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ABSTRACT

Magnetohydrodynamic (MHD) simulations have been used to study disk accretion to a rotating
magnetized star with an aligned dipole moment. Quiescent initial conditions were developed in order to avoid
the fast initial evolution seen in earlier studies. A set of simulations was performed for different stellar mag-
netic moments and rotation rates. Simulations have shown that the disk structure is significantly changed
inside a radius rbr where magnetic braking is significant. In this region the disk is strongly inhomogeneous.
Radial accretion of matter slows as it approaches the area of strong magnetic field, and a dense ring and fun-
nel flow (FF) form at the magnetospheric radius rm, where the magnetic pressure is equal to the total, kinetic
plus thermal, pressure of the matter. FFs, where the disk matter moves away from the disk plane and flows
along the stellar magnetic field, are found to be stable features during many rotations of the disk. The domi-
nant force driving matter into the FF is the pressure gradient force, while gravitational force accelerates it as
it approaches the star. The magnetic force is much smaller than the other forces. The FF is found to be
strongly sub-Alfvénic everywhere. The FF is subsonic close to the disk, but it becomes supersonic well above
the disk. Matter reaches the star with a velocity close to that of free fall. Angular momentum is transported
to the star dominantly by the magnetic field. In the disk the transport of angular momentum is mainly by the
matter, but closer to the star the matter transfers its angular momentum to the magnetic field, and the mag-
netic field is dominant in transporting angular momentum to the surface of the star. For slowly rotating stars
we observed that magnetic braking leads to the deceleration of the inner regions of the disk, and the star spins
up. For a rapidly rotating star, the inner regions of the disk rotate with a super-Keplerian velocity, and the
star spins down. The average torque is found to be zero when the corotation radius rcor � 1:5rm. The evolu-
tion of the magnetic field in the corona of the disk depends on the ratio of magnetic to matter energies in the
corona and in the disk. Most of the simulations were performed in the regime of a relatively dense corona
where the matter energy-density was larger than the magnetic energy-density. In this case the coronal mag-
netic field gradually opens, but the velocity and density of outflowing matter are small. In a test case where a
significant part of the corona was in the field-dominated regime, more dramatic opening of the magnetic field
was observed with the formation of magnetocentrifugally driven outflows. Numerical applications of our
simulation results are made to T Tauri stars. We conclude that our quasi-stationary simulations correspond
to the classical T Tauri stage of evolution. Our results are also relevant to cataclysmic variables and
magnetized neutron stars in X-ray binaries.

Subject headings: accretion, accretion disks — magnetic fields — plasmas — stars: magnetic fields —
X-rays: stars

On-line material: color figures

1. INTRODUCTION

Disk accretion to a rotating magnetized star is important
in a number of astrophysical objects, including T Tauri stars
(Edwards et al. 1994), cataclysmic variables (e.g., Warner
1995), and X-ray pulsars (e.g., Bildsten et al. 1997).

The accretion of matter to a rotating star with a dipole
magnetic field is a complicated problem still only partially
solved. The important questions that need to be answered
include (1) What is the structure of the disk near the mag-
netized star? (2) Where is the inner radius of the disk? (3)

What is the nature of the funnel flows (FFs)? For example,
which force is dominant in lifting matter to the funnel flow?
(4) How is the accretion rate influenced by the star’s mag-
netic moment l and angular velocity ��? (5) What is the
mechanism of angular momentum transport between the
star and the disk? What determines whether the star spins
up or spins down? and (6)What are the necessary conditions
for magnetocentrifugally driven outflows from the disk
and/or the star?

Many of these questions have been investigated analyti-
cally, but the conclusions reached by different authors often
differ because the simplifying assumptions are different. For
example, regarding question 2, some authors conclude that
the disk should be disrupted in the region where magnetic
and matter stresses are comparable (e.g., Pringle & Rees
1972, hereafter PR72; Davidson & Ostriker 1973; Lamb,
Pethick, & Pines 1973; Ghosh, Lamb, & Pethick 1977;
Scharlemann 1978; Ghosh & Lamb 1979a, 1979b, hereafter
GL79a, GL79b; Camenzind 1990; Königl 1991; Shu et al.
1994, hereafter S94). Others argue that the inner radius of
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the disk should be farther away, at the corotation radius,
because the inner regions of the disk are disrupted by mag-
netic braking (Ostriker & Shu 1995, hereafter OS95;
Brandenburg & Campbell 1998; Elstner &Rüdiger 2000).

Question 3 is investigated in only a few papers that use
the Bernoulli integral (Ghosh et al. 1977; Paatz & Camen-
zind 1996, hereafter PC96; Li &Wilson 1999; Koldoba et al.
2002). The authors agree that the flow should become super-
sonic (and slow magnetosonic) just above the disk. On the
other hand, opinions differ regarding the driving force that
pushes matter up into the FF. Li & Wilson (1999; see also
Li, Wickramasinghe, & Rüdiger 1996) propose that the
twisting of the magnetic field near the base of the FF should
be very large, �� ¼ jB�j=Bp41, and the magnetic force
should be the main one lifting matter to the FF. Here B� is
the toroidal component of the magnetic field, and Bp is the
poloidal component. Other groups (e.g., Ghosh et al. 1977;
PC96; Koldoba et al. 2002) argue that the FF should be
super-Alfvénic so that the twisting of the field is small so
that the magnetic force is also small. In numerical simula-
tions by MS97, Hirose et al. (1997, hereafter H97), and
GBW99, magnetospheric accretion was reported, but no
clear evidence of funnel flows was presented, and no analy-
sis of FFs was performed. A significant part of this paper is
devoted to the FFs. Another important issue that has been
discussed over the past 30 years is question 5, concerning
the transport of angular momentum between the disk and
the star. What determines the sign of the torque on the star?
In early papers it was supposed that a star can only be spun
up because matter in a Keplerian disk brings positive angu-
lar momentum to the star (e.g., PR72). Later, it was recog-
nized that a star can be spun down because of the part of the
star’s magnetic flux that passes through the disk outside of
the corotation radius (GL79b; Wang 1995). Recently, the
idea of ‘‘ torqueless ’’ accretion was proposed, where mass
but not angular momentum is transported to a star (e.g.,
S94; OS95; Li et al. 1996; Li & Wickramasinghe 1997).
Wang(1997) presented arguments against this idea, but this
still remains an open question.

Question 6, regarding magnetocentrifugally driven out-
flows from the disk, has been discussed by a number of
authors (e.g., Camenzind 1990; Königl 1991; S94; OS95;
Lovelace, Romanova, & Bisnovatyi-Kogan 1995, hereafter
LRBK95; Fendt, Camenzind, & Appl 1995; PC96; Good-
son & Winglee 1999; Bardou 1999; Agapitou & Papaloizou
2000). For example, S94 proposed that poloidal magnetic
flux accumulates near the corotation radius and that mag-
netic winds should blow from this point (X-point). LRBK95
proposed that wind may form from the entire region of the
disk outside the corotation radius, where the magnetic field
threading the disk is open.

Analytical investigations of disk accretion to a mag-
netized star are of course limited by the different assump-
tions made. For this reason, robust two-dimensional and
three-dimensional simulations are essential to further the
understanding of the different phenomena. By robust we
mean that the result should not depend on initial conditions,
boundary conditions, grid resolution, and other artificial
factors. Several two-dimensional MHD simulation studies
have been made with different initial conditions aimed at
disk-star outflows. In an early work Hayashi, Shibata, &
Matsumoto (1996, hereafter HSM96) investigated the inter-
action of a nonrotating star with a Keplerian accretion disk
and observed the opening of magnetic field lines that ini-

tially thread both the star and the disk. They found single-
event outflows and the corresponding inward collapse of the
disk on a dynamical timescale (less than one period of rota-
tion of the inner radius of the disk), with the radial velocity
of the disk close to free fall. This fast evolution was the
result of the magnetic braking of the disk by the magnetic
field linking the disk and nonrotating star through a con-
ducting corona. This explosive behavior may correspond to
some episodic accretion events of actual systems. However,
it is important to investigate the possible quiescent behavior
of the disk-star systems.

Miller & Stone (1997, hereafter MS97) investigated
disk-star interaction for different geometries and stellar
magnetic fields using the resistive ZEUS code. MS97
rotated the corona—which occupies all the space between
the star and the disk—with the rotation rate of the star.
This decreased the initial magnetic braking (compared to
HSM96), so that they were able to perform simulations
for several periods of rotation of the inner radius of the
disk. In cases with a relatively weak magnetic field, they
got results similar to those of HSM96. They also found
the disk collapsing to the star with velocity �0:5vff , the
opening of magnetic field lines, and outflows of matter
from the disk. However, in the case of a strong magnetic
field, particularly in the case that included a uniform
homogeneous vertical magnetic field threading the disk,
they observed diminished outflows. Instead, the matter
flowed around the magnetosphere to the star. Similar
results were obtained by H97.

