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ABSTRACT

We revisit the problem of magnetic field generation in accretion flows onto black holes owing to the excess
radiation force on electrons. This excess force may arise from the Poynting-Robertson effect. Instead of a
recent claim of the generation of dynamically important magnetic fields, we establish the validity of earlier
results from 1977 that show that only small magnetic fields are generated. The radiative force causes the mag-
netic field to initially grow linearly with time. However, this linear growth holds for only a restricted time
interval that is of the order of the accretion time of the matter. The large magnetic fields recently found result
from the fact that the linear growth is unrestricted. A model of the Poynting-Robertson magnetic field gener-
ation close to the horizon of a Schwarzschild black hole is solved exactly using general relativity, and the field
is also found to be dynamically insignificant. These weak magnetic fields may however be important as seed
fields for dynamos.

Subject headings: accretion, accretion disks — galaxies: active — magnetic fields — plasmas —
stars: magnetic fields — X-rays: stars

1. INTRODUCTION

The classical battery mechanism of magnetic field genera-
tion is connected with a noncoincidence of surfaces of con-
stant pressure and constant density, where forces connected
with pressure gradients become nonpotential or rotational.
In this situation no static equilibrium in the gravitational
field is possible. When considering separately the motion of
electrons and ions, there is always a difference in the veloc-
ities of electrons and ions that creates electric currents and
an associated magnetic field. Self-induction is very impor-
tant in the battery mechanism, determining the rate of
increase of the magnetic field.

Along with ion and electron pressure gradients, a nonpo-
tential force field may arise as a result of the radiation force
that acts predominantly on the electrons. In a spherically
symmetric star, the radiation force has a potential so that
no magnetic field is generated: equilibrium in the two-fluid
plasma results from a distribution of an electric charge and
a static radial electric field. For geometrically thin, optically
thick accretion disks, Bisnovatyi-Kogan & Blinnikov (1977,
hereafter BKB) showed that the radiation force above the
disk has a nonpotential or rotational component. Under
this condition, no electric charge distribution can give a
static equilibrium. Instead, electric currents and a corre-
sponding magnetic field are generated. The radiation forces
above a thin disk give rise to poloidal electrical current flow
and a toroidal magnetic field.

In accretion flows at very low mass accretion rates, an
optically thin, geometrically thick accretion flow is possible
(Shapiro, Lightman, & Eardley 1976) where the ion temper-
ature is close to the virial temperature. In the absence of a
magnetic field, and neglecting relaxation processes between

electrons and ions except for binary collisions, these flows
are referred to as advection-dominated accretion flows
(ADAFs; Ichimaru 1977; Narayan & Yi 1995). In the
ADAF regime the radiative efficiency of accretion may be
very low, �103 times less than the standard value for a geo-
metrically thin, optically thick accretion disk. Account of
processes connected with the presence of a magnetic field
increases the efficiency up to at least 1

3 of the standard value
(Bisnovatyi-Kogan & Lovelace 1997, 2000, 2001). Never-
theless, the disk remains geometrically thick in the optically
thin regime as a result of high ion temperature.

Contopoulos & Kazanas (1998, hereafter CK) proposed
that a cosmic battery may operate in ADAFs owing to the
Poynting-Robertson (PR) effect. The PR effect acts to gen-
erate a toroidal electrical current and poloidal magnetic
field. The authors found that the magnetic field may be
amplified up to�107 G in the vicinity of a black hole of stel-
lar mass. Note that the PRmechanism of magnetic field gen-
eration is similar to the mechanism of BKB based on the
nonpotential radiative force, where the magnetic field
reached values ofd10 G for a stellar mass black hole. In an
optically thin disk both mechanisms act together, leading to
the generation of toroidal and poloidal components of the
magnetic field. The influence of the PR effect on the dynam-
ics of the surface layer of an accretion disk was treated by
Mott & Lovelace (1999).

Here we analyze the difference in conclusions between
CK and BKB. The radiative force initially causes the mag-
netic field to grow linearly with time. However, this linear
growth holds for only a restricted time interval that is of the
order of the accretion time of the matter. In CK the interval
of linear growth is unrestricted. Even though we conclude
that the magnetic field due to the radiation force is weak, it
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may have a role as a seed field for an �-! dynamo (see, e.g.,
Brandenburg et al. 1995; Colgate, Li, & Pariev 2001).

Section 2 treats the generation of toroidal field for the
case of a thin disk, while x 3 treats the generation of poloidal
field in an ADAF. Section 4 gives a general relativistic treat-
ment of a simplified model of PR magnetic field generation
in an accretion flow close to a Schwarzschild black hole.
Appendix A gives an explicit solution to the nonrelativistic
induction equation for the magnetic field generated by the
PR effect in an ADAF. Appendix B gives an alternative
form of the relativeMHD equations.

