurs but is usually rather faint. In special circumstances,
such as in eclipsing binaries containing compact objects
(Maeder 1973; Marsh 2001) or lensing by giant stars,
Rl � RE, so the effects of both microlensing and occultation
must be included. This ‘‘micro-occultation ’’ can showmore
varied behavior than the usual microlensing or occultation
light curves and can be used to constrain the surface gravity
of the lens star (Bromley 1996).

Maeder (1973) andMarsh (2001) have carried out numer-
ical computations of micro-occultation light curves. Here
we present an exact analytic solution for the light curve of a
uniform source that agrees with their work, and we present
numerical calculations for limb-darkened sources. Bromley
(1996) and Bozza et al. (2002) computed light curves for

lensing events, treating the source as a point source, while
the expressions presented here are valid for extended and
limb-darkened sources as well. In x 2 we discuss microlens-
ing and occultation of a point source. In x 3 we include the
finite size of a uniform source. In x 4 we include the effects of
limb darkening numerically for microlensing and occulta-
tion. In x 5 we apply the results to several astrophysical cases
of possible interest, namely, white dwarf–main-sequence
binaries, microlensing in globular clusters, andmicrolensing
by supergiants. In x 6 we summarize.

2. POINT SOURCE

The lensing equation for a point source and point lens,
neglecting diffraction and strong relativistic effects, is
(Schneider, Ehlers, & Falco 1992)

� ¼ �� 1

�
; ð1Þ

where h and � are the image and source position angles in
units of RE=Dl . In the limit that the source is much smaller
than the Einstein radius and is not aligned with the lens,
then the point-source magnification is an adequate approxi-
mation (Paczyński 1986). Solving this equation, the image
positions are

�� ¼ 1
2 ð� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

p
Þ ; ð2Þ

where h� is the image interior to the Einstein radius and h+
is the image exterior to the Einstein radius ( ��j j < 1 and
�þ > 1). The magnifications of the images are

l
p
� ¼ 1

2

2þ �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

p � 1

 !
; ð3Þ

or lpþ ¼ ð1� ��4
þ Þ�1 and lp� ¼ ð1� �4�Þ�1.

If the size of the lens star is less than the size of the Ein-
stein radius, rl ¼ Rl=RE < 1, then the inner image will be
occulted for ��j j < rl . This corresponds to � > r�1

l � rl ,
which means that the inner image is occulted when the
source is distant from the lens and unoccults when the
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source approaches the lens. The change in magnitude at the
point of the occultation of the inner image is

Dm ¼ �2:5 log 1þ
r4l

1þ f ð1� r4l Þ

� �
; ð4Þ

where f ¼ Fl=Fs is the ratio of the flux from the lens to the
unlensed flux from the source. In typical Galactic microlens-
ing events, rl5 1, so the inner image usually appears (unoc-
cults) when the source is distant from the lens, so the change
in magnitude is very small. However, if the images can be re-
solved directly and the demagnified inner image is brighter
than the lens star, then the appearance of the inner image
might be detectable.

If the size of the lens star is greater than the Einstein
radius, rl > 1, then the inner image will always be occulted,
and the outer image will be occulted for �þ < rl , which cor-
responds to � < rl � r�1

l . During occultation, the source
star disappears so that one can only see the lens star. Thus,
the total magnification for microlensing of a point source is

lp ¼ l
p
þ� rl� � r2l þ 1
� �

þ lp�� 1� r2l � rl�
� �

; ð5Þ

where

�ðxÞ ¼
1; x > 0 ;

0; x � 0 ;

�
ð6Þ

is the step function. In the limit rl ¼ 0, this reduces to the
usual microlensing magnification (Paczyński 1986), while in
the limit rl41, lp� is negligible, l

p
þ � 1, and occultation sim-

ply occurs when � < rl .

At the point of occultation, � ¼ � r�1
l � rl

� �
, and since �

can be measured from a fit to the microlensing light curve,
one can measure rl (Bromley 1996). The sign is determined
by whether the image appears (+) or disappears (�) at the
center of the event.

