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ABSTRACT

Methods used in the radial velocity program of short-period binary systems at the David Dunlap
Observatory are described with particular stress on the broadening-function formalism. This formalism
makes it possible to determine radial velocities from the complex spectra of multiple-component systems with
component stars showing very different degrees of rotational line broadening. The statistics of random errors
of orbital parameters are discussed on the basis of the available orbital solutions presented in the six previous
papers of the series, each with 10 orbits. The difficult matter of systematic uncertainties in orbital parameters
is illustrated for the typical case of GMDra from Paper VI.
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1. INTRODUCTION

This paper should be considered a companion and sup-
plement to the previous papers of our series of radial veloc-
ity studies of close binary stars: Lu & Rucinski (1999, Paper
I); Rucinski & Lu (1999, Paper II); Rucinski, Lu, & Moch-
nacki (2000, Paper III); Lu, Rucinski, & Ogloza (2001,
Paper IV); Rucinski et al. (2001, Paper V); Rucinski et al.
(2002, Paper VI).

The current program of radial velocity observations of
close binary systems with periods shorter than 1 day is
approximately at its halfway point. Our methods have been
evolving slightly during the execution of the 60 radial veloc-
ity orbits presented in the six papers of the series but appear
to have stabilized now, warranting a more detailed docu-
mentation of the essential steps in our analysis and data
reductions. We summarize these methods and give an over-
view of the uncertainties so that the results described in the
previous and planned future papers of the series can be
better evaluated by readers. The discussion is limited strictly
to methodological aspects and does not include any astro-
physical results, which will be discussed after the program is
concluded.

2. INSTRUMENTATION AND OBSERVATIONS

We observe radial velocities of close binary stars with the
1.88 m telescope of the David Dunlap Observatory (DDO),
using its medium-resolution spectrograph in the Cassegrain
focus. The angular scale in the telescope focus is 600 mm�1.
We use one of the two spectrograph slits, 300 or 250 lm in
width, both fixed in the east-west orientation and both 10
mm long. The angular widths of 1>8 and 1>5 approximately
match the median seeing at the DDO of 1>7. Since we
started with the shortest-period binaries showing the
strongest rotational line broadening, most observations
have been made with the 300 lm slit. The scale reduction of
the collimator-camera combination is 4 times, resulting in a
slit image of 75 or 62 lm for either of the slits. Our light
detector is currently a thick, front-illuminated CCD chip of

1024 � 1024 pixels, 19 lm square. Thus the slit images have
the total widths of 3.9 or 3.3 pixels, while the FWHMwidths
are about 2.6 and 2.2 pixels for the respective slits. To lower
the influence of the readout noise, the two-dimensional
CCD images are on-chip binned four times in the direction
perpendicular to the dispersion direction.

Most of the spectral data have been obtained using the
1800 line mm�1 diffraction grating, with the spectral win-
dow centered on the magnesium triplet Mg I b at 5184 Å.
For solar-type stars this region is very rich in spectral lines,
which is an essential consideration for our method of radial
velocity measurements—through broadening functions—to
succeed. The main-sequence stars of spectral types of mid-
dle-A to middle-K are practically the only stars found in
close binaries with orbital periods shorter than one day. At
5184 Å the spectrograph delivers 0.204 Å/(19 lm pixel) or
about 11.8 km s�1 pixel�1. As is well known, when cross-
correlation or similar techniques are used, narrow, properly
sampled, symmetric spectral features can be usually mea-
sured to better than about 1/10 part of the pixel size, with
the accuracy growing in relation to the total length of the
spectrum. In our case the spectrum has the length of 208 Å
so that we can rather easily determine velocities of sharp-
line stars with an accuracy of about 1 km s�1, as has been
verified by many observational programs at the DDO (see
the end of this section). The accuracy for broad-lined spec-
tra of binary components is obviously lower and depends
on a combination of many factors. We discuss the random
errors in x 8, while systematic uncertainties specific to close
binary stars are discussed in x 9.