2. RADIATIVELY INDUCED CURRENT AND
TOROIDAL MAGNETIC FIELD PRODUCTION

IN ACCRETION DISKS

Above a geometrically thin accretion disk around a black
hole, the electrons are acted on by a nonpotential radiation
force FL due to Thomson scattering. This was calculated by
BKB,

FL ¼ �R cos �r�L ¼ ðFLR;FL�; 0Þ ; ð1Þ

where a spherical coordinate system ðR; �; �Þ is used, and �L
is the ‘‘ pseudopotential ’’ of the radiation force, which may
be expressed as

�L ¼ �T
c

Z 1

rin

HðrÞr dr
R4 þ r4 þ 2R2r2 cos 2�ð Þ1=2

: ð2Þ

Here the disk thickness is neglected and the cylindrical
radius is r ¼ R cos �. The function H(r) is the radiative flux
emitted per unit area from one side of the disk. In the stan-
dard local accretion model,

HðrÞ ¼ 3

8�

GM _MM

r3
J ; ð3Þ

where J � 1� ðrin=rÞ1=2, and rin ¼ 3rS ¼ 6GM=c2 is the
inner radius of the disk for a nonrotating black hole of
Schwarzschild radius rS. In the disk plane, � ¼ �=2, the radi-
ative force is perpendicular to the disk,

FL� ¼ � �T
c
HðrÞ ¼ 3GMmp

r2
rin
r

L

LEdd
J ; ð4Þ

where

L ¼ GM _MM

2rin
; LEdd ¼ 4�cGMmp

�T
; ð5Þ

and �T is the Thomson cross section. Because of the interac-
tion of the radiation flux mainly with the electrons, the
accretion disk becomes positively charged up to a value
where the electrostatic attraction of the electrons balances
the radiation force. The vertical component of the electrical
field strength Eh in the disk plane is written as

E�ðrÞ ¼ � �T
c ej jHðrÞ ¼ �E0

L

LEdd

rin
r

� �3

J ; ð6Þ

where

E0ðMÞ � mpc4

12 ej jGM
� 1:76

M�

M
cgs � 528

M�

M

V

cm
: ð7Þ

Thus, the surface charge density of the disk is

�eðrÞ ¼
E�ðrÞ
2�

:

The influence of this charge on the structure and stability of
the accretion disk is negligible.

Both the gravitational and electrical forces have a poten-
tial, so that they cannot balance the nonpotential radiation
force. Because of the radiation and electric forces, electrons
move with respect to protons, which to a first approxima-
tion do not acquire the poloidal motion. Thus, a poloidal
electrical current is generated with an associated toroidal
magnetic field. The finite disk thickness may create poloidal
motion of all of the matter of the accretion disk, similar to
meridional circulation in rotating stars (Kippenhahn &
Thomas 1982). The absence of this circulation occurs for a
unique dependence of the rotational velocity over the disk
thickness,�(z).

To estimate the magnetic field strength, we write the elec-
tromotive force (EMF) as

E ¼ 1

e

I
FL � dl ¼ 1

e

ZZ
dS x

D

� FL � E�h ; ð8Þ

where h is the half-thickness of the disk. Thus, the stationary
current density is

Jst �
�eE

r
� �eE�h

r
; ð9Þ

where �e is the conductivity of the disk plasma. The station-
ary state results from a balance of the driving radiation
force against the ohmic diffusion of the magnetic field.

The stationary toroidal magnetic field (BKB) is

B�0 �
4�

c
Jsth � 4��e

c

E�h
2

r
: ð10Þ

In the radiation-dominated inner region of the standard �-
disk model, h can be written as

h ¼ 3
L

LEdd
Jrin ð11Þ

(Shakura 1972; Shakura & Sunyaev 1973). Finally, we
obtain the stationary value of toroidal magnetic field in the
disk,

B�0 �
36��e

c
E0

L

LEdd

� �3
rin
r

� �4

rinJ
3

¼ 12��eh

c
E0

L

LEdd

� �2
rin
r

� �4

J2 : ð12Þ

We next discuss the value of conductivity �e.
BKB considered different values of the plasma conductiv-

ity �e, namely, the conductivity owing to binary collisions
�Coul and the effective conductivity �eff derived by Vain-
shtein (1971),

�Coul � 3� 106T3=2 s�1; �eff ¼
�Coulffiffiffiffiffiffiffiffiffiffiffi
Rem0

p : ð13Þ

The magnetic Reynolds number in a turbulent plasma is
defined as

Rem0 �
4��Coulvth

c2
; ð14Þ
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where the turbulent velocity vt in an �-disk is vt ¼ �cs,
where cs ¼ p=�ð Þ1=2.

In addition to the values of equation (13), we consider the
conductivity in the presence of well-developed turbulence
(Bisnovatyi-Kogan &Ruzmaikin 1976),

�turb ¼ c2

4��hcs
¼ �Coul

Rem0
: ð15Þ

Estimations of the stationary field B�0 of equation (12) in
the radiation-dominated inner region of the disk around a
stellar mass black hole give values (BKB) for two cases in
equation (13) of B�0 � 1013 G for �e ¼ �Coul and B�0 � 108

G for �e ¼ �eff , with Rem0 � 3� 1010. For a turbulent con-
ductivity �e ¼ �turb, we obtain B�0 � 10 G for � ¼ 0:1.