Goodson, Winglee, & Böhm (1997, hereafter GWB97)
and Goodson, Böhm, & Winglee (1999, hereafter GBW99)
did much longer simulations in very large simulation
regions. They observed quasi-periodic matter outbursts
associated with the quasi-periodic opening of magnetic field
lines and matter accretion to the star. The density in the
corona was chosen to decrease in a special way, 1=R4, so
that the Alfvén speed / B=

ffiffiffi
�

p / 1=R decreases gradually.
This is favorable for the opening of magnetic field lines and
for the generation and propagation of outflows. GWB97
and GBW99 do not investigate cases where the density falls
off more slowly with distance.

Fendt & Elstner (1999, 2000, hereafter FE99, FE00)
investigated disk-star interaction for thousands of rotations
of the inner radius of the disk and observed the opening of
magnetic field lines and outflows. However, they treated the
disk as a boundary condition, so they could not take into
account the back reaction of the disk on the stellar magnetic
field. Furthermore, the actual outflow of matter from the
disk to the corona may be different from that assumed.

The above mentioned simulation studies show that out-
flows appear either in very nonstationary situations
(HSM96;MS97) or for a special distribution of coronal den-
sity and very fast rotation of the star (GWB97; GBW99).
None of the papers give answer to questions 1–5. Also, it is
not clear whether or not outflows exist for more quiescent
initial conditions and for cases where the coronal density
falls off slowly with distance.

In this paper we investigate disk accretion to a rotating
magnetized star and the associated funnel flows. We start
from initial conditions that give us the possibility of signifi-
cantly reducing the initial magnetic braking between the
disk and the corona. This allows us to investigate the disk-
star interaction and funnel flows for long times and to
consider questions 1–5 in detail.
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In x 2 we describe the numerical model, including initial
and boundary conditions. We also discuss the evolution of
the disk without a magnetic field. In x 3 we describe in detail
the disk-star interaction for the case of slowly rotating stars
and, in x 4, cases of fast-rotating stars. In x 5 we consider the
dependence of disk-star interaction on the magnetic
moment l. In x 6 we analyze the physics of FFs. In x 7 we
consider the possibility of outflows. In x 8 we apply our
simulation results to T Tauri stars. In x 9 we give the con-
clusions from this work.5

2. NUMERICAL SIMULATIONS

To investigate the disk-star interaction, we numerically
solve theMHD equations:

@�

@t
þ

D

x ð�vÞ ¼ 0 ; ð1Þ

@ð�vÞ
@t

þ

D

xT ¼ �g ; ð2Þ

@B

@t
�

D

� ðv� BÞ ¼ 0 ; ð3Þ

@ð�SÞ
@t

þ

D

x ð�vSÞ ¼ 0 : ð4Þ

Here S is entropy, Tjk ¼ p�jk þ �vjvk þ ðB2�jk=2� BjBkÞ
=4� is the stress tensor, g ¼ �

D

� is the gravitational acceler-
ation, and � ¼ �GM=R is the gravitational potential of the
central object. We take the equation of state to be S ¼ p=�� ,
where � ¼ 5=3 for most of this work. We solve equations
(1)–(4) in a spherical coordinate system ðR; �; �Þ.

In order to model the slow accretion of matter in the disk,
we modified equations (2) and (4) by including a small vis-
cous stress �jk in Tjk. Because the flow is dominantly in the
azimuthal direction, the main viscous stress acts in this
direction. Thus, the important viscous stress components
are the ðR�Þ and ð��Þ terms, �R� ¼ ���R sin �@!=@R and
��� ¼ ��� sin �@!=@�, where ! ¼ v�=R sin � is the angular
velocity of the matter and � is the kinematic viscosity. We
adopt the 	-model for the viscosity (Shakura & Sunyaev
1973), where � ¼ 	c2s=�K , with cs ¼ ðp=�Þ1=2 the isothermal
sound speed velocity and 	5 1 a dimensionless parameter,
which was chosen to be 	 ¼ 0:01 or 	 ¼ 0:02 in most of sim-
ulations, which gave a reasonable speed of matter flow to
the central regions. We checked that for the grid sizes used
the numerical viscosity is much lower than the considered
	-viscosity (see x 2.5).

Equations (1)–(4) were solved with our Godunov-type
numerical code developed and tested by Koldoba, Kuznet-
zov, & Ustyugova (1992), Koldoba & Ustyugova (1994),
and Ustyugova et al. (1995). This type of scheme has also
been described by Ryu, Jones, & Frank (1995). The modi-
fied code with incorporated viscosity was tested in a number
of hydrodynamic simulations for different values of 	, from
	 ¼ 0:01 to 	 ¼ 0:1. For 	 � 0:01 0:05, we observed a
steady flow of matter to the star with small velocities (see
x 2.5), corresponding approximately to the Shakura-
Sunyaev accretion model.

2.1. Reference Values and Dimensionless Units

A reference value of distance is denoted R0. The reference
value for velocity is taken to be v0 ¼ ðGM=R0Þ1=2, which is
the Keplerian velocity at R0. The reference angular rotation
rate is !0 ¼ v0=R0, and the corresponding timescale is
t0 ¼ R0=v0. For discussing our results we also use the rota-
tion period at r ¼ R0, P0 ¼ 2�t0. For a given magnetic field
strength at R0, we can define a reference density �0 ¼ B2

0=v
2
0

and reference pressure p0 ¼ �0v
2
0. A reference magnetic

moment of the star is then l0 ¼ B0R
3
0. Thus, the calculated

variables are R0 ¼ R=R0, t0 ¼ t=t0, �0 ¼ �=�0, v0 ¼ v=v0,
B0 ¼ B=B0, and p0 ¼ p=p0. We also use the dimensionless
time T ¼ t=P0. Later we omit the primes, but note that any
dimensionless variable can readily be converted to its
physical value.

Here we give parameters for a typical T Tauri star. We
take the mass and radius of the star to beM� ¼ 0:8M� and
R� ¼ 2 R�. We use as the length scale R0 the initial inner
radius of the disk, so that the dimensionless inner radius of
the disk is Rd ¼ 1 in most of the simulations. We place the
inner boundary (a star) at Rmin ¼ 0:35. Then, our reference
length is R0 � R�=0:35 � 4:0� 1011 cm, while the simula-
tion region corresponds toRmax ¼ 55� R0 � 1:47 AU.

The reference velocity is v0 � 1:63� 107 cm s�1, and the
corresponding timescale is t0 � R0=v0 � 2:45� 104 s. The
period of rotation of the inner radius of the disk is P0 � 1:78
days.

Consider a magnetic field strength B� ¼ 103 G at the
star’s surface. Then at R ¼ R0, the reference magnetic field
is B0 ¼ B�ðR�=R0Þ3 � 42:9 G, and the reference magnetic
moment is l0 ¼ B0R

3
0 � 2:7� 1036 G cm3. The reference

density is �0 ¼ 6:9� 10�12 g cm�3, or n ¼ 6:93� 1012 cm�3,
which is typical for T Tauri star disks. The reference
mass accretion rate is _MM0 ¼ �0v0R

2
0 � 1:8� 1018 g s�1 �

2:8� 10�7 M� yr�1. The reference angular momentum flux
is _LL0 ¼ �0v

2
0R

2
0.

2.2. The Grid

We place the inner boundary of the simulation region—
the ‘‘ star ’’—at Rmin ¼ 0:35. The size of external boundary
depends on the grid (see below). The spherical grid was
inhomogeneous in the R-direction. The inhomogeneity was
such that cells at any distance R were approximately square
with DR � RD� for fixedD�. This grid gives a high space res-
olution close to the star, which is important in this problem.
At the same time, simulations in very large regions may be
performed. The inhomogeneous grid is a smooth analog of
the nested grids used by GWB97 and GBW99.