The spectrograph is known to show some flexure limiting
exposures to about 30minutes. This has not been a real limi-
tation in the observations, because our program stars have
short periods and in fact require exposures to be no longer
than 15–20 minutes to prevent the radial velocity smearing.
We normally take comparison-lamp (FeAr) spectra before
and after each exposure, but sometimes, for the shortest-
period binaries, we take two or three stellar exposures for a
set of bracketing comparison spectra spaced by no more
than half an hour. The flat field lamp is an internal one in
the spectrograph, but we occasionally take also sky flat-field
spectra.

We observe typically three to five radial velocity standard
stars per night. These stars are selected to have spectra of

1 Based on data obtained at the David Dunlap Observatory,
University of Toronto.
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similar spectral types to our program stars, to serve later as
templates in our technique of radial velocity measurements
through broadening functions (see xx 5–6). An intercompar-
ison of radial velocities of standard stars gives an estimate
of random errors at the level of about 1.0–1.2 km s�1. This
agrees with the results for Cepheids observed at the DDO
by Sugars & Evans (1994) and Evans (2000), where the
errors were estimated at 1.0–1.3 km s�1. A fraction in these
errors may come from our continuing use of the IAU stand-
ard-star list as published in the 1995 Nautical Almanac. As
explained in Stefanik et al. (1999), at that time the IAU list
contained a few stars that are unsuitable as radial velocity
standards. Since we used many different standard stars from
the IAU list, these systematic errors averaged out to some
degree and manifested themselves mostly as random errors.
We now use exclusively the list of Stefanik et al. (1999), but
the results of our program may be affected by the uncertain-
ties in the old standard velocity data at a level of 0.2–0.5 km
s�1.

3. INITIAL ANALYSIS OF SPECTRA

The reductions consist of several stages. Stage 1 consists
of a transformation from two-dimensional images to one-
dimensional, wavelength-calibrated, rectified spectra. All of
the steps, starting with debiasing and flat-fielding, utilize the

standard techniques within IRAF.2 We make sure to use a
consistent set of low-order polynomials for the dispersion
relation and use the IRAF rejection algorithm for rectifica-
tion of the spectra; both steps are facilitated by the short
length of our spectra within which the dispersion and the
CCD sensitivity vary only slightly and in a smooth way.

Figure 1 shows a typical spectrum for our program of the
binary KR Com, one of the stars presented in the most
recent paper of the series (Rucinski et al. 2002, Paper VI). It
is a typical yet difficult case, in the sense that we frequently
have been dealing with rather complex, multicomponent
spectra, even among relatively bright stars (7th magnitude
in this case). Some systems of our program have been previ-
ously known binaries, too difficult to handle using tradi-
tional (including cross-correlation) methods, but many
were recently discovered as photometric variables.

The spectra of KR Com are dominated by the third,
slowly rotating component which—although the fainter one
in the visual system—dominates the spectral appearance
and produces sharp, easily identifiable spectral lines. The

2 IRAF is distributed by the National Optical Astronomy Observatory,
which is operated by the Association of Universities for Research in
Astronomy, Inc., under cooperative agreement with the National Science
Foundation.

Fig. 1.—Left: Spectra of the sharp-line template star HD 89449 (top spectrum) and of the close binary star KR Com (bottom spectrum, shifted down by 0.5
in the observed flux). The spectral types of the stars are F6IV and G0IV, respectively. Top right: Broadening function (BF) obtained by our linear decon-
volution using the two spectra in the left panel. Whenmeasuring radial velocities of a binary, we initially fit the whole triple feature by Gaussians then subtract
the sharp-line component and repeat the determination for the close binary. The three components of the BF are shown by thin lines. Bottom right: Cross-
correlation function (CCF, thick line), in comparison with the BF (thin line), both obtained from the same spectra at left. The CCF has much lower resolution
than the BF, but also shows negative excursions in the zero (baseline) level. While Gaussians may be a reasonable tool for measurement of radial velocities
from the CCFs, the BFs are much better defined; note the much steeper outer ends of the BF relative to the Gaussians. We discuss extensively the systematic
uncertainties of this type in x 9.
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triplicity of KR Com went apparently unnoticed for so long
mostly because, superficially, the spectra look like those of a
single, slowly rotating star and—paradoxically—the spec-
trum of the brighter binary component is not normally visi-
ble. The presence of the binary, which produces the broad
spectral signature, manifests itself spectrally only through
merging of more common, weaker lines and the general low-
ering of the continuum, and it is difficult to notice in low sig-
nal-to-noise ratio (S/N) spectra. The low-level photometric
variability of the whole system is due to the contact binary,
which is the brighter component in the system, but the varia-
bility signal is sufficiently ‘‘ diluted ’’ in the combined light
of the system that it took the high quality of the Hipparcos
photometry to discover it.