The average astrometric position of the images during the
microlensing event is (Walker 1995)

D� ¼ l
p
þ�þ þ lp���
lp þ f

; ð7Þ

where the difference in image position is measured with
respect to the position of the lens on the sky. When rl < 1,
then the change in position during occultation of the inner
image is

D�ðrlÞ ¼ �
r3l

ð1þ f Þ2
: ð8Þ

This has a weaker dependence on rl than the magnitude
change but is still quite small unless rl � 1. In the case where
rl > 1, the source is completely occulted, so the centroid
change is simply

D�ðrlÞ ¼
rl

f þ 1
: ð9Þ

The point-source approximation has two limitations:
during eclipse ingress or egress, the finite size of the source
causes a smooth transition, and if the surface brightness of
the source and lens are similar and rl � 1, then the source
must also have a size similar to the Einstein radius to con-
tribute a significant fraction of the flux. Thus, in x 3 we

Fig. 1.—(a) Stars at various positions in the source plane. The shaded region shows the area in which the inner image is occulted by the lens star for rl < 1,
which is the region � > �l ¼ 1=rl � rl . The axes have units of REDs=Dl . (b) Images of the star in the image plane. The arrow is imaged as well for reference.
The dashed line shows RE. (c) Magnification as a function of position. The dotted line shows the case with no occultation, while the solid line shows the case
including occultation. The symbols show the magnification of the source at the positions depicted in (a). (d )–( f ) Same as (a)–(c), but for rl > 1. In this case,
the inner image is fully occulted, and the shaded region in (d ) shows where the outer image is occulted by the lens star.
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derive a more general formula including the finite extent of
the source.

3. EXTENDED UNIFORM SOURCE

In the case of a circular source with uniform surface
brightness, the images may be partly or fully eclipsed by the
lens star. The magnification (or dimming) is equal to the
ratio of the unocculted area of the images to the area of the
unlensed source, since surface brightness is conserved dur-
ing lensing. For a uniform source, the area can be computed
by integrating over the image boundaries using Stokes’ the-
orem (Gould & Gaucherel 1997; Dominik 1998). In the case
of a point-mass lens, this integral can be solved analytically,
as first shown by Witt & Mao (1994) for rl ¼ 0. For an
extended source with normalized radius

rs ¼
RsDl

REDs
; ð10Þ

it is more useful to define a two-dimensional lensing equa-
tion to integrate over the source. Witt & Mao (1994) define
a complex lensing equation

� ¼ z� 1

�zz
; ð11Þ

where � is the complex coordinate for the source plane in
units of REDs=Dl and z ¼ xþ iy is the complex coordinate
for the lens plane in units of RE. Comparing with equation
(1), j�j ¼ j�j and j�j ¼ jzj.

We assume that the source has a uniform surface bright-
ness in the region �0 þ rei� (�0 is real and positive), where
0 � � < 2� and 0 � r � rs, while we assume that the lens is
opaque in the region 0 � jzj � rl . The solution for the image
positions is

z� ¼ �

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

� ���

s !
; ð12Þ

which is the complex version of equation (2). The lensing
magnification for a uniform source is simply the ratio of the
area of the lensed images to the area of the source. The inte-
gral over area can be converted to an integral over the
source boundary using Stokes’ theorem (Gould & Gau-
cherel 1997), giving

l� ¼ � 1

�r2s

Z
d�jz�j2

@�

@�
; ð13Þ

where� ¼ cot�1 �0r�1
s csc�þ cot�ð Þ is the position angle of

the image. The total magnification is

l ¼ lþ þ l� : ð14Þ

In the case of a finite-sized lens, z� should be replaced in the
integrand with rlei� whenever jz�j � rl . In other words,
when an image is partially occulted, then the inner boun-
dary is given by the edge of the lens, while the outer boun-
dary is given by the edge of the outer image.

There are several different cases to consider:

1. rs ¼ 0.—Point source (eq. [5]).
2. rs > 0, rl ¼ 0.—Extended source, unocculted (Witt &

Mao 1994).
3. rs > 0, 1 > rl > 0.—Extended source, inner image

may be partly occulted, outer image unocculted.