The timescale �m for reaching the stationary field given by
equation (12) is determined by the self-induction of the disk.
This is equivalent to the ‘‘L over R time ’’ of circuit with
inductanceL and resistanceR. This timescale is equal to

�m ’ 4��ehr

c2
: ð16Þ

The crossing time of matter passing through the radiation-
dominated region of the disk is

tc �
r

vr
: ð17Þ

During the time tc there is linear growth of the magnetic field
after which the matter falls into the black hole. Thus, the
stationary value of the large-scale toroidal magnetic field is

B� � B�0
tc
�m

¼ 3
c

vr
E0

L

LEdd

� �2 rin
r

� �4

J2 : ð18Þ

For the case of a turbulent conductivity �e ¼ �turb, the
growth timescale of the magnetic field, using equations (15)
and (16), is equal to

� turbm � r

�cs
: ð19Þ

Taking into account that vr ¼ �csðL=LEddÞðrin=rÞ < �cs
and tturbm < tc, we find

B� ¼ Bturb
�0 � 3

c

�cs
E0

L

LEdd

� �
rin
r

� �3

J2 ; ð20Þ

where

cs ¼ 7� 109 cm s�1
� � L

LEdd

� �
rin
r

� �3=2

J :

The strength of the stationary toroidal magnetic field pro-
duced by the battery effect in the radiation-dominated
region of an accretion disk with the turbulent or higher con-
ductivity from equation (13) is equal to

B� � 22

�

M�
M

� �
rin
r

� �3=2

J : ð21Þ

At a distance r ¼ 3rin, we have

B� � 2

�

M�
M

� �
G : ð22Þ

This agrees with the findings of BKB. The corresponding
magnetic energy density is very much less than the energy

density associated with the turbulent motion in the disk
�v2t =2.

3. PRODUCTION OF A POLOIDAL MAGNETIC FIELD
IN OPTICALLY THIN ACCRETION FLOWS BY THE

POYNTING-ROBERTSON EFFECT

In optically thin accretion flows (Shapiro et al. 1976; Ichi-
maru 1977; Narayan & Yi 1995), the radiation flux interacts
with the in-spiraling matter by the PR effect (Robertson
1937). Analysis by Shakura (1972) showed that the PR effect
was negligible for optically thick accretion disks. CK
studied the PR effect as a mechanism for generating poloidal
magnetic field in an optically thin accretion flow. They con-
cluded that dynamically important magnetic field strengths
could result from this effect. Here we reconsider the PR
effect for quasi-spherical ADAFs (Narayan &Yi 1995).

The linear growth of the magnetic field due to the radia-
tive force on the electrons found by CK is similar to that
analyzed by BKB, but the PR effect implies an additional
(small) numerator, ðv�=cÞ. In addition, for a quasi-spherical
accretion flow the characteristic scale is r instead of h, and
the quasi-spherical luminosity is L/(4�r2) instead of H in
equation (3). Then, using equations (10), (16), and (18), we
obtain the rate of growth of the poloidal magnetic field due
to the PR effect, which is equivalent to the expression
obtained by CK,

Bz � Bz0
t

�m
¼ E0

3�

L

LEdd

� �
rin
r

� �2 tvr
r

� �
: ð23Þ

Here E0 is defined in equation (6) and rin in equation (3).
Now it is essential to take into account that an element of

matter with the induced magnetic field reaches the black
hole in time tc � r=vr. (The magnetic field behavior near the
black hole horizon is discussed in x 4.) This means that the
magnetic field grows only during the time tc. Consequently,
the magnetic field reaches a maximum value

Bz �
E0

3�

L

LEdd

rin
r

� �2

� 0:7

�

L

LEdd

M�
M

rin
r

� �2

: ð24Þ

Taking into account that for optically thin accretion the
luminosity isd10�3LEdd, and taking � ¼ 0:1, we get a max-
imum value of the magnetic field created by the PR effect in
an ADAF to a black hole,

Bz � 7� 10�3 M�

M

� �
G : ð25Þ

This estimate of the field is about 10 orders of magnitude
less than the value obtained by CK. The difference in the
estimates results from the fact that CK assume that mag-
netic flux accumulates continuously near the black hole dur-
ing a long time, reaching the equipartition with the kinetic
energy. The accumulation actually occurs only during the
time the plasma (which carries the field or current loops)
takes to move inward to the black hole horizon (Bisnovatyi-
Kogan & Ruzmaikin 1976). The current loops created by
the PR effect disappear as the matter approaches the hori-
zon (see x 4). In the case of accretion onto a neutron star or
a white dwarf, matter containing the current loops merges
with the stellar matter, which is typically much more
strongly magnetized. After merging, the matter becomes
optically thick, the action of PR effect stops, penetration of
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matter into the magnetosphere of the star occurs, and inter-
action of the accretion flux with the stellar surface takes
place.

4. MAGNETIC FIELD GENERATION IN THE
VICINITY OF THE SCHWARZSCHILD RADIUS

Here we consider the PR magnetic field generation on the
accretion flow near a Schwarzschild black hole. The accret-
ing matter is assumed to move radially toward the black
hole with velocity vr. As before we consider the case of high-
conductivity matter where tm4tc. In a nonaccreting flow,
the magnetic field can grow linearly with time as accepted
by CK. As mentioned above, there is an important relativis-
tic effect close to the black hole: current loops in the accret-
ing matter that approach the horizon of a black hole cannot
produce a magnetic field visible by an external observer.
This effect is related to the damping of the magnetic field in
a collapsing star (Ginzburg &Ozernoi 1964).