Spectra such as those shown in the left panel of Figure 1
are not analyzed directly but are subject to the broadening-
function extraction process, which is followed by measure-
ments of radial velocities.

4. WHY WE DO NOT USE THE CROSS-
CORRELATION FUNCTION

Step 2 of the analysis is the determination of the broad-
ening function (BF). The BF approach was described
before in Rucinski (1992, 1999) and is discussed more
extensively in x 5. In essence, it consists of a linear, least-
squares determination of the broadening convolution ker-
nel from rotationally—and orbitally—broadened spectra,
utilizing spectra of sharp-line, slowly rotating radial veloc-
ity standards. We do not use the popular cross-correlation
function (CCF) technique because it appears to give infe-
rior and biased results for close binary systems. We now
try to explain this rather strong statement.

1. The CCF combines the broadening of the program
spectrum with that of the template, with a resulting loss of
resolution, while the BF approach attempts to remove the
common broadening contributions. Only if the template
spectrum were a series of delta functions would the results
be the same.
2. The definition of the baseline in the CCF is usually dif-

ficult and may lead to problems when relative luminosities
of components are determined.
3. Outside of the main peak, which is used for radial

velocity determination, the CCF always shows a fringing
pattern, which may affect the strength and intensity of sec-
ondary correlation peaks for multiple systems. For very
close binaries, the secondary fringes frequently produce the
‘‘ peak-pulling ’’ effect of the systematically smaller radial
velocity amplitudes, but a more complex interaction is
entirely possible.
4. The shape of the CCF beyond the main correlation

peak depends on the shape of the stellar spectrum. For the
same star observations in different parts of the spectrum define
different CCFs. This problem is rarely recognized and is par-
ticularly severe for sparse spectra, when the CCF is analyzed
over a wide range of correlation lags.

The problems listed above are illustrated in Figure 1 for
the case of the triple system KR Com. In the right panel, we
show a comparison of the BF with the CCF for the same
spectra. While the BF very clearly shows all three compo-
nents in the system, it would be very difficult separate the
three signatures using the CCF. The superior resolution
offered by the BF approach has permitted us to analyze

spectra with very strong rotational broadening, combined
with situations of three or more sets of blended lines in triple
and quadruple systems, with component stars showing dif-
ferent amounts of rotational broadening. Such systems have
frequently been abandoned in the past because of insur-
mountable difficulties with separating and measuring the
radial velocities of individual components.

The problems of the baseline location and fringing in the
CCF, as well as of the dependence on the shape of the stellar
spectrum, are illustrated in Figure 2. This figure contains a
result of the following data-processing experiment. A high-
quality, but somewhat sparse, stellar spectrum (left,
sampled at equal velocity steps of 0.88 km s�1) was con-
volved with the single-star rotational-broadening pattern
with V sin i = 88 km s�1 and then subjected to the CCF
determination. No noise was added, so the CCF is basically
perfectly determined and can be used for a direct compari-
son with the assumed broadening function. The right panel
of the figure compares the assumed broadening profile (dot-
ted line), which is the same as the BF, with the CCF (solid
line). The strong fringes in the CCF are very well visible. In
this particular case, the unusual strength the positive fringes
results from the low density of spectral features in the origi-
nal spectrum and illustrates the dependence of the CCF on
the stellar spectrum. While the BF formalism is insensitive
to the density and distribution of the spectral lines, the
CCF—beyond the main peak—does depend on the spectral
region. Thus sparse spectra will lead to less well defined
broadening functions with larger random errors (simply
because of the lower information content), while the CCF
will additionally show systematic differences in the fringing
pattern outside the main peak.