The angular grid was taken to haveN� ¼ 51 in most cases
and N� ¼ 71 in cases with very strong magnetic field (see
x 7). The number of points in the R-direction determined
the size of the simulation region. The main runs were done
with a large radial grid NR ¼ 150, which corresponds to
Rmax ¼ 55 � 157Rmin. Simulations with a smaller grid
NR ¼ 100 corresponding to Rmax ¼ 10 � 35Rmin were done
in a number of cases. The large size of the region was chosen
in order to minimize the influence of external boundaries on
processes in the vicinity of the star. We checked, however,
that results of simulations in the larger region almost coin-
cide with those in the smaller region. For the typical grid
with N� ¼ 51, the smallest cell near the star corresponds to
DR ¼ 0:01 � 0:03Rmin, which is a resolution about 3.2 times
higher than one in GBW99. The largest grid is at the exter-

5 Animation of some cases is presented at http://www.astro.
cornell.edu/us-russia/funnel.htm.
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nal boundary for NR ¼ 150 and is DR ¼ 5:4Rmin. These
numbers show that a spherical stretched grid is advan-
tageous for simulations of accretion flow to a star with a
dipole field.

2.3. Boundary Conditions

At the inner boundary R ¼ Rmin, we apply ‘‘ free ’’ boun-
dary conditions for the density, pressure, and entropy,
@�=@R ¼ 0, @p=@R ¼ 0, and @S=@R ¼ 0. The inner boun-
dary is treated as a rotating perfect conductor X ¼ �ẑz,
which is analogous to the case of a rotating disk discussed
earlier by Ustyugova et al. (1995, 1999). In the reference
frame rotating with the star, the flow velocity v is parallel to
B at R ¼ Rmin; that is, B� ðv�X� RÞ ¼ 0 at Rmin. We
consider the ‘‘ free ’’ boundary condition for this velocity,
@ðv�X� RÞR=@R ¼ 0. These two conditions determine
the direction and value of the velocity vector v, that is, all
three components ðvR; v�; v�Þ. The boundary condition at
Rmin on the magnetic field has @ðRB�Þ=@R ¼ 0, while the
poloidal components BR and B� are derived from the mag-
netic flux function �ðR; �Þ, where � at the boundary is
derived from the frozen-in condition @�=@tþ vp x

D

� ¼ 0.
At the outer boundaryR ¼ Rmax, we took fixed boundary

conditions for all variables for those cases when the simula-
tion region was very large: Rmax ¼ 55. In the case of smaller
region Rmax ¼ 10, we took free boundary conditions on all
the hydrodynamic variables and the B�-component of the
magnetic field, if matter outflows from the region. For
the magnetic field we took @B�=@R ¼ 0 and
@�=@tþ vp x

D

� ¼ 0: If matter inflows to the region
[vRðRmaxÞ < 0], then we set this velocity equal to zero.
Results are very similar at these boundary conditions. We
assume reflection symmetry about the equatorial plane.

2.4. Initial Conditions

Here we present our new method for establishing quasi-
equilibrium initial conditions. The star has a magnetic
dipole field with the magnetic moment l aligned with the
rotation axis ẑz, with �� the star’s rotation rate. The
magnetic field is B ¼ 3ðl xRÞR=R5 � l=R3; with compo-
nents in spherical coordinates BR ¼ 2l cos �=R3 and
B� ¼ l sin �=R3. As initial conditions we set up a low-
temperature Td disk with a high-temperature Tc4Td

corona filling the remainder of the simulation region. The
disk rotates with angular velocity close to the Keplerian
value ! � �K. The disk extends inward to the radius Rd ,
where the ram pressure of the disk is equal to the magnetic
pressure of the dipole, pþ �v2 ¼ B2=8�.

In order to have approximately equilibrium initial condi-
tions, it is necessary that the corona initially be rotating. If
the corona initially does not rotate (e.g., HSM96), or rotates
with the angular velocity of the star (e.g., MS97), while the
disk rotates with Keplerian velocity, then the coronal
magnetic field lines threading the disk and the star lead to
magnetic braking of the disk and subsequent fast accretion
of the disk with a velocity close to free fall. Furthermore, a
strong discontinuity develops in the angular velocity
between the disk and the corona (except at the corotation
radius). This leads to the generation of a strong B�-
component, while the dragging of the magnetic field with
the radial inflow of the disk leads to the generation of a Br-
component. This twisting of the field is responsible for
transient magnetocentrifugally driven outflows (e.g.,

HSM96; MS97; Hirose et al. 1997). Such fast evolution may
correspond to periods of violent accretion in some strongly
nonstationary systems. However, the star-disk systems may
exist in more quiescent configurations that can be studied
by using appropriate initial conditions.

In order to avoid the strong discontinuity of ! and B� on
the boundary between the disk and the corona, we rotate
the initial corona so that its angular velocity is a constant on
a given cylindrical radius r ¼ R sin � and equal to the Kep-
lerian rotation rate of the disk. Thus, the corona rotates
with different angular velocities on cylinders with different
radii r. For such initial conditions we observe much slower
accretion in the disk with no dramatic outflows. This distri-
bution of ! in the corona also leads to the twisting of the
magnetic field lines. Any coronal magnetic field line will be
twisted along its length by the differential rotation of nearby
layers of the corona, but this twist is distributed along the
length of the field line. At the boundary between the disk
and corona, the twist is small. It is much smaller than the
twist at the boundary between a rotating disk and nonrotat-
ing corona. A differentially rotating corona also leads to the
magnetic braking of the disk, but it is more gradual and
does not lead to a rapid infall of the matter in the disk.
Earlier, a differentially rotating corona was used as an initial
condition in a study of the opening of magnetic loops
threading a Keplerian disk, but the disk was considered as a
boundary condition (Romanova et al. 1998).

Initially, we assume that B� ¼ 0 everywhere. Also, we
assume that the initial poloidal field is that of a dipole and
that the plasma is force free. Thus, we search for equilibrium
initial conditions for the disk-corona system taking into
account gravity, pressure, and rotation. To find the initial
equilibrium, we suppose that initially (t ¼ 0) the matter is
barotropic, � ¼ �ðpÞ. In this case we have that (1)D

p=� ¼

D

F ; where F ¼
R
dp=�; (2) the angular velocity !

depends only on r ¼ R sin �; (3) the centrifugal force has the
potential �c ¼ �

R r

1½!ðr0Þ�2r0dr0; and (4) the stationary
Euler equation ðv x

D

Þvþ p=�þ

D

� ¼ 0 has the integral

F þ �c þ � ¼ E ¼ const ; ð5Þ

where� ¼ �GM=R is the gravitational potential.
We suppose that the initial angular velocity of the matter

in the equatorial plane is

!ðr; � ¼ �=2Þ ¼
kGM=R3

d

� �1=2
r � Rd ;

kGM=r3
� �1=2

r 	 Rd ;

8<
: ð6Þ

where r ¼ R sin � is the cylindrical radius and k ¼ const � 1
is included to take into account that the disk is slightly non-
Keplerian (in our simulations k ¼ 1:01). Thus, the centri-
fugal potential in the whole region is

�cðR; �Þ ¼
k GM=Rdð Þ 1þ R2

d � r2
� �.

2R2
d

h i
r � Rd ;

kGM=r r 	 Rd :

(

ð7Þ

At the boundary between the disk and corona the initial
pressure is taken to be p0. The dependence of the density on
pressure in the corona and in the disk can be expressed as

�ðpÞ ¼
�mmp=Tc p < p0 ;

�mmp=Td p > p0 ;

�
ð8Þ
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where �mm is the mean particle mass approximately equal to
mH=2. We consider that Td5Tc. In the corona, at low
values of pressure and density (p < p0; � < �mmp0=Tc), the
plasma is hot, T ¼ Tc, whereas in the disk, at high pressure
and density (p > p0; � > �mmp0=Td), the plasma is at a much
lower temperature, T ¼ Td . Initially, the boundary between
the disk and corona corresponds to the contact discon-
tinuity, where p ¼ p0, �c ¼ �mmp0=Tc in the corona and
�d ¼ �mmp0=Td in the disk. In this case,

F ¼
ðTc=�mmÞ ln p=p0ð Þ p � p0 ;

ðTd=�mmÞ lnðp=p0Þ p 	 p0 :

�
ð9Þ

The initial disk-corona boundary in the equatorial plane
is assumed to be at r ¼ Rd . We assume values of p0; Tc; and
Td . At the point ðr ¼ Rd ; z ¼ 0Þ, p ¼ p0 and Fðp0Þ ¼ 0.
Thus, we find E ¼ �GM=Rd þ kGM=Rd ¼ ðk � 1ÞGM
=Rd . Then we can calculate the potential �þ �c at any
point ðR; �Þ and find F ¼ E � ð�þ �cÞ. Now we can derive
pressure p at any point of the region,

p ¼
p0 expðF �mm=TcÞ p � p0 ;

p0 expðF �mm=TdÞ p 	 p0 ;

�
ð10Þ

and find the distribution of density taking into account
equation (8). We considered two main types of initial
conditions, which are described below.