4. rs > 0, rl > 1.—Extended source, inner image fully
occulted, outer image may be partly occulted.

The expressions for l� in each of these cases are summar-
ized in Tables 1 and 2, where p, e, and o superscripts refer to
the point-source magnification (Paczyński 1986), extended-
source magnification (Witt & Mao 1994), and occulted-
extended source magnification (below), respectively, and
�l ¼ jr�1

l � rl j. Each of the magnification expressions in
Tables 1 and 2 is given in equations (5) and (17)–(25), with
the range of the variables for which the functions apply
given in the columns.

As an example of how the computation proceeds, we con-
sider the case in which rl > 1 and the source overlaps the
shadow of the lens (for example, the source in Fig. 1d at
x ¼ 0:6). In this case, the inner image is completely occulted
while the outer image is partially occulted, so we must
integrate equation (13) for � between �� ¼ � cos�1 �2l �

��
r2s � �20Þ= 2rs�0ð Þ�. This gives an area that is between the outer
edge of the source image and the origin, so we need to sub-
tract off the area within the shadow that is r2l �2 ¼
r2l cos

�1 r2s � �2l � �20
� �

= 2�l�0ð Þ
� �

. Thus,

loþ ¼ 1

�r2s

Z �

��
d�jz�j2

@�

@�
�
�2r

2
l

�r2s
: ð15Þ

Making the substitution u ¼ �2 ¼ �20 þ r2s þ 2�0rs cos�, this

TABLE 1

Magnification of Inner Image

Case rl rs �0 l� (�0)

I ............. 0 0 (0,1) lp�
(0, 1) 0 (0, �l)

II............ (0, 1) (0,1) [�l+ rs,1) 0

[1,1) [0,1) [0,1)

III .......... 0 (0,1) [0, rs) le�
0 (0,1) (rs,1)

(0, 1) (0, �l) (rs, �l� rs]

(0, 1) (0, �l) [0, rs)

IV .......... 0 (0,1) rs le;��
(0, 1) (0, �l/2] rs

V............ (0, 1) [�l,1) (rs, �l+ rs) lo�
(0, 1) [�l,1) (rs� �l, rs)

(0, 1) (0, �l) (�l� rs, �l+ rs)

VI .......... (0, 1) (�l/2,1) rs lo;��
VII ......... (0, 1) [�l,1) [0, rs� �l] ð1� r2l Þ=r2s

TABLE 2

Magnification of Outer Image

Case rl rs �0 l+ (�0)

I ......... [0, 1) 0 (0,1) l
p
þ

[1,1) 0 (�l,1)

II........ [1,1) (0, �l] [0, �l� rs] 0

III ...... [0, 1) (0,1) [0, rs) leþ
[0, 1) (0,1) (rs,1)

[1,1) (0,1) [�l+ rs,1)

IV ...... [0, 1) (0,1) rs le;�þ
V........ [1,1) (0,1) (|rs� �l|, �l+ rs) loþ
VI ...... [1,1) (�l,1) [0, rs� �l] leþ þ ð1� r2l Þ=r2s
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equation is

loþ ¼ 1

4�r2s

Z u2

�2
l

du
ðu� u3Þ 1þ 2u�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ uð Þ=u

p� �
ðu2 � uÞðu� u1Þ½ �1=2

�
�2r

2
l

�r2s
;

ð16Þ

where u1, u2, and u3 are defined below. The integral can be
reduced to elliptic integrals as given below.