The azimuthal force and the corresponding azimuthal
electric field due to the PR effect are

FPR ¼ L�T
4�cr2

v�0
c

sin �; E
ðphÞ
� ¼ 1

ej jF
PR
� ; ð26Þ

where

v�0 ¼ A

ffiffiffiffiffiffiffiffiffi
GM

r

r
; A � 1 ; ð27Þ

and where the (ph) superscript indicates the physical value
of the field component. Note that in a strictly spherical
accretion flow there is no azimuthal EMF. However, in the
approximate model considered here the infalling matter
rotates relatively slowly so that the PR force affects the
radial inflow only slightly.

We assume a Schwarzschild metric,

ds2 ¼ g00c
2 dt2 þ g11 dr

2 þ g22 d�
2 þ g33 d�

2 ; ð28Þ

where

g00 ¼ 1� rg
r

� �
; g11 ¼ � 1� rg

r

� ��1

;

g22 ¼ �r2; g33 ¼ �r2 sin2 � ;

and rg � 2GM=c2. The matter is free-falling in the radial
direction with the nonzero components of a four-velocity

u0 ¼ 1� rg
r

� ��1

; u0 ¼ 1 ;

ur ¼ �
ffiffiffiffi
rg
r

r
; ur ¼

ffiffiffiffi
rg
r

r
1� rg

r

� ��1

: ð29Þ

In any four-dimensional spacetime with metric gik (Latin
indices takes values 0, 1, 2, 3), the electric E� and magnetic
B� fields (Greek indices run over the values 1, 2, 3) in three-
space are defined through the antisymmetric electromag-
netic field tensor Fik ¼ �Fki, with zero diagonal compo-
nents (Lichnerowicz 1967; Landau &Lifshitz 1988),

B� ¼ � 1

2
ffiffiffi
�

p "�	�F	�; E� ¼ F0� ;

F�	 ¼ � ffiffiffi
�

p
"�	�B

� ; ð30Þ

where "�	� � "�	� is the three-dimensional Levi-Civitta ten-
sor ð"123 ¼ 1Þ and � is the determinant of the three-dimen-
sional metric tensor, obtained by splitting the metric tensor
gik into space (��	) and time (h) parts as

��	 ¼ �g�	 þ
g0�g0	
g00

; h ¼ g00 : ð31Þ

For the Schwarzschild metric (eq. [28]), ��	 ¼ �g�	. The
first pair ofMaxwell’s equations can be written as

Fik;l þ Fli;k þ Fkl;i ¼ 0

or

1

c

@ð ffiffiffi
�

p
B�Þ

@t
þ "�	�

@E�
@x	

¼ 0;
@ð ffiffiffi

�
p

B�Þ
@x�

¼ 0 : ð32Þ

Note that the physical r and h components of the magnetic
field in this reference frame are �g11ð Þ1=2Br and �g22ð Þ1=2B�,
respectively. Thus, the dimensions of Bh are length times Br.

In a perfectly conducting medium moving with four-
velocity ui, we have Fikuk ¼ 0, which corresponds to a van-
ishing electric field in the comoving frame. This gives

E� ¼ � ffiffiffiffiffiffiffi�g
p

"�	�
v	

c

� �
B� : ð33Þ

In the presence of an externally imposed electric field Eext
� ,

the electrical field E� is

E� ¼ � ffiffiffiffiffiffiffi�g
p

"�	�
v	

c

� �
B� � Eext

� : ð34Þ

The three-velocities v� are given by

v� ¼ c dx�ffiffiffi
h

p
dx0

; dx0 ¼ c dt ; ð35Þ

u� ¼ v�

c
1� v2

c2

� ��1=2

; ð36Þ

where

u0 ¼ 1ffiffiffi
h

p 1� v2

c2

� ��1=2

; v2 ¼ ��	v
�v� ¼ v�v

� :

Substituting equation (34) into equation (32) gives the fol-
lowing equation for the magnetic field B�:

@ð ffiffiffi
�

p
B�Þ

@t
¼ @

@x	
ffiffiffiffiffiffiffi�g

p
B	v� � B�v	
� �� 	

þ "�	�
@Eext

�

@x	
c ; ð37Þ

@

@x�
ffiffiffi
�

p
B�

� �
¼ 0 : ð38Þ

For the Schwarzschild metric (eq. [28]) ðx0; x1; x2; x3Þ ¼
ðct; r; �; �Þ, it follows from equations (29), (35), and (36) that
v� ¼ ðvr; 0; 0Þ and

vr ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffi
1� rg

r

r
ur ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffi
1� rg

r

r ffiffiffiffi
rg
r

r
; ð39Þ

where v2=c2 ¼ rg=r. The value of h, the determinant g of the
four-metric tensor gik, and the determinant � of the metric
tensor ��	 in the Schwarzschild metric are

h ¼ 1� rg
r
;

ffiffiffiffiffiffiffi�g
p ¼ r2 sin �;

ffiffiffi
�

p ¼ 1� rg
r

� ��1=2

r2 sin � : ð40Þ
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With B� ¼ ðBr;B�; 0Þ and Eext
� ¼ ð0; 0; Eext

� Þ, and with
all quantities independent of the azimuthal angle �, equa-
tions (37) and (38) give

@ð ffiffiffi
�

p
BrÞ

@t
þ

ffiffiffi
h

p
vr
@ð ffiffiffi

�
p

BrÞ
@r

¼ c
@Eext

�

@�
; ð41Þ

@
ffiffiffiffiffiffiffi�g

p
vrB�

� �
@t

þ
ffiffiffi
h

p
vr
@

ffiffiffiffiffiffiffi�g
p

vrB�
� �

@r
¼ �cvr

ffiffiffi
h

p @Eext
�

@r
; ð42Þ

@

@r

ffiffiffi
�

p
Br

� �
þ @

@�

ffiffiffi
�

p
B�

� �
¼ 0 : ð43Þ

Equations (41) and (42) with known right-hand sides are
solved using the method of characteristics.