The negative fringes that are always present in the CCF
can produce a quasi baseline around the main correlation
peak at a very different level than expected. In the case
shown in Figure 2, the local baseline is located about �0.1
below the originally assumed broadening profile. If only a
small part of the CCF were used, this is where the baseline
would normally be located. Since a CCF would rarely be
used for anything else but a radial velocity determination
from the correlation peak, the exact location of the baseline
may seem immaterial. However, when a secondary star is
added to the picture, with the similar rotational broadening
and a velocity separation comparable to the rotational
broadening, as is the case for short-period binary stars, then
the secondary peak in the CCF will definitely interact with
the primary-star fringing pattern; there will be also the
reverse interaction of the secondary pattern with the pri-
mary peak. For single objects the fringes are basically irrele-
vant, so that very close or identical radial velocities are
determined using both techniques. Problems occur when
multiple components are present in the spectra, and they are
particularly severe in the CCF when the broadening of the
lines is of the same scale as the line splitting, exactly the sit-
uation we face in our program.

We recognize that a method based on the two-dimen-
sional cross-correlation function called TODCOR (Zucker
& Mazeh 1994; Zucker et al. 1995) has been developed and
successfully applied to several multilined stellar systems
showing sharp spectral lines. We did not attempt to use this
technique mostly because we feel more comfortable with a
tool developed by ourselves, but also because (1) TODCOR
is designed for sharp-line spectra and has not been demon-
strated to work for the very broad lines of contact binaries,
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and (2) we frequently deal with mixed very broad and nar-
row spectral signatures, which would require extension of
the TODCOR capabilities even further. We note that the
nonlinear nature of the cross-correlation complicates the
derivation of the relative luminosities of components and
requires a complex calibration, while our linear approach
gives directly the relative luminosities through integration
of the individual features in the broadening functions. This
is particularly convenient for systems with components
showing very different degrees of rotational broadening.

5. BROADENING FUNCTIONS

We define the broadening function3 as a function that
transforms a sharp-line spectrum of a standard star into
a broadened spectrum of a binary, or for that matter of
any other star showing geometrical, Doppler-effect line
broadening. This way we not only determine the broad-
ening-function shape but also automatically relate the ab-
solute velocities of program stars to the radial velocity
standards used as templates, a common advantage with
the CCF approach. We do not use model spectra, e.g.,
through representation of spectral lines by delta func-
tions. While the broadening functions determined that
way would be cleaner and much better defined than those
utilizing standard-star templates, the advantage of the
automatic relative radial velocity calibration would be
lost.

We perform all radial velocity determinations in the geo-
centric system and only later transform the results to the
barycentric (heliocentric with planetary corrections) system.
Thus we start with a raw template spectrum St, with its
wavelength scale in Wt, and a raw program spectrum Sp,
with its wavelength scale in Wp. Both St and Sp are rectified
and normalized to unity. To diminish the importance of the
one-to-zero discontinuities at the ends of the spectra, we
invert them so that the absorption lines are represented by
positive spikes: S0

t ¼ 1� St and S0
p ¼ 1� Sp.

The spectra must be of similar spectral type. We normally
use the templates with spectra within one spectral type.
However, we have found that F-type templates will work
reasonably well for radial velocity determinations between
middle A-types to early K-type stars; however, the relative
luminosity estimates from the individual peaks will then be
wrong.

The spectra must first be resampled into equal steps in
velocity. In our case the velocity step is typically Dv =
11.8 km s�1. An auxiliary vector of wavelengths is now cre-
ated with elements Wi = W0(1 + r)i, where i = 0, . . ., n � 1
is the index in the new vector and r = Dv/c, where c is the
velocity of light. The origin of this vector, W0, is selected to
fall just above both origins of Wt and Wp for a meaningful
interpolation of both spectra into the new wavelength scale.
The length of W in our case is usually selected to be
n = 1000–1020 spectral elements. The spectra S0

t and S0
p are

linearly interpolated using W, by treating Wt and Wp as the
respective abscissae, to create the spectra used in the BF der-
ivation: for the template T and for the program star P. After
this is accomplished, the three wavelength vectors W, Wt,
and Wp are no longer needed because the program and the
template spectra are now in the same (geocentric) velocity

3 A full description of the concept of the broadening functions with
examples and detailed programming suggestions is available at http://
www.astro.utoronto.ca/~rucinski.