For an extended source (rs > 0), the magnification of the
inner image when 1 > rl > 0 is given by

lo� ¼ �ðrs � �0Þ
r2s

� 1

4�r2s

"
2ð1þ r2s Þ�1 � 4sgn ðu3Þ�0 þ 4r2l �2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 � u0Þðu0 � u1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

u0

s
� 1

 !
� Gð�0Þ

#
;

ð17Þ

where

Gð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð4þ u1Þ

p �
u2ð4þ u1ÞEð�; k1Þ

� ðu1u2 þ 8u3ÞFð�; k1Þ
þ 4u1ð1þ r2s Þ�ð�; n; k1Þ

�
; ð18Þ

F, E, and P are elliptic integrals of the first, second, and
third kinds (Gradshteyn & Ryzhik 1994), sgn ðxÞ chooses
the sign of x, and the other variables are

u0 ¼ �2l ; u1 ¼ ð�0 � rsÞ2 ;
u2 ¼ ð�0 þ rsÞ2; u3 ¼ �20 � r2s ;

�0 ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1ðu2 � u0Þ
u0ðu2 � u1Þ

s
;

�1 ¼ cos�1 u1 þ u2 � 2u0
u2 � u1

	 

;

�2 ¼ cos�1 u3 þ u0

2�0u
1=2
0

 !
;

n ¼ 1� u1
u2
; k21 ¼

4ðu2 � u1Þ
u2ð4þ u1Þ

: ð19Þ

In the special case that �0 ¼ rs, the magnification of the
inner image becomes

lo;�� ¼ le;�� þ 1

�r2s

�
1þ r2s � r2l
� �

cos�1 �l
2rs

þ v2
4
ð�l � v1Þ � ð1þ r2s Þ tan�1 v2

v1

�
;

ð20Þ

where

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2l

q
; v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2s � �2l

q
; ð21Þ

and

le;�� ¼ 1

�r2s
rs þ ð1þ rsÞ2 tan�1 rs

h i
� 1

2
; ð22Þ

which is the magnification of the unocculted images when
�0 ¼ rs.

When rl > 1, then the outer image can be occulted. The
magnification in this case is given by

loþ ¼ 1

4�r2s

�
2 1þ r2s
� �

 2 � 4sgn ðu3Þ 1 � 4r2l �2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 � u0Þðu0 � u1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

4þ u0

r
þ 1

	 

þ Gð 0Þ

�
;

ð23Þ

where

 0 ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0 � u1Þð4þ u2Þ
ð4þ u0Þðu2 � u1Þ

s
;  1 ¼

�

2
� �0 ;

 2 ¼ �� �1 þ 2 cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0ð4þ u0Þ

u0ð4þ u1 þ u2Þ � u1u2

s
; ð24Þ

and the other variables are as in equation (19).
When the inner or outer images are unocculted, then the

magnification is

le� ¼ Gð�=2Þ
4�r2s

� 1

2
; leþ ¼ Gð�=2Þ

4�r2s
þ 1

2
; ð25Þ

which agrees with the expression of Witt & Mao (1994). In
principle, one could also compute the image centroid for the
source including occultation (as done byWitt 1995).

We now provide several graphical examples of these
equations. Figure 2 shows the magnification for a source
with rl ¼ 0:9 and rs ¼ 0:25, compared to cases in which
either rl ¼ 0 or rs ¼ 0. In all three cases, the outer image is
unobscured, but the inner image appears when the source
approaches the lens. In the point-source case, the appear-
ance is abrupt and creates a strong brightening, while for
the extended source, the appearance is more gradual.

Figure 3 shows the magnification for a source with
rl ¼ 1:1 and rs ¼ 0:25, compared to cases in which either
rl ¼ 0 or rs ¼ 0. The finite size of the lens and the source cre-

Fig. 2.—Magnification for rs ¼ 0:25, rl ¼ 0:9 (solid line), rs ¼ 0, rl ¼ 0:9
(dotted line; in this case, the horizontal axis is scaled by rs ¼ 0:25 for com-
parison), and rs ¼ 0:25, rl ¼ 0 (dashed line).
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ates both magnification and occultation, but the magnifica-
tion wins out (l > 1) in this case. In all three cases, the inner
image is obscured, while the outer image can be obscured
when the source approaches the lens. In the point-source
case, the occultation is abrupt and results in the disappear-
ance of the background source.