The integrals of the equations for the characteristics can
be written as

t�
Z r

r0

drffiffiffi
h

p
vr

¼ C1 ; ð44Þ

ffiffiffi
�

p
Br � c

Z r

r0

@Eext
�

@�

dr

vr
ffiffiffi
h

p ¼ C2 ; ð45Þ

ffiffiffiffiffiffiffi�g
p

vrB� þ c

Z r

r0

@Eext
�

@r
dr ¼ C3 : ð46Þ

The constants Ci are determined by the initial conditions.
For the present problem these are

Br ¼ B� ¼ 0; r ¼ r0 at t ¼ 0 ;

which implies Ci ¼ 0. In the general case the constants C2,
C3 are determined by the initial values of Br, Bh, which
should satisfy the zero divergence condition given by equa-
tion (43). We may in general take C1 ¼ 0, fixing the refer-
ence frame r ¼ r0 at t ¼ 0. With account of equations (39)
and (40), equations (45) and (46) can be written as

Br ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
r� rg

p

r5=2
ffiffiffiffi
rg

p
sin �

@

@�

Z r

r0

Eext
�

r3=2 dr

r� rg

� �
; ð47Þ

B� ¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffi
r� rg

p ffiffiffiffi
rg

p
sin �

Eext
� ðr; �Þ � Eext

� ðr0; �Þ
� 	

: ð48Þ

Carrying out the integration in equation (44) with C1 ¼ 0
gives a relation between t, r, and r0 in the form

ct

rg
þ 2

3
x3=2 þ 2x1=2 þ ln

ffiffiffi
x

p
� 1ffiffiffi

x
p

þ 1

¼ 2

3
x
3=2
0 þ 2x

1=2
0 þ ln

ffiffiffiffiffi
x0

p � 1ffiffiffiffiffi
x0

p þ 1
; ð49Þ

where x ¼ r=rg and x0 ¼ r0=rg (Bisnovatyi-Kogan & Ruz-
maikin 1974).

Consider now the PR EMF, Eext
� ðr; �Þ. First we show that

Eext
� must tend to zero as r ! rg at least as fast as (r� rg) in

order to avoid singularity at rg. This means that in the
comoving reference system with metric

ds2 ¼ c2 d�2 � rg
r
d�2 � r2 d�2 þ sin2 � d�2

� �
; ð50Þ

there is no singularity at the black hole horizon. The con-
nection between Schwarzschild and comoving coordinates

(� , �) (the angle coordinates h and � are the same) is

c� ¼ ctþ rg 2
ffiffiffi
x

p
þ ln

ffiffiffi
x

p
� 1ffiffiffi

x
p

þ 1

� �
;

� ¼ ctþ rg
2

3
x3=2 þ 2x1=2 þ ln

ffiffiffi
x

p
� 1ffiffiffi

x
p

þ 1

� �
: ð51Þ

We can now connect the magnetic field in a comoving sys-
tem �BB� ¼ ð�BB�; �BB�; 0Þwith the field in the Schwarzschild sys-
tem in terms of Schwarzschild variables (r, t) as

�BB� ¼ rffiffiffiffiffiffiffiffiffiffiffiffi
r� rg

p ffiffiffiffi
rg

p Br ;

�BB� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r� rg

p ffiffi
r

p B� þ
ffiffiffiffi
rg
r

r
Eext
�

rðr� rgÞ sin �
: ð52Þ

It follows from equations (47), (48), and (52) that there is no
singularity in the comoving frame if Eext

� tends to zero as
ðr� rgÞ or faster as r ! rg. The metric tensor in this system
(eq. [50]) is regular on the horizon, so with finite �BB� all four-
invariants (e.g., FikF

ik) are also regular there. In fact, we can
obtain the dependence of Eext

� from equation (26), taking
into account that the covariant component Eext

� in equations
(41) and (42) is connected with the physical component
E

ðphÞ
� from equation (26) as

Eext
� ¼ ffiffiffiffiffiffiffi

���
p

E
ðphÞ
� ¼ r sin �E

ðphÞ
� : ð53Þ

The luminosity L seen by a distant observer viewing collaps-
ing matter with constant comoving luminosity L0 is

L ¼ L0 1� rg
r

� �4

ð54Þ

(Zeldovich &Novikov 1971). Thus, we have from equations
(26), (27), (53), and (54)

Eext
� ¼ Dr�3=2 1� rg

r

� �4

sin2 � ; ð55Þ

where

D ¼ L0�TA
ffiffiffiffiffiffiffiffiffi
GM

p

4�c2 ej j : ð56Þ

Equation (55) is of course simplified, but it allows an esti-
mate to be made of the magnetic field generation by the PR
effect close to a black hole. It is necessary that E

ðphÞ
� vanishes

sufficiently rapidly at the horizon in order to avoid a physi-
cal singularity, but the exact dependence is not important.