Fig. 2.—Experiment in data processing. Left: High-resolution spectrum rebinned to equal velocity steps of 0.88 km s�1, without any additional broadening
(dotted line) and with rotational broadening of V sin i = 88 km s�1. The CCF for the two spectra is shown in the right panel. Note the strong positive fringes
outside the main correlation peak, as well as the shift of the quasi baseline well below the expected zero level; the actual broadening function has been shifted
down by�0.1 units to visualize the most likely placement of the local baseline in the vicinity of the correlation peak.
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system.We can think about them as functions P(n) and T(n)
with the same velocity axis or vectors P and T over the same
range of indices.

The convolution operation, which maps a sharp-line
spectrum T into a broad and/or binary-star spectrum P,

Pð�0Þ ¼
Z

Bð�0 � �ÞTð�Þd� ð1Þ

can be written as an array operation

P ¼ DB ; ð2Þ

in which the rectangular array D is created from the vector
T by placing it as columns of D after shifting it downward
by one index for each successive column (see below or for
further details consult Rucinski 1992, 1999). The broaden-
ing function is represented by a vector of the unknowns in
the solution, B. The array D has the short dimension m and
the long dimension n � m + 1; it accomplishes the mapping
of T ! P. We normally use the odd number for the size of
the broadening function m to have it centered at the pixel
symmetrically distant from both ends. Also, for proper
handling of the ends, m0 = integer(m/2) points are removed
from both ends of P.

The convolution operation equivalent to equation (2),
which is used in the least-squares determination of B, can be
written as a system of overdetermined linear equations:

Pi ¼
Xm�1

j¼0

Tiþm�j Bj ; with i ¼ m0; . . . ; n�m0 � 1 : ð3Þ

The number of equations should be several times larger than
the number of unknowns, n � m + 1 > m. In our program
we normally use n = 1000–1020 and m = 121. The size of
the broadening function m translates into the relative
velocity range (program minus template) of �708 km s�1,
insuring a good definition of the BF itself and of the flat
baseline around it. The actual size of the broadening func-
tion is a matter of choice; sometimes we repeat the BF deter-
mination with a smallerm for binary systems with moderate
line splitting when a wide window of over 1400 km s�1 is not
needed. The point is to use as short a BF as possible because
the quality of the determination (overdeterminacy)
increases in relation to how many times the spectra are
longer than the BF.

Solving the broadening function Bj is accomplished by
least squares. We are strong advocates of the singular value
decomposition (SVD) technique, which is particularly use-
ful in eliminating those parts of the spectra that carry no
information (the interline continuum), but create linear
dependencies. The approach involving rejection of small
singular values is the best for restoration of the shape of the
BF for its subsequent modeling. However, with the radial
velocities in mind, we do not in fact eliminate any singular
values. In this respect we have departed somewhat from the
original philosophy, but this departure has a reason; if some
basis functions are eliminated, there exists a possibility that
the spectral features may acquire asymmetries through an
unwanted conspiracy of the basis functions that remain in
the definition of the BF. By retaining all singular values, we
treat each element ofBj (eqs. [2]–[3]) as a totally independent
variable not related in any way to its neighbors. Thus any
least-squares technique can be used at this stage, although

we continue to use the SVD because it is easier to use and
more transparent for the matrix inversion.

The details of the SVD approach to solve the array equa-
tion, equation (2), or its equivalent, equation (3), for the BF
vector B are described in Rucinski (1992), and the program-
ming examples are given in Rucinski (1999). Even without
elimination of any singular values in the SVD solution, this
approach has an advantage that one decomposition of the
template-spectrum array, D = UWVT, can serve to deter-
mine B from several program spectra through the inverted
relation B=VW�1(UTP).

For an excellent exposition of the SVD technique stress-
ing its beneficial properties, see Press et al. (1992).