2.4.1. Initial Conditions of Type I

In the first type of initial conditions, we place the inner
radius of the disk at r ¼ Rd ¼ 1. We determine the charac-
teristic density and temperature in the corona to be
�c ¼ 0:01 and Tc ¼ 1, and density in the disk �d ¼ 1. Then
we determine the pressure at the boundary between the disk
and corona, p0 ¼ �cTc ¼ 0:01, and then derive the tempera-
ture in the disk, Td ¼ p0=�d ¼ 0:01, so that the pressure is
continuous across the boundary. Then we determine the
magnetic field of the star so as to have the magnetic pressure
equal to the stagnation pressure of the disk matter at R ¼ 1.
This gives l2=8�R6

d � �dv
2
K, which is solved for l. As matter

in the disk flows inward, it forms a funnel flow at R � 1. We
determine !ðrÞ from equation (6), taking into account that
Rd ¼ 1. For r < Rd , matter rotates with an angular velocity
corresponding to !Kðr ¼ 1Þ, while at r > Rd , the rotation is

Keplerian. The surfaces of constant ! are cylinders. For
such a distribution, there are no strong gradients of ! in the
region. Then we derive the pressure and density distribu-
tions using equations (5)–(10).

The left panel of Figure 1 shows the density distribution
in the disk and corona. For this example we took a relatively
small region Rmax ¼ 7. One can see that the density is high
in the disk and is 100–200 times smaller in the corona. For
these initial conditions the FF starts close to the initial inner
radius of the disk. Thus, the disk provides a ‘‘ reservoir ’’ of
matter for the FF. On the other hand, there is the following
disadvantage. In most cases, we rotate the star with an
angular velocity �� smaller than the initial angular velocity
of matter above the star. Fortunately, the star is observed to
control the rotation of the nearby regions of the corona in a
few time steps. We also used initial conditions of type II, as
described below.

2.4.2. Initial Conditions of Type II

In a second type of initial conditions, we place the
inner radius of the disk Rd at the corotation radius,
rcor ¼ GM=�2�ð Þ1=3. Thus, for r < Rd both the star and the
corona rotate with the angular velocity �Kðr ¼ RdÞ, while
at larger distances the rotation is Keplerian. For this initial
condition, ! varies smoothly, including the variation from
the star and to the corona above it.

An important aspect of the type II initial conditions is
that the initial inner radius of the disk is far from the mag-
netosphere. This allows us to check whether or not matter
moves inward from the corotation radius.

The left panel of Figure 1 shows the initial density distri-
bution for type II initial conditions for rcor ¼ 3.

2.5. Hydrodynamic Evolution of the Disk and Corona

First, we tested our initial conditions with no magnetic
field. We observed that for both types of initial conditions
the disk exists for more than 300 rotational periods P0. No
high velocities appear in the disk or corona. Typical veloc-
ities in the disk are vd � 0:001 0:01. However, our typical
time of simulation of magnetic cases is shorter, 50P0, so that
we show the result of the evolution of the disk without a
magnetic field at t < 50P0.

Fig. 1.—Initial conditions of types I (left panel) and II (right panel ). The gray scale and numbers show density distribution.
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We considered three cases, with no viscosity, 	 ¼ 0,
and with small viscosities 	 ¼ 0:01 and 	 ¼ 0:02. Figures
2a and 2b show that at 	 ¼ 0 and boundary conditions
of type I, the disk’s inner edge stays at r ¼ 1 during the
whole period of evolution. The density in the rest of the
disk slowly redistributes itself in such a way that the
external layers move gradually outward. The outer
regions of the disk had excess angular momentum com-
pared to a stationary 	-disk (Shakura & Sunyaev 1973),
and consequently, some matter moved outward carrying
away extra angular momentum. When we included a
small viscosity 	 ¼ 0:01 (Fig. 2c), the outer regions of
the disk also moved outward, but inside the
shown region r < 10, matter moves inward with vel-

ocity v < 0:0001 0:001 for r > 6 and with larger velocity
v � 0:003 0:006 for r < 6.

For even higher viscosity 	 ¼ 0:02 (Fig. 2d), the velocity
of the inflow is v � 0:003 0:006 in the entire disk, r < 10. In
both initial conditions we find that the 	-viscosity gives a
slow accretion and thus a good starting point for our MHD
simulations. The typical accretion rate is _MM � 0:05 for
	 ¼ 0:01 and _MM � 0:1 for 	 ¼ 0:02.

For the type II initial conditions we observed that for
	 ¼ 0 the inner radius of the disk stays at r ¼ 3 for
T ¼ 50. This shows that the numerical viscosity is very
small (see Figs. 2e and 2f ) compared to an 	 ¼ 0:01 vis-
cosity. External regions moved outward with velocity
v < 0:001, redistributing density and angular momentum.
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For 	 ¼ 0:01 and 0.02, the disk behaved similarly to one
for initial conditions of type I: the equatorial regions
accreted slowly inward with velocity v � 0:003 0:007
(Figs. 2g and 2h). The accretion rate is _MM � 0:02 for
	 ¼ 0:01 and _MM � 0:05 at 	 ¼ 0:02. These tests indicate
that our hydrodynamic disk and corona are appro-
priate for subsequent MHD simulations of the disk-star
interaction.

Note that subsequently we observed that the accretion
rate to the star in the magnetic case is larger than in the
hydrodynamic case (see Figs. 9 and 10 and x 3.3.2, where the
accretion rate is _MM � 0:2–0.4 for initial conditions of type I
and _MM � 0:5–1.3 for initial conditions of type II), which is
connected with the small magnetic braking of matter in the
disk, because the initial conditions give only approximate
initial equilibrium.

2.6. Diffusivity versus Viscosity

The Godunov-type code used in current simulations does
not incorporate diffusivity (unlike codes in simulations by
MS97, H97, and GBW99). In our simulations matter slowly
diffuses across the magnetic field lines because of small
numerical diffusivity �m, which is of the order of the numeri-
cal viscosity �m � DRcs, which is shown to be small in the
inner parts of the simulation region (see x 2.5). The esti-
mated Reynolds number associated with the radial flow
Rem � �Rvr=�m (where �R is the characteristic scale) in the
region 1 < R < 5 is not very high, Rem � 1 3, because of
small velocity vr, so that matter slowly diffuses through
magnetic field lines in the radial direction, specifically, near
the FF, where velocity vr is smaller. In real accretion disks,
both processes—angular momentum transport and diffu-
sion of magnetic field lines—are probably connected with
the same physical process—magnetic turbulence (e.g.,
Bisnovatyi-Kogan & Ruzmaikin 1976; Balbus & Hawley
1991; Stone et al. 1996)—and are of the same order of mag-
nitude. In our simulations we observed an analogous situa-
tion: both viscosity and diffusivity are small and are of the
same order of magnitude. Note that in the �-direction,
velocity of the flow is high, and the Reynolds number is also
high: ðRemÞ� � 50 100, so that magnetic field lines rotate
with the disk in the �-direction, and at the same time matter
slowly diffuses in the r-direction. This is important for the
understanding of the evolution of magnetic field lines
observed in the following sections.

3. DISK-STAR INTERACTION FOR A SLOWLY
ROTATING STAR

Here we discuss simulations of accretion to a slowly rotat-
ing star with �� ¼ 0:19 (rcor ¼ 3), which corresponds to a
period P� ¼ P0=�� � 9:4 days for a typical T Tauri star
(see x 2.2). The magnetic moment is l ¼ 1:06, which corre-
sponds to a magnetic field at the surface of the star
B� � 1100 G. We used initial conditions of types I and II to
check for the possible dependence of the evolution on initial
conditions. The simulations were performed with the grid
NR �N� ¼ 150� 51, which hasRmax ¼ 55.

3.1. Simulations with Type I Initial Conditions:
Structure of the Disk

First we describe results of simulations with type I initial
conditions. We observed that matter started to move slowly
both in the disk and corona with velocities much smaller
than free fall. No dramatic collapse of the disk or fast out-
flows were observed because of our quasi-equilibrium initial
conditions.

Figure 3 shows the entire simulation region at different
times. The outer part of the disk changes very little during
the simulation time T � 50. The magnetic field lines twist
and become partially open. Viewed on this large scale, the
disk is relatively flared, but only the much smaller region of
the diskR � 10 is important for disk-star interactions.

Figure 4 shows the evolution in the smaller region R � 7.
One can see that the inner region of the disk is influenced by
the magnetic field of the star. For T � 50 the accretion rate
due to the 	-viscosity increased, and magnetic flux was
accumulated in the central region. We stopped the simula-
tions at this point, because later the accretion rate increased,
the inner radius of the disk moved closer to the star, and the
case became less interesting for the investigation of the disk-
star interaction.