Substituting equation (55) into equations (41) and (42)
gives

Br ¼ 2Dffiffiffiffi
rg

p
ffiffiffiffiffiffiffiffiffiffiffiffi
r� rg

p

r5=2

"
ln
r0
r
� 1

3

rg
r

� �3

þ 3

2

rg
r

� �2

� 3
rg
r
þ 1

3

rg
r0

� �3

� 3

2

rg
r0

� �2

þ3
rg
r0

#
cos � ; ð57Þ

B� ¼ Dffiffiffiffi
rg

p
r

ffiffiffiffiffiffiffiffiffiffiffiffi
r� rg

p
1

r3=2
1� rg

r

� �4

� 1

r
3=2
0

1� rg
r0

� �4
" #

sin � :

ð58Þ
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There are several limiting cases in which expressions for Br

and Bh can be written in a simpler form.
Nonrelativistic, Newtonian regime.—Here r; r04rg, and

from equation (49) we have

x0 ¼ x 1þ 3

2x3=2
ct

rg

� �2=3

; ð59Þ

and from equations (57) and (58),

Br ¼ 4D cos �

3r2
ffiffiffiffi
rg

p ln 1þ 3

2x3=2
ct

rg

� �
; ð60Þ

B� ¼ D sin �

r3
ffiffiffiffi
rg

p 1� 1þ 3

2x3=2
ct

rg

� ��1
" #

: ð61Þ

We see here that for large t the physical value rBh tends to a
finite limit of the order of equation (24), while Br grows but
only logarithmically. During the accretion time to a massive
black hole this logarithm does not exceed �25. Thus, the
magnetic field is larger by a factor of �25 than the estima-
tions of equations (24) and (25). Still, the magnetic field is
enormously less than the value found by CK.

Vicinity of the gravitational radius.—Here ðx� 1Þ5 1,
and we have from equation (49)

x� 1 ¼ 4
x0 � 1ffiffiffiffiffi
x0

p þ 1
� �2 exp � ct

rg
� 8

3
þ 2

3
x
3=2
0 þ 2x

1=2
0

� �
: ð62Þ

For matter initially situated in the vicinity of the horizon
the Lagrangian x0 coordinate satisfies x0 � 15 1. In this
case we have

ln
x0 � 1

x� 1
¼ ct

rg
: ð63Þ

From equation (57),

Br ¼ D cos �

2r
5=2
g

ðx� 1Þ9=2 exp
4ct

rg

� �
� 1


 �
: ð64Þ

From equation (58),

B� ¼ �D sin �

r
7=2
g

ðx� 1Þ7=2 exp
4ct

rg

� �
� 1


 �
: ð65Þ

These relations are valid also at large t provided that
ðx� 1Þect=rg5 1.

For matter with an intermediate Lagrangian coordinate,
ðx0 � 1Þ � 1, the vicinity of the horizon rg is reached only at
very large t, so that

Br ¼ 2D cos �

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

r
5=2
g

�
ln x0 �

11

6
þ 1

3x30
� 3

2x20
þ 3

x0

�
;

ð66Þ

B� ¼ � D sin �

r
7=2
g

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
ðx0 � 1Þ4

x
11=2
0

: ð67Þ

We see that in the vicinity of the horizon ðx� 1Þ5 1 for
matter with an intermediate x0, ðx0 � 1Þ � 1, the compo-
nent Bh in the Schwarzschild coordinates diverges. How-
ever, this is a natural coordinate singularity, which means
only that a Schwarzschild observer cannot exist physically

in this region. Consequently, the magnetic field in Schwarzs-
child coordinates has observable consequences only in the
region x41, r4rg.

Matter at a very large Lagrangian radius reaches the
vicinity of the gravitational radius at very late times. Con-
sider a case with

x0 � 14x; x� 15 1 : ð68Þ

Here, for ct=rg4 lnðx� 1Þj j, we have x0 ¼ ð3ct=2rgÞ2=3 and

Br ¼ 4D cos �

3r
5=2
g

ðx� 1Þ1=2 ln 3ct

2rg

� �
: ð69Þ

If we assume, in addition, that x04ðx� 1Þ�8=3, we obtain

B� ¼ D sin �

r
7=2
g

ðx� 1Þ7=2 : ð70Þ

From a comparison of the asymptotic relations given by
equations (64)–(69), we see that for r approaching rg, the
Schwarzschild component Br grows exponentially with time
very close to the horizon while remaining zero at the hori-
zon. For larger r it grows logarithmically, which is the
dependence in the Newtonian domain. The Schwarzschild
componentBh has the mentioned singularity on the horizon,
which is unobservable because a physically realizable
observer cannot measure it. However, at any fixed value of r
close enough to rg, the temporal behavior of the Bh can be
obtained from equations (65), (67), and (70). In this region
Bh starts to grow exponentially with time, but at long times
it tends to a constant value. This component rapidly
decreases with increasing r.