For the case of rs ¼ 1, we show several different values of
rl in Figure 4. In all cases with finite rl, the magnification
shows a much flatter profile near the origin than for the
rl ¼ 0 case. In the limit rl5 1, the light curve approaches
that of extended-source microlensing, while for rl41, it
approaches the limit of occultation.

Figure 5 shows magnification for different source sizes,
but a fixed lens size rl ¼ 0:95. The smallest sources show
broad sloping wings, indicative of the appearance of the sec-
ond image; in the smallest case, the source becomes com-
pletely revealed near the origin. For the largest cases, the
magnification shows a sharper slope near �0 ¼ rs than in the
rl ¼ 0 case.

A uniform source causes rather sharp features in the light
curve during the ingress and egress of the occultation and
leads to flatter light curves during transit. However, a limb-
darkened source has a smoother ingress/egress and has cur-
vature during transit. Thus, in x 4 we consider microlensing
and occultation of a limb-darkened source.

4. LIMB DARKENING

Limb darkening causes a star to be more centrally peaked
in brightness compared to a uniform source. This leads to
larger magnification during microlensing or larger dimming
during transit/occultation. Thus, including limb darkening
is important for computing accurate microlensing/occulta-
tion light curves. Describing limb darkening with a quad-
ratic law,

IðrÞ
Ið0Þ ¼ 1� �1ð1� �Þ � �2ð1� �Þ2 ;

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

rs

	 
2
s

; ð26Þ

where �1 þ �2 < 1, leads to a magnification of

lðrl ; rs; �0; �1; �2Þ ¼
R rs
0 dr IðrÞ dlr2=drð ÞR rs

0 dr 2rIðrÞ
; ð27Þ

where lðrÞ can be computed from the expressions in x 3
(replacing rs with r). We could use a more accurate limb-
darkening formula but rely on a quadratic law for simplic-
ity. Given the complicated dependence of the magnification
on the radius, this integral is best done numerically using a
finite-difference approximation for the derivative of the uni-
formmagnification. An example is shown in Figure 6; in this
case, the dip during occultation is deeper due to limb dark-
ening, since the source is brighter at the center, and thus
more flux is lost, and the magnification decreases toward
the origin rather than increasing as in the uniform-source
case. Both the uniform and the limb-darkened cases are
shallower when compared to the pure-occultation case due

Fig. 3.—Magnification for rs ¼ 0:25, rl ¼ 0:9 (solid line), rs ¼ 0, rl ¼ 0:9
(dotted line; in this case, the horizontal axis is scaled by rs ¼ 0:25 for com-
parison), and rs ¼ 0:25, rl ¼ 0 (dashed line).

Fig. 4.—Magnification for rs ¼ 1 and rl ¼ 0:8, 0.95, 1.05, 1.2, and 1.8
(solid lines, top to bottom). The dashed line shows rl ¼ 0.

Fig. 5.—Magnification for rs ¼ 1=16, 1/8, 1/4, 1/2, 1, and 2 (top to bot-
tom). Solid lines show rl ¼ 0:95, while dashed lines show rl ¼ 0.
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to magnification of the background source. A second exam-
ple is shown in Figure 7. In this case, the limb darkening
causes a weaker magnification as the outer limb is magni-
fied, while the peak is increased because of the more concen-
trated brightness. In the special case in which �0 ¼ 0, the
integral is tractable analytically as follows and is shown as
the filled circles in Figures 6 and 7.

For rl > 0 and rs > �l , the magnification for a limb-
darkened source at �0 ¼ 0 becomes

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4þ r2s

p
6�r3s

�
	1

h
2þ r2s
� �

E �3; k2ð Þ � 2F �3; k2ð Þ
i
þ 	2rs

�

þ 1

6�r3s
s�l 4þ �2l
� �1=2þ	3

h i
	1

ffiffiffiffiffi
	3

p
þ 	2 �

3�2
2rs

	3

	 


þ 2�2

r4s�

�
	3

8
2þ r2s
� �

þ sinh�1 rs
2

� 
þ sinh�1 s�l

2

	 
�
;

ð28Þ

where

	1 ¼ 2ð�1 þ 2�2Þ ;