Figure 5 shows the evolution of the density and poloidal
magnetic field in the region r � 6. The interaction of the disk
with the magnetosphere of the star led to the reconstruction
of the disk inside the radius that we call the braking radius
rbr. In this case, rbr � 3. This radius is an approximate ana-
log of the radius of the outer transition zone in the theory of
GL79b, which divides areas of an undisturbed viscous disk
and inner regions influenced by a magnetic field. In our case,
the disk for r > rbr is also disturbed by the star’s field, but

0 10 20 30 40 50
0

10

20

30

40

50 T = 0

0 10 20 30 40 50
0

10

20

30

40

50 T = 20

0 10 20 30 40 50
0

10

20

30

40

50 T = 40

r r r

z

Fig. 3.—Evolution of the disk and the poloidal magnetic field in the largest region studied, Rmax ¼ 55. The density (gray-scale background ) varies from a
minimum value � ¼ 0:003 in the corona to a maximum value � ¼ 2:6 in the disk. The field lines are labeled by their magnetic flux� values, which change from
0.0009 to 4.9. Time T is measured in periods of Keplerian rotation at r ¼ 1.
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matter still moves to this region because of viscosity. At
smaller radii rdrbr, matter is magnetically braked. By coin-
cidence, rbr � rcor. The inner regions of the disk become
magnetically braked after several rotation periods P0. In the
region of the magnetic braking, the density in the disk is 2–4
times smaller than in the disk without a magnetic field. The
inflow speed of the matter increases to v � 0:01 0:06,
and matter constantly moves in the direction of the star.
The flow toward the star stops when the matter stress
becomes comparable to the magnetic pressure of the
dipole, B2=8� ¼ pþ �v2: Note that the main term in the
matter stress, �v2�, is due to the disk’s rotation. We introduce
the plasma parameter, ~

 
 ðpþ �v2Þ=ðB2=8�Þ, which indi-
cates the relative importance of the matter and magnetic
stresses. Also, we introduce the magnetospheric radius,

rm ¼ l1=3

8� pþ �v2ð Þ½ �1=6
; ð11Þ

which is the radius at z ¼ 0 where ~

 ¼ 1.
Figure 5 shows that matter accumulates in the region

r � rm, forming a dense ring. The density in the ring is�2–3
times larger than the initial density at the inner radius of the
disk. At T ¼ 50, when more matter comes from the disk,
the density in the ring becomes�10 times larger. Accumula-
tion of matter near rm and formation of a ring in the inner
regions of the disk was also reported by GWB97, GBW99,
and MS97, but these simulations were for nonstationary
conditions.

For rdrm matter moves upward, away from the equato-
rial plane, and goes into the funnel flow. The FF is formed
after about one period of rotation (T � 1) and is a stable
feature during the length of the run, T ¼ 50. Figure 5 shows
the ~

 ¼ 1 line (bold line). The base of the FF coincides with
r ¼ rm; that is, FF starts in the area where the magnetic
stress is equal to the matter stress. This is observed in many
other cases with different parameters (see xx 4 and 5). This is
in accord with theories developed in the 1970s (PR72;
GL79a; GL79b). We investigate the physics of FFs in x 6.

Matter from the outer region of the disk r > rbr tends to
accrete inward. Often, the accretion rate is enhanced in the
region where the magnetic field has larger radial component
Br and hence stronger magnetic braking.

The accretion rate of matter from the region of the disk
outside the ring varies with time. Consequently, the density
in the inner ring and in the funnel flows also varies with time
(Fig. 5). When more matter accumulates in the ring, then
the base of the FF is closer to the star, and the magneto-
spheric radius is smaller. For example, at T ¼ 10 (Fig. 5b),
rm ¼ 0:92; at T ¼ 30 (Fig. 5c), rm ¼ 1:2. Subsequently, for
T > 50, even more matter came from the disk because of
viscosity, and the FF moved even closer to the star. A
stationary state for T > 50 may exist but at smaller values
of 	, 	 < 0:02.

3.2. Simulations with Type II Initial Conditions

For Type II initial conditions, the inner radius of the disk
is taken to be the corotation radius, rcor ¼ 3. The viscosity

Fig. 4.—Evolution of the disk and the magnetic field in a medium-size region Rmax ¼ 7. The configurations at T ¼ 0, 10, 20, 30, 40, and 50 are shown (time
T is measured in periods of Keplerian rotation at r ¼ 1). The density (gray-scale background ) changes frommaximum value � ¼ 2:6 in the disk to theminimum
value � ¼ 0:003 in the corona. Contour levels of�, which label poloidal field lines, change from 0.006 to 4.9. The field lines of the strongest magnetic field near
the star are not included in order to make the inner structure of the disk visible.
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parameter is 	 ¼ 0:02, the same as in the above mentioned
simulations. We were able to observe the evolution for more
than 80 rotations of the inner radius of the disk. Figure 6
shows the evolution of the inner regions of the disk. We
observed that the funnel flow did not form at the corotation
radius as predicted in some theories (e.g., OS95). Instead,
the disk slowly moves inward toward the star because of
the viscosity (see Fig. 6). When the disk reached conditions
where ~

 � 1, the accreting matter goes up into the funnel
flow. The FF formed after T � 10 rotations. At longer
times, the structure of the disk and the FF are similar to
those found for type I initial conditions (Fig. 5). But one dif-
ference is that for type II initial conditions, the inward
motion of the inner edge of the disk drags the bases of mag-
netic loops inward, so that loops of the dipole are inclined
to the disk. Such a situation is possible when the viscosity is
larger than the diffusivity and magnetic flux in the disk accu-
mulates closer to the star (e.g., S94; OS95) but the rest of the
loop in the corona does not move as fast, so that the loops
are inclined to the disk, and the Br-component is significant.
When the magnetic field is inclined away from the axis of
the disk, the magnetic force is much stronger than in case
with no inclination (Lovelace, Berk, & Contopoulos 1991;

Ouyed & Pudritz 1997; FE99; FE00). We observed opening
of the magnetic field lines close to the magnetosphere. The
opening was followed by reconnection and subsequent
opening. The process was quasi-periodic with a quasi period
T � 3:5 days. We also observed quasi-periodic oscillations
of the inner radius of the disk between radii 0:7 < rm < 1:2.
The nature of the oscillations is the following: (1) First, the
loop is stretched and the magnetic field ‘‘ blocks ’’ the path
of matter to the FF. (2) Next, reconnection releases the
stress, andmatter accretes through the FF. (3) The new loop
starts to stretch, and the process repeats (see also x 3.3.2,
where the spin evolution of the star is discussed). Figure 10
shows the quasi-periodicity of the accretion rate. These
oscillations resemble those observed by GWB97 and
GBW99, but on a much smaller scale. H97 and MS97 also
observed enhanced accretion after the reconnection of
elongated magnetic field lines near the magnetosphere. This
work supports the idea of Aly & Kuijpers (1990), who pro-
posed this mechanism of quasi-periodic oscillations.

We tested the dependence of the results on the viscosity
for both types of initial conditions for 	 ¼ 0:01 and 	 ¼ 0.
We obtained similar results, but the FF formed at slightly
larger distances r as a result of smaller accretion rate. Simu-
lations with initial conditions of types I and II have shown
examples of possible situations that can be realized in
nature. In the remainder of the paper we use the type I initial
conditions, because the FF starts earlier in this case.

3.3. AngularMomentum Transport

How is angular momentum transported between the disk
and the star? Does the star spin up or spin down? In this
section we analyze these questions using the run described
in x 3.1.

3.3.1. Angular Velocity of the Disk

We observed that the magnetic field lines that are respon-
sible for the partial destruction of the disk at radii r < rbr
are also involved in the transport of angular momentum
between the star and the disk. The magnetic filed lines con-
necting the star and the disk decrease the disk’s angular
velocity in a significant part of the braking region. Figure 7
shows the radial distribution of the angular velocities at dif-
ferent times. One can see that the angular velocity of the
disk is significantly smaller than the Keplerian value in a
broad region r < 1:3 1:8. We introduce the radius r�, such
that for r < r� the magnetic force on the disk is strong
enough to cause a significant deviation fromKeplerian rota-
tion. The radius r� depends strongly on the accretion rate
and varies between r� � 1:8 at T ¼ 30 (when the inner disk
is of low density) and r� � 1 at T ¼ 10 (when the inner disk
is dense).