It is of interest to determine the magnetic field ‘‘ seen ’’ by
an observer located far from the black hole who measures
the field near the gravitational radius by means of the cyclo-
tron radiation coming from this region. The observer deter-
mines the field strength by measuring the cyclotron
frequency of the radiation. The frequency of the emitted
radiation is determined by the comoving field strength, that
is, by �BB� and �BB� from equation (52) evaluated in the vicinity
of rg. We now obtain estimates of these fields. It follows
from equation (62) that matter with Lagrangian coordinate
x0 approaches the horizon as t ! 1. The coordinate x0
parameterizes the horizon points, and the radial coordinate
x parameterizes points of the initial hypersphere t ¼ 0.
From equations (52), (57), (58), (66), and (67) we obtain the
comoving fields in this region,

�BB� ¼ 2D cos �

r
5=2
g

�
ln x0 �

11

6
þ 1

3x30
� 3

2x20
þ 3

x0

�
; ð71Þ

�BB� ¼ �D sin �

r
7=2
g

ðx0 � 1Þ4

x
11=2
0

: ð72Þ

It is easy to verify that for any value of r0, rg < r0 <1, we
have

�BB� <
2D cos �j j

r
5=2
g

ln x0 : ð73Þ

For accretion to a stellar mass or massive black hole the log-
arithmic factor does not exceed �25, and the value of �BB�

remains of the same order of magnitude as the Schwarzs-
child component Br in the Newtonian region, equation (60)
at large times, formally extrapolated to r � rg. The poloidal
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component �BB�, given by equation (72), is equal to zero at
r0 ¼ rg and r0 ¼ 1 and has a maximum at r ¼ 11rg=3.
Thus,

�BB� < �BB�
�� ��

max
¼ 
D sin �

r
7=2
g

; ð74Þ

where 
 ¼ ð338811�11Þ1=2 � 0:04. Therefore, the possible
values of �BB� are less than the Newtonian value of the
Schwarzschild component Bh (eq. [61]) at large times near
rg.

The proper cyclotron frequency !0 of radiation emitted at
(r, t), but measured with respect to the comoving time, is

!0 ¼
ej j
mc

ffiffiffiffi
rg
r

r
�BB�

� �2þr2 �BB�
� �2
 �1=2

; ð75Þ

where m is the electron rest mass. Using equations (73) and
(74), we obtain an estimate for the upper limit on this
frequency,

ð!0Þmax �
D ej j

ffiffiffi
2

p

mcr
5=2
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2 x0 þ


2

4

s
: ð76Þ

The frequency measured by a distant observer ! is related to
!0 as

! ¼ !0

ffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
1� v cos =c

; ð77Þ

where v=c ¼
ffiffiffiffiffiffiffiffiffi
rg=r

p
and  is the angle between v� (which is

in the negative r-direction) and the direction of the photon
trajectory in Schwarzschild coordinates. For a radially emit-
ted photon ( ¼ �) we have from equation (77)
! ¼ !0ð1�

ffiffiffiffiffiffiffiffiffi
rg=r

p
Þ near the horizon, and for the tangential

direction ( ¼ �=2) we have ! ¼ !0ð1� rg=rÞ. As a result of
the upper limit on !0, a distant observer does not see the
light emitted very close to the horizon because of the very
large redshift. Thus, for a distant observer the relativistic
region close to the horizon is unobservable.

Therefore, we conclude that the magnetic field produced
by the PR effect close to the horizon of a black hole can be

safely estimated using the Newtonian approximation given
by equations (60) and (61). The estimated magnetic fields
are dynamically insignificant.

5. CONCLUSION

We have reconsidered the battery effect in accretion flows
due to the nonpotential nature of the radiation force on the
electrons. We considered cases of a geometrically thin, opti-
cally thick disk where a toroidal magnetic field is generated
and a geometrically thick, optically thin ADAF where a po-
loidal magnetic field is generated as a result of the PR effect.
For a stellar mass black hole the generated toroidal field is
estimated to bed10 G, while the poloidal field in an ADAF
is d0.01 G. The fields vary inversely with the black hole
mass. In both cases the fields are dynamically insignificant.
The very large fields obtained by CK resulted from assum-
ing unrestricted linear growth of the magnetic field. The
field grows only during the accretion time. A general relativ-
istic treatment of the PR-generated magnetic field close to
the horizon of a black hole shows that the field magnitude
may be larger by a factor of d25 than the values obtained
with a nonrelativistic treatment. Even though the magnetic
field due to the radiation force is weak, it may have a role as
a seed field for an �-! dynamo (see, e.g., Brandenburg et al.
1995; Colgate et al. 2001). The importance of the seed field
may depend on its symmetry; for example, the dipole sym-
metry of the poloidal seed field in the ADAF may not cou-
ple to the typically most unstable quadrupolar mode of the
�-! dynamo.
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APPENDIX A

EQUATION FOR POLOIDAL MAGNETIC FIELD DUE TO PR EFFECT

Here we treat in more detail the influence of the azimuthal radiation force FPR
� , which is rotational and cannot be balanced

by any axisymmetric electrostatic field. The radiation is mainly from the central region of the flow so that the radiation flux
density is S � L=ð4�R2Þ, where L is the accretion luminosity and R is the distance from the origin. The PR radiation force on
an electron is FPR

� ¼ �S�Tv�=c2, where �T is the Thomson cross section and v� is the azimuthal velocity of the accreting mat-
ter. Including the radiation force, Ohm’s law for the plasma is