	2 ¼ 3ð1� �1 � �2Þrs �
3�2
2rs

2þ r2s
� �

;

	3 ¼ r2s � �2l ; � ¼ 1� �1
3
� �2

6
;

�3 ¼ cos�1 �s
�l
rs

	 

; s ¼ sgn ð1� rlÞ ;

k22 ¼ r2s
4þ r2s

: ð29Þ

When �3 > �=2, then Eð�3; k2Þ ¼ 2Eðk2Þ � Eð�� �3; k2Þ
and Fð�3; k2Þ ¼ 2Kðk2Þ � Fð�� �3; k2Þ. For rl < 1 and
rs < �l , the inner image is unocculted (the latter is always
true for rl ¼ 0), and �l should be replaced by rs in equations
(28) and (29) to give

l ¼ 1

�r2s

�
	1

3k2
2þ r2s
� �

Eðk2Þ � 2Kðk2Þ
� �

þ 	2rs
3k2

þ 4�2

r2s
sinh�1 rs

2

� �
: ð30Þ

For �2 ¼ 0, this expression agrees with equation (A6) in
Witt (1995).

In the occultation limit when the Einstein radius is small,
RE5Rl , Rs, then the light curve can be described by occul-
tation only. We can include limb darkening exactly in this
case (K. Mandel & E. Agol 2002, in preparation). An exam-
ple is shown in Figure 6 of the difference between occulting
andmicro-occulting light curves.

5. DISCUSSION

The equations for micro-occultation are most relevant
for equality of the Einstein radius and lens radius, which
occurs if D � DlðDs �DlÞ=Ds ¼ R2

l =ð4RgÞ. We compute D
for several interesting objects in Table 3 (not to be confused
with their actual distances), including a white dwarf (Sirius
B), brown dwarf (Gliese 229b), red giant (Capella), blue
supergiant (Rigel), yellow supergiant (Deneb), and red
supergiant (Betelgeuse). Application of the micro-
occultation equations to white dwarfs, brown dwarfs,
nearby supergiants, and giants in globular clusters are
discussed next.

White dwarfs in eclipsing binaries are the most likely
location to see micro-occultation (Maeder 1973; Marsh
2001). Known white dwarf binaries that transit their com-
panions have small semimajor axes (likely a selection effect),

Fig. 7.—Magnification for rs ¼ 5 and rl ¼ 0:5. The solid line shows limb
darkening with �1 ¼ �2 ¼ 0:3, while the dashed line shows a uniform
source. The filled circle on the y-axis shows the result of eq. (28).

TABLE 3

Distance for which RE ¼ Rl

Object M/M� RL/R� D

Sirius B ............. 1 0.009 0.04 AU

Gliese 229B ....... 0.05 0.1 100 AU

Sun ................... 1 1 550 AU

Jupiter............... 10�3 0.1 0.03 pc

Earth ................ 3	 10�6 0.01 0.07 pc

Rigel ................. 20 36 0.2 pc

Deneb ............... 14 60 0.7 pc

Pluto ................. 6	 10�9 0.0017 1 pc

Betelgeuse ......... 20 103 133 pc

Fig. 6.—Magnification for rs ¼ 5 and rl ¼ 1:5. The solid line shows limb
darkening with �1 ¼ �2 ¼ 0:3 (eq. [27]), while the dashed line shows a uni-
form source (eq. [14], Tables 1 and 2). The dot-dashed line shows a uniform
source and a lens of the same size ratio but neglecting lensing, while the dot-
ted line shows a limb-darkened source neglecting lensing. The filled circle
on the y-axis shows the result of eq. (28).
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and thus small Einstein radii, changing the depth of transit
by only a few percent (Marsh 2001). Due to common-enve-
lope evolution, white dwarf binaries have typical semimajor
axes a � 0:1 AU and masses of 0.5 M�, so RE �
7	 108 cmðM=0:5 M�Þ1=2ða=0:1 AUÞ1=2. This is compara-
ble to the size of white dwarfs,�109 cm, so both occultation
and microlensing are important. A. Farmer, E. Agol, & S.
Wyithe (2002, in preparation) apply the formulae derived
here to estimate how many white dwarfs can be found in
transit searches for extrasolar planets. For example, the
Kepler survey (Koch et al. 1998) may find �10–100 white
dwarfs, comparable to the expected number of terrestrial
planets. White dwarf transit events require the inclusion of
both lensing and occultation in modeling the light curves.