Figure 8 shows the spatial distribution of the angular
velocity, !ðR; �Þ. One can see that for r < rbr � 3 the regions
of constant angular velocity !ðR; �Þ ¼ const almost coin-
cide with the regions of constant magnetic flux �. Thus, the
magnetic field line crossing the disk at radius r rotates in the
corona with angular velocity !ðrÞ. This is because most of
the corona is matter dominated, ~

 > 1 (Fig. 5, bold line),
and the disk determines the rotation of the magnetic field
lines. Magnetic field lines that cross the disk in the magneti-
cally dominated area (in the FF) rotate with the angular
velocity of the star.
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Fig. 5.—Evolution of the density in the disk (background ) and poloidal
magnetic field lines (� ¼ const lines) in the case of type I initial conditions
in the region r < 6. The bold line corresponds to ~

 ¼ 1. The density changes
from 0.003 in the corona to 2.4 in the disk. Contours of� are exponentially
spaced between 0.2 and 1.2. [See the electronic edition of the Journal for a
color version of this figure.]
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3.3.2. Spin Evolution of the Star

An important question is the angular momentum flux to
the star. To answer this question, we calculated the flux of
angular momentum (about the z-axis) carried by the matter
_LLm and that carried by the twist of the magnetic field _LLf ,

_LLm ¼
Z

dS x �rv�vp ; _LLf ¼ �
Z

dS x rB�Bp=4� ;

evaluated at the surface of the star. In addition, we calcu-
lated the accretion rate to the star, _MM ¼

R
dS x �v.

Figure 9 shows the different fluxes as a function of time.
Most of the angular momentum flux at the star is carried by
the magnetic field; matter carries only �1% of the total flux.
The flux _LLf is positive so that it acts to spin up the star. The
flux _LLf correlates with _MM because incoming matter from
distances �rm is responsible for bringing in positive angular
momentum. At distances r � rm the angular momentum
flux is carried mainly by the matter. These results partially
confirm the hypothesis of S94, OS95, and Li et al. (1996)
that matter should carry little angular momentum as it
approaches the star. However, our results indicate that this
does not lead to the torqueless accretion predicted by these
authors, because the angular momentum flux carried by the
matter is transferred to a flux carried by the magnetic field
with decreasing distance from the star. The small twist of
the magnetic field near the star, jB�j=Bp � 0:1 (see x 6), is
sufficient to carry the observed angular momentum trans-
port flux (see discussion byWang 1997).

From our simulations we find that the magnetic field lines
responsible for the spin-up or spin-down of the star pass
through the disk at distances r < r�. Consequently, the spin
evolution of the star depends on the location of the corota-
tion radius rcor relative to r�. A star may spin up, spin down,
or be in the regime of the torqueless accretion (see x 4.2).
For the case considered in this subsection of a slowly rotat-
ing star rcor ¼ 3, the star spins up. The matter and angular
momentum fluxes vary in time. In the case of type II initial
conditions, quasi-periodic variations were observed (see
Fig. 10 and discussion at the end of x 3.2).
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4. ACCRETION TO RAPIDLY ROTATING STARS

We performed a set of simulations for different angular
velocities �� of the star. Simulations were done for type I
initial conditions and with viscosity 	 ¼ 0:01. The grid was
NR �N� ¼ 100� 51, corresponding to the smaller region
Rmax ¼ 10. The fastest rotation considered was such that at
rcor ¼ 1, �� ¼ 1, which corresponds to a rotation period
P0 ¼ 1:8 days for the T Tauri parameters of x 2.2. (The con-

version formulae for dimensional period is P� ¼ 1:8=��
days). In this section we discuss the dependence of the
spin-up/spin-down rate of the star on��.

4.1. Rapidly Rotating Star: Spin-down

Here we discuss the case of a rapidly rotating star,
�� ¼ 1, rcor ¼ 1 (P� ¼ 1:8 days), where rcor � rm. We
observed that initially the accretion disk moved outward
because the magnetic field of the star transferred its angular
momentum to the disk. Later, for T > 3 the disk started to
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move inward toward the star, and finally a funnel flow
formed (see Fig. 11). In this case the thickness of the inner
part of the disk is larger than that in the case of slowly rotat-
ing star, and matter accretes preferentially along the top
layers of the disk.

Figure 12 shows the observed fluxes of matter and angu-
lar momenta to the star. Note that the flux of an angular
momentum is carried mainly by the magnetic field _LLf , which
is negative, so that the star spins down. Thus, we observe

that as matter accretes to the star, angular momentum flows
out from the star. As in the case of a slowly rotating star, we
observe a correlation between the matter and angular
momentum fluxes.

4.2. What is the Value of�� for Torqueless Accretion?

We arranged a set of simulations to test if a particular
value of �� gives torqueless accretion. According to
GL79b, at some angular velocity of the star �crit, positive
magnetic torque associated with the region r < rcor cancels
the negative magnetic torque associated with the region
r > rcor, and the star can accrete without changing its angu-
lar momentum.

We performed simulations at different �� (corresponding
to rcor ¼ 1:2; 1:3; 1:4; 1:5; 1:7; 2; 3; and 10) and observed
that for �� � 0:54 (rcor ¼ 1:5) the angular momentum flux
_LL wanders back and forth around zero (see Fig. 13). That is,
it is positive for some time (�10P0), then becomes negative
for a similar length of time, and then become positive again.
We conclude that this �� corresponds to torqueless accre-
tion. The explanation for torqueless accretion was proposed
in the 1970s (e.g., GL79b). Namely, when more matter is
supplied to the disk, the magnetospheric radius rm moves
closer to the star, and as a result there is a positive angular
momentum flux to the star. When less matter accretes, the
magnetospheric radius rm moves outward, and the flux of
angular momentum is negative. Figure 14 shows the evolu-
tion of the density and poloidal magnetic field for times cor-
responding to positive angular momentum flux to the star
(left panels), zero angular momentum flux (middle panels),
and negative angular momentum flux (right panels). The
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the T Tauri parameters of x 2.2).
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variations of the accretion rate may be connected with accu-
mulation of matter at r � rbr, where in this case rbr � 3 3:5,
and subsequent accretion through instabilities.

The ratio of the corotation radius rcor to the magneto-
spheric radius rm is of general interest. At the moments
when the torque is zero, _LL ¼ 0 (see Fig. 13), the magneto-
spheric radius has the following values: at T ¼ 24, rm ¼ 1;
at T ¼ 35, rm ¼ 1:07; and at T ¼ 46, rm ¼ 1:1. That is, for
_LL ¼ 0 the ratio is rcor=rm � 1:4–1.5. For similar simulations

for faster rotation of the star �� ¼ 0:67 (rcor ¼ 1:3), the
angular momentum flux also wandered around zero value
(see Fig. 15), but most of time it was negative, so that the
star spins down. For simulations with more slowly rotating
stars or larger corotation radii, rcor > 1:5 (rcor ¼ 1:7; 2; 3;
and 10), we observed that the star spins up.

5. DEPENDENCE ON THE STELLAR
MAGNETIC FIELD

We did simulation runs for different magnetic moments,
l ¼ 0; 0:21; 0:42; 0:63, and 1.1, with other parameters
fixed, �� ¼ 0:19 (rcor ¼ 3) and 	 ¼ 0:01. At T ¼ 0 the inner
radius of the disk was at r ¼ 1 in all cases. The grid was simi-
lar to the one used in x 4.

Figure 16 shows result after T ¼ 10 rotations. One can
see that at smaller values of l, the inner radius of the disk
and FF are settled closer to the star than in the case of larger
l. In all cases, we observed that the base of the FF approxi-
mately coincides with magnetosphere radius rm, but at
smaller l this radius is smaller in accord with formula (11).

In the case of even smaller l, the direct accretion to the
surface of the star is observed, such as in simulations by
HSM96 and in some simulations byMS97.

The cases with stronger magnetic moments l ¼ 1:1 and
0.63 are more appropriate for the explanation of T Tauri
stars, because the gap between the star and the disk is com-
parable to or larger than the radius of the star. At smaller
magnetic moments l ¼ 0:42 and 0.21, the gap is too small.

T
10 20 30 40 50 60

0

0.2

0.4

0.6

M

Lf
Lm

Ω∗= 0.54
fl

ux
es

Fig. 13.—Same as in Fig. 9, but �� ¼ 0:54 and rcor ¼ 1:5 (P� � 3:3 days
for the T Tauri parameters of x 2.2).
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6. PHYSICS OF FUNNEL FLOWS

Here we discuss the physics of a typical funnel flow, the
case of a slowly rotating star with rcor ¼ 3 (x 3) after T ¼ 30
rotations. The specific heat ratio is � ¼ 5=3. Figure 17 shows
an enlarged picture of the FF. We determined the variation
of different parameters as a function of distance (s) from the
surface of the star along a fiducial poloidal field line through
the middle of the FF. This field line is shown by the thick
white line in Figure 17. Figures 18–21 show the variation of
different parameters along this field line. Figure 18 shows
that the density � and pressure P decrease along the FF,
then increase again near the surface of the star. The temper-
ature T initially varies slowly, but increases strongly
approaching the star as a result of gas compression.