J ¼ �e EPR þ E þ v�
B

c

� �
; ðA1Þ

where �e is the electrical conductivity and EPR ¼ �̂�S�Tv�=ð ej jc2Þ is the PR electric field.
Combining Faraday’s and Ampere’s laws and equation (A1) gives

d�

dt
� @�

@t
þ v x

D

� ¼ crEPR
� þ �eD

�� ; ðA2Þ

where �e ¼ c2=ð4��eÞ is the magnetic diffusivity and� ¼ rA� is the flux function, with A� being the toroidal component of the
vector potential. In addition, D� ¼ @2=@r2 � ð1=rÞ@=@rþ @2=@z2 in cylindrical coordinates and D� ¼ @2=@R2 þ
½ð1� l2Þ=R2�@2=@l2 in spherical coordinates where l ¼ cos �. Note that Br ¼ �ð1=rÞ@�=@z and Bz ¼ ð1=rÞ@�=@r in cylindri-
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cal coordinates, while BR ¼ ðR2 sin �Þ�1@�=@� and B� ¼ �ðR sin �Þ�1@�=@R in spherical coordinates. Taking v� ¼
ðGM=RÞ1=2gð�Þ, with gð�=2Þ ¼ 1 and gð�! 0; �Þ ¼ 0, we find

EPR
� ¼ mpc2g

63=2 ej j
L

LEdd

r
3=2
in

R5=2
� 2gE0

63=2
L

LEdd

rin
R

� �5=2

; ðA3Þ

where E0(M) is given by equation (7). Equation (A2) is equivalent to equation (8) of CK.
For an ADAF, the poloidal velocity is vR ¼ ���ðGM=RÞ1=2, where � is the Shakura-Sunyaev parameter and �d1 is a con-

stant (Narayan & Yi 1995). Following CK we write �e ¼ PR vRj j, whereP, the magnetic Prandtl number, is the ratio of mag-
netic diffusivity to viscosity. Measuring R in units of rin and t in units of t0 ¼ r

3=2
in =½�� GMð Þ1=2� ¼

ffiffiffi
6

p
ðrin=cÞ=ð��Þ, equation

(A2) becomes

@�

@t
¼ Kgð�Þ sin �

R3=2
þ 1ffiffiffiffi

R
p @�

@R
þP

ffiffiffiffi
R

p @2�

@R2
þ 1� l2

R2

@2�

@l2

� �
; ðA4Þ

whereK � r2inE0ðL=LEddÞ=ð3��Þ.
The timescale of the linear growth of� is �m ¼ t0=P. For a turbulent magnetic diffusivity whereP ¼ Oð1Þ, this timescale is

quite short,�t0 � ð7:3� 10�4 sÞðM=M�Þð0:1=�Þð1=�Þ. Therefore, the physically relevant solution to equation (A4) is the sta-
tionary one where the PR term /K is balanced by diffusion. This gives Kgð�Þ sin � ¼ �Pð1� l2Þ@2�=@l2 so that � is inde-
pendent ofR. For example, for gð�Þ ¼ sinð�Þ,BR ¼ ðK=PÞ cos �=R2 or

BPR
R � 0:6

�

cos �

�P

L

LEdd

M

M�

rin
R

� �2

G ; ðA5Þ

and B� ¼ 0. This estimate agrees with equation (24). Equation (A5) corresponds to a radially outward field in the northern
hemisphere and a radially inward field in the southern hemisphere. The polarity of the field agrees with the PR drag on the elec-
trons in the��̂� direction giving a ring current in the +�̂� direction, while the simple nature of the field results from the approxi-
mation that S � L=ð4�R2Þ

APPENDIX B

FOUR-VECTOR E AND B FIELDS

The field evolution during free-fall accretion without an external EMF was solved by Bisnovatyi-Kogan & Ruzmaikin
(1974), using only four-vector magnetic field Bi,

Bi ¼ 1

2
ffiffiffiffiffiffiffi�g

p "iklmukFlm; Bkuk ¼ 0: ðB1Þ

For conditions of high (infinite) conductivity, the four-vector electric field is

Ei ¼ Fikuk ¼ 0; Ei ¼ Fiku
k ¼ 0: ðB2Þ

The equation for the magnetic field can be written in the form

@

@xk
ffiffiffiffiffiffiffi�g

p
Biuk � Bkui
� �� 	

¼ 0 ðB3Þ

(Lichnerowicz 1967). For radial free fall in the absence of a toroidal field (B� ¼ 0), the equations following from equation (B3)
are

d

dt

ffiffiffiffiffiffiffi�g
p

u�1
0 Br

� �
¼ 0;

d

dt

ffiffiffiffiffiffiffi�g
p

urB�
� �

¼ 0; ðB4Þ

with d=dt ¼ @=@tþ cður=u0Þ@=@r. The connection between the three-vectors B�, E� and the four-vector Bi is

Br ¼ Br 1� rg
r

� ��1=2

; B� ¼ B� 1� rg
r

� ��1=2

�
ffiffiffiffi
rg
r

r
E�

r2 sin �
1� rg

r

� ��1

; ðB5Þ

B0 ¼ �Br

ffiffiffiffi
rg
r

r
1� rg

r

� ��3=2

; B� ¼ 0: ðB6Þ
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