Although smaller in mass, brown dwarfs in eclipsing
binaries may have some observable microlensing effects dur-
ing eclipse. As gas planets and brown dwarfs have very simi-
lar sizes, their transits of companion stars may look quite
similar. However, in the limit of a large source, the depth of
the transit scales as 1þ 2ðRE=RsÞ2 � ðRl=RsÞ2 (for a uni-
form source), so brown dwarfs have a transit of smaller
depth, since RE is larger. This affects the measurement of
limb darkening, which also changes the depth of the transit
(eq. [28]). In the case of a 0.05M� brown dwarf with radius
0.1 R� in orbit at 1 AU about a G-type star, rl ¼ 10 and
rs ¼ 102. Thus, the transit depth differs by 2	 10�4 from a
10�3 M� planet of the same radius. Such photometric preci-
sion can be obtained with the Hubble Space Telescope;
(Brown et al. 2001) and other planned satellites and is indi-
cated by a slight brightening outside of the transit (Fig. 6).
The difference can be much larger, �1%, if the primary is
also a brown dwarf.

Lensing events caused by nearby stars may also show the
signs of both microlensing and occultation. The most
extreme case is the star Betelgeuse, which has a distance of
�125 pc and a mass of�20M�, giving an Einstein radius of
7	 1013 cm for sources at a much larger distance. This is
only slightly larger than the size of Betelgeuse, �4	 1013

cm, so that distant stars passing behind Betelgeuse would
create two visible images as they approach; a full occulta-
tion would never occur (unless the mass of Betelgeuse were
much smaller). Distant galaxies would create an Einstein
ring surrounding the star with the center occulted. The chal-
lenge involved in carrying out such an observation is in
resolving a faint background source from the bright fore-
ground star and waiting long enough for Betelgeuse to pass
in front of a star or galaxy. In every microlensing event, an
occultation should occur when � ¼ �l . Since this usually

leads to a demagnified image, extremely accurate photom-
etry is necessary to see an occultation event.

A final application of the micro-occultation equations is
to giant stars acting as lenses in globular clusters. There are
about 3	 105 evolved giant stars in Milky Way globular
clusters. For a giant star in a clump with a mass of 1M�, the
Einstein radius for a separation of 1 pc is�20 R�, compara-
ble to the size of the star, �20 R�. If the relative velocity is
�10 km s�1, then red giants in globular clusters cover about
3	 1031 cm2 yr�1, which is about 10�8 of the total area in
globular clusters. Thus, about 108 stars in globular clusters
must be monitored to find a single red giant transit event per
year, and a typical event will last about one month. A light
curve of a lensing event by a red giant in a globular cluster
would allow one to measure rl and rs, as well as �1 and �2,
for the source star. Since the Einstein radius in this case is
RE ¼ ð4GMc�2DÞ1=2, whereD is the separation of the lenses
in the cluster, one can estimate the surface gravity of the lens
giant, g ¼ GM=R2

l � c2=ð4DÞ (Bromley 1996), given that D
will be of the order of the scale length of the globular
cluster.

6. CONCLUSIONS

We have computed exact formulae for the lensing of a
uniform extended source by an opaque, spherical lens (with
escape velocity much smaller than c). The formulae only dif-
fer significantly from the usual occultation or microlensing
formulae in the limit that Rl � RE, which may be relevant
for lensing by white dwarfs in binaries or lensing by giant
stars. Small deviations due to lensing in eclipsing brown
dwarf binaries may be detectable with very precise photom-
etry, which may be another application of the expressions
derived here. A code written in IDL that carries out the cal-
culations presented here can be downloaded from on-line.3
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