Figure 19 shows the variation of different velocities along
the FF. Matter flows along the FF with poloidal velocity vp.
The velocity perpendicular to the poloidal magnetic field,
vq, is very small, jvqj5 vp. The poloidal velocity vp increases
and becomes larger than the slow magnetosonic velocity csm
at �0.4 of the way. This point is expected to be closer to the
disk in the case of cooler (and thinner) accretion disks
(Koldoba et al. 2002). The flow becomes supersonic with
the Mach number reaching M � 3:6 at the surface of the
star. Near the star, the poloidal velocity is close to the free-
fall velocity: vp � 0:7vff .

The poloidal velocity of the FF is much smaller than the
Alfvén velocity vA. The ratio decreases from vp=vA � 1=3 in
the middle of the FF to vp=vA � 0:07 at the star. Thus, the
flow is strongly sub-Alfvénic. This validates the analysis of
Koldoba et al. (2002), which proposed that the funnel flows
were sub-Alfvénic.

It is important to understand which forces drive matter
out of the equatorial plane of the disk into the funnel flow
and which forces accelerate the flow toward the star. The
force per unit mass F along the magnetic field line is
obtained by multiplying the Euler equation by Bp=jBpj. This
gives

F ¼ !2r sin�� 1

�

@p

@s
� @�

@s
� 1

8��r2
@ðrB�Þ2

@s
; ð12Þ

(Ustyugova et al. 1999), where � is the angle of the field line
to the z-axis. The terms on the right-hand side represent the
centrifugal force, the pressure gradient force, the gravita-
tional force, and the magnetic force.

Figure 20 shows forces in the outer two-thirds of the po-
loidal path of the FF. We see that the pressure gradient
force is responsible for driving matter up and out of the disk
and into the funnel flow, while the gravitational force is
responsible for the acceleration of matter in the rest of the
FF. Note that the magnetic force in equation (12) is small
and acts in the opposite direction. Thus, we did not observe
the ‘‘ magnetic levitation ’’ force predicted by Li & Wilson
(1999). We observed a finite B�-field above the disk in the

T
20 40 60 80

-0.2

0

0.2

0.4

0.6

M

Lf

Lm

Ω∗= 0.67
fl

ux
es

0

Fig. 15.—Same as in Fig. 9, but �� ¼ 0:67 and rcor ¼ 1:3 (P0 ¼ 2:7 days
for the T Tauri parameters of x 2.2). The dot-dashed line corresponds to
_LLm. The star spins downmost of the time.
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FF (see Fig. 21), but the magnetic force is much smaller than
the other forces, and it is not sufficient to levitate matter
above the disk.

Figure 21 shows that the angular velocity of the funnel
flow decreases gradually from its value at the inner edge of
the disk (r ¼ Rd) to a small negative value at the star. The
negative value of ! at the star is due to the fact that the mag-
netic field has a small inclination in the direction of rotation
of the star. For this reason matter moving along the mag-
netic field line comes to the star with an angular velocity less
than �� (see also Ghosh et al. 1977; Muzerolle, Calvet, &
Hartmann 2001).

Figure 21 shows the variation of the toroidal magnetic
field along the funnel flow. The twisting of the dipolar field

is relatively small with the twist �� 
 jB�j=Bp < 0:15. At the
star, �� � 0:04. This is in accord with estimations by Wang
(1997), who has shown that the twist near the star should be
small, but not zero. Away from the funnel flow, jB�j is of the
order of Bp. We never observed conditions where jB�j4Bz

(discussed, e.g., by GL79a and Agapitou & Papaloizou
2000). The reason is that for jB�j4Bp a torsional Alfvén
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Fig. 17.—Close view of a quasi-stationary funnel flow calculated for type I initial conditions. The background represents the logarithm of the density. The
density has a minimum value � ¼ 0:004 (white) and a maximum value � ¼ 2 (black). The lines are poloidal magnetic field lines, or equivalently,�ðr; zÞ ¼ const
lines. The arrows represent the poloidal mass flux density �v. The white line is the field line approximately in the middle of the funnel flow. The variation of
different quantities along this field line are shown in subsequent figures. [See the electronic edition of the Journal for a color version of this figure.]
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wave forms and propagates outward into the corona, where
it dissipates.

In reality, matter may accrete through the magnetosphere
because of three-dimensional instabilities, for example, the
Rayleigh-Taylor or Kelvin-Helmholtz instability (Arons &
Lea 1976a, 1976b; Spruit & Taam 1990). Realistic investiga-
tions of the role of these instabilities is possible with three-
dimensionalMHD simulations.

7. OPENING OF CORONAL MAGNETIC FIELD
AND OUTFLOWS

In our simulations we observed coronal magnetic field
lines at large distances from the star opening due to the
initial differential rotation. Closer to the star the field
lines were mostly closed, contrary to the predictions by
Aly (1985), LRBK95 (see also Newman, Newman, &
Lovelace 1992; Livio & Pringle 1992; Lynden-Bell &

Boily 1994; Mikić & Linker 1994; Amari et al. 1996;
FE99; FE00; Ustyugova et al 2000; Uzdenskyi, Königl,
& Litwin 2002). The difference in behavior can be
explained as follows. The analytical or semianalytical
models suppose that the inertia of the matter is very
small, 
 ¼ 8�p=B25 1, so that the plasma is in the
‘‘ coronal ’’ limit of Gold & Hoyle (1960). However, the
inertia of the matter may be important. Romanova et al.
(1998) simulated the dynamics of magnetic loops in the
corona of a differentially rotating disk where 
 � 1. They
observed that in the magnetically dominated regions
(
 < 1) the magnetic loops opened, whereas in the matter-
dominated regions (
 > 1) the loops did not open.

The energy-density of the dipole field decreases rapidly
with distance (�R�6) compared to the matter energy-den-
sity in our simulations, which varies slowly within the
computational region. For this reason the magnetically
dominated region is restricted to a relatively small vol-
ume, R < 1 1:5, around the star (Fig. 5, bold line). To
overcome this feature of the dipole field, GWB97 and
GBW99 adopted a rapid falloff of density in the corona,
� � R�4. For this dependence the region of small 
 is
greatly expanded, and opening of the magnetic field is
favored.

In order to investigate possible stronger outflows, we
chose parameters so as to increase the region of the magneti-
cally dominated corona. The magnetic moment was
increased 5 times, l ¼ 5:3 (which corresponds to a magnetic
field B ¼ 5:3 kG at the surface of the star). The density in
the corona was decreased 3 times, �c ¼ 0:003. This led to a
higher Alfvén speed near the star, so that we increased the
inner radius Rmin ¼ 0:8 to cover the region of high Alfvén
velocity and increased the resolution of the grid to
NR �N� ¼ 120� 71. We have ~

 ¼ 1 at r ¼ Rd ¼ 1 as in the
other runs described in this work. The magnetic field is
stronger, and the initial density in the disk is about 10 times
higher than in other simulations.

Figure 22 shows the results of the simulations. We
observed that magnetic braking led to accretion of the inner
part of the disk with velocity vr � 0:01 0:1. Thus, matter in
the disk concentrated in a dense ring with � � 10 14. The
disk angular velocity is significantly smaller than the Kep-
lerian value but larger than the angular velocity of the star,
�� ¼ 0:19, which is a result of the interaction with the
strong stellar magnetic field. A significant region above the
corona corotates with the disk. Analysis of forces, similar to
that of x 6, shows that in the region r < 2 the centrifugal
force drives matter along the magnetic field lines, but the
force is not strong enough to open the magnetic field lines,
andmatter accretes to the star throughmultiple funnel flows
(see Fig. 22). However, the outer magnetic field lines, which
are located at the edge of the magnetically dominated
region, become gradually open because of the combination
of centrifugal and magnetic forces. Matter accelerates along
the region of open field lines up to velocities v � 0:5vesc,
where vesc is the escape velocity. We anticipate that if the
density in the corona decreases faster than in our model,
then matter will outflow from the region. The observed mat-
ter and angular momentum fluxes of outflowing matter are
small.

This test simulation provides evidence of how outflows
can be formed from the disk in the quasi-stationary regime.
Subsequent research is needed in this direction at different
distributions of density of matter in the corona.
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flow; FG is the gravitational force, FC the centrifugal force, FP the pressure
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Fig. 21.—Angular velocity ! and the twist jB�j=Bp as a function of
distance s from the star’s surface along the bold field line in Fig. 17.
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8. APPLICATION TO T TAURI STARS

Our simulations are well suited for modeling funnel flows
to T Tauri stars because the entire flow can be well resolved.
In the observed systems, the ratio of the inner radius of the
disk where the FF begins to the stellar radius is
Rd=R� � 2 4. Such conditions are realized in our
simulations.

The detailed nature of the magnetic fields of T Tauri stars
is not known, and the fields may differ significantly from a
dipole field (e.g., Safier 1998). However, recent spectral
studies of T Tauri stars show broad emission lines that give
evidence of matter inflow with nearly free-fall velocities
(e.g., Hartmann, Hewett, & Calvet 1994; Lamzin et al. 1996;
Muzerolle et al. 2001). Such velocities may be easily
explained in the model where matter inflows supersonically
in a funnel flow along a dipolar field.

In the following we perform numerical estimates for the
funnel flow to a typical T Tauri star using the conversion
scheme of x 2.1. We assume that the inner radius of the disk
is R0 ¼ 2:8R�, the star’s mass M0:8 
 M/(0.8 M�), its
radius R2 
 R/(2 R�), and its surface magnetic field

B3 ¼ B/(103 G). Using these values we can derive reference
values for the different physical variables. For the
flow velocity, v0 ¼ ðGM=R0Þ1=2 � 1:63� 107M

1=2
0:8 R

�1=2
2 cm

s�1. For the period of rotation at r ¼ R0, P0 ¼ 2�R0=v0
� 1:78M

�1=2
0:8 R

3=2
2 days. For the density, �0 ¼ B2

0=v
2
0

� 6:93� 10�12B2
3R2M

�1
0:8 g cm�3. For the accretion rate,

_MM0 ¼ �0v0R
2
0 � 2:8� 10�7B2

3M
�1=2
0:8 R

5=2
2 M� yr�1. For the

temperature of the corona, T0 � 1:07� 106M0:8R�1
2 K.

In the following we calculate the different physical varia-
bles along the middle of the funnel flow shown in Figure 17.
From Figure 19 the matter reaches a maximum poloidal
velocity vp� � 277 km s�1 at the star’s surface, which is 79%
of the free-fall velocity vff � 350 km s�1. The funnel flow
will of course give a distribution of velocities along the line
of sight to a distant observer. The smallest line-of-sight
velocities are for matter immediately above the disk, where
the speeds are �10% of vp�. The line-of-sight velocity distri-
bution is important for the interpretation of observed spec-
tral lines (e.g., Folha & Emerson 2001). The poloidal
velocity is about one-third the Alfvén velocity vA above the
disk (at s � 1) and decreases to vp � vA=15 at the star’s sur-
face. The velocity across the magnetic field lines vq is very
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Fig. 22.—Density and poloidal magnetic field lines for a case with outflows. Themagnetic moment of the star l ¼ 5:3 is 5 times larger than that used in most
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magnetic flux; the bold line is the line ~
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small (see Fig. 19). Thus, matter flows along the magnetic
field. The flow become supersonic above the disk, and the
Mach number reachesM � 3:6 at the surface of the disk.

The initial density of matter in the disk at R0 is
�0 � 6:9� 10�12 g cm�3, and the density of matter in the FF
(see Fig. 18) varies in the range ð1:2 9:2Þ � 10�12 cm�3,
which is typical for T Tauri stars. Our typical accretion rate
to the star through the FF is _MM � ð0:6 1:2Þ � 10�7 M�
yr�1, which agrees with estimates for T Tauri stars (Hart-
mann et al. 1998). The initial temperature in the disk is
T � 9:6� 103 K, which is several times higher than
expected in the disks of T Tauri stars at R0. As mentioned
earlier, this higher temperature is needed to give adequate
resolution in the vertical direction through the disk. We
observed that matter in the FF was heated by adiabatic
compression to higher temperatures, T � 1:2� 105 K.

The fact that we use ‘‘ free ’’ boundary conditions at the
surface of the star means that we cannot account for the
stand-off shock at the stellar surface, surface heating, and
other physical phenomena close to the star. Study of these
processes can be done with a separate set of simulations.

The investigated quasi-stationary funnel flows corre-
spond to classical T Tauri stars (see Hartman 1998), where
variability is not strong and possible outflows are weak. Pre-
vious simulations of very fast accretion with subsequent
strong outflows were done by HSM96, MS97, H97,
GWB97, and GBW99, and these may correspond to earlier
stages of the evolution of young stellar objects (Classes 0
and I), which show evidence of episodic nonstationary
accretion (e.g., FU Orionis–type stars) and strong outflows
(e.g. HH 30). Nonstationary accretion may be initiated by
thermal instability (Lightman & Eardley 1974), global mag-
netic instability of the disk (Lovelace, Romanova, & New-
man 1994; Lovelace, Newman, & Romanova 1997), or tidal
interaction with a binary companion (Larson 2002).

9. CONCLUSIONS

9.1. Funnel Flows

We have done a wide range of MHD simulations of disk
accretion to a rotating aligned dipole in order to understand
the different accretion phenomena. The simulations show
that funnel flows, where matter flows out of the disk plane
and essentially free-falls along the stellar magnetic field
lines, are a robust feature of disk accretion to a dipole.
Specifically, we find the following:

1. The disk truncates, and a funnel flow forms near the
magnetosphere radius rm, where magnetic pressure of the
dipole is comparable to the kinetic plus thermal pressure of
the disk matter.
2. The velocity of matter in the FF is much smaller than

the Alfvén velocity, jvj � ð0:05 0:3ÞvA, so that matter flows
along the magnetic field lines. The funnel flow accelerates
and becomes supersonic. The Mach number is M � 3 4 at
the surface of the star. At the star, velocity is close to the
free-fall velocity: vp � 0:7vff .
3. The angular velocity of the FF gradually varies from

its value at the inner edge of the disk to the angular velocity
of the star. The twist of the magnetic field lines in the FF is

small, jB�j=Bp < 0:1, and it has a maximum approximately
in the middle of the FF.
4. The main forces that are responsible for dragging mat-

ter to the FF are the matter pressure gradient force (near the
disk) and the gravitational force in the rest of the FF. The
magnetic force is negligibly small.
5. About one-third of the magnetic flux responsible for

the spin-up/spin-down the star goes through the FF, while
the remainder is above the FF.

9.2. Disk-Star Interactions

Regarding the interaction between the disk and the star,
we find the following:

1. The magnetic field of the star influences the nearby
regions of the disk inside a radius rbr, while viscosity domi-
nates at larger radii. The radius rbr depends on magnetic
moment of the star l and density in the disk.
2. Inside the radius rbr the disk is strongly inhomogene-

ous. The density is 2–3 times smaller than in the disk with-
out magnetic field. Magnetically braked matter
accumulates near the magnetosphere and forms a dense ring
and funnel flow.
3. The star may spin up or spin down, depending on the

ratio of its rotation rate to the rotation rate at the inner
radius of the disk. We find that torqueless accretion is possi-
ble when rcor=rm � 1:5, where rcor is the corotation radius.
4. At the star’s surface, the angular momentum flux is

transported mainly by the twist of the magnetic field. Angu-
lar momentum carried by matter in the disk at �rm is trans-
ferred almost completely to the magnetic field at the star’s
surface.
5. The coronal magnetic field is observed to open and

close, but strong outflows were not observed for the consid-
ered parameters and quasi-equilibrium initial conditions. In
the area of the disk where the field is strong, r < r� � 0:5rbr,
the magnetic field lines tend to decelerate/accelerate rota-
tion of the disk instead of being opened. Besides, opening of
magnetic field loops is suppressed by the matter-dominated
corona, compared to GBW99, who accepted dependence
� � R�4.
6. Strong outflows may be associated with strongly non-

stationary accretion in the disk as observed in simulations
by HSM96, MS97, and H97 or when the disk is very dense
and magnetic field lines are inclined to the disk as in simula-
tions by FE99 and FE00. Alternatively, the outflows may
occur in cases where the density of the corona decreases suf-
ficiently rapidly with distance, as in the simulations by
GWB97 and GBW99. Sporadic outflows can arise from a
global magnetic instability of the disk (e.g., Lovelace et al.
1994, 1997, 2002), but they may be absent during the quies-
cent evolution of the disk-star system.
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