Irrespective of which method of the least-square solution
is used, the resulting broadening functions are always very
noisy and cannot be used for radial velocity measurements.
The reason for the excessive noise is that each element of the
solution Bj is unrelated to its neighbors and is treated as a
separate unknown. We know, however, that our spectral
resolution is controlled by the spectrograph slit, which
introduces coupling between neighboring points of the BF.
In our case the intrinsic smoothing introduced by one of the
entrance slits is characterized by the FWHM of about 2.6 or
2.2 pixels. It is therefore reasonable to apply some smooth-
ing to the noisy BFs. Superficially, this step does the same to
the final shape of the BF as smoothing through rejection of
noise absorbed by high-order singular values in the SVD
technique; however, this operation is strictly local, whereas
the removal of some singular values may introduce nonlocal
effects. Usually we smooth the broadening functions by con-
volving them with a Gaussian with � = 1.5 pixels
(FWHM = 3.53 pixels); for poor spectra of very faint stars
we are sometimes forced to use � = 2.0 (FWHM = 4.71
pixels). Such smoothing is slightly stronger than its instru-
mental counterpart by the spectrograph slit, but it is never-
theless very small when compared with widths of lines in
binary stars with periods shorter than 1 day.

6. RADIAL VELOCITY MEASUREMENTS

Step 3 is the radial velocity determination from the broad-
ening functions. We determine the radial velocities of each
binary component in the geocentric system, relative to the
template star, vi. Following that, the relative velocities are
transformed to the solar system barycenter with Vi =
vi + (HCp � HCt) + Vt, where HC are the barycentric
(sometimes called ‘‘ heliocentric ’’) velocity corrections
resulting from the orbital Earth motion for the program
and template spectra and Vt is the barycentric velocity of
the template star.

The broadening function B(v) determined in the previous
step is defined at points separated by equal steps in relative
geocentric velocity, in our case normally Dv = 11.8 km s�1,
spanning the velocity range �708 � V � +708 km s�1. The
velocities of stellar components are determined by simulta-
neous fitting of several Gaussian curves to as many spectral
features as are seen in the BF. Thus it would be a four-
parameter Gaussian fit for a single star (baseline a0, strength
a1, position a2, width a3), a seven-parameter fit for a binary
or a 10-parameter fit for a triple system, etc., as in

BðvÞ ’ a0 þ
Xn
i¼1

a1i exp � v� a2i
a3i

� �2
( )

; ð4Þ
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where n represents the number of stellar components in the
system. We found that least-squares Gaussian fits for single
stars are usually stable, while those involving more compo-
nents (binary, triple, and higher multiplicity systems) are
numerically unstable, forcing us to fix or manually adjust
the width parameters a3i.

In the triple systems that we have encountered so far, the
most typical combination has been a broad-lined close
binary accompanied by a sharp-line, slowly rotating star. In
such situations we first leave the width and position of the
third, sharp component floating in order to determine the
best possible parameters for its subsequent subtraction from
the BF. For the example shown in Figure 1, the Gaussian
widths for the binary components were assumed at
a31 = 110 km s�1 and a32 = 70 km s�1, while the width a33
was determined at 24.74 km s�1. We found that situations
similar to that shown in the figure require a careful removal
of the third-component signature. In order to define the BF
for the close binary the best way possible, we cannot remove
the averaged signature of the third star from many spectra
andmust subtract it as it is defined for the same observation.
There may be many reasons why subtraction of the aver-
aged third-star peak leaves too large residuals, including
small changes in the effective resolution, imperfections in
the geocentric to barycentric transformations, or instabil-
ities in the spectrograph. Obviously this approach reduces
the accuracy of the third-star velocities, but our goal has
been to determine the best velocities for the close binary, so
we accept this limitation. The BF for the binary is usually
very well defined; see for example Figure 4 in Paper IV for
HTVir.

The random radial velocity errors for binaries occurring
in triple systems are only slightly larger than for the isolated
binaries, typically by less than 1 km s�1 in the errors of V0,
K1, and K2; this increase may simply reflect more degrees of
freedom in the problem (see the discussion in x 8, and Fig.
4). Much more difficult to characterize are systematic uncer-
tainties. One manifestation of such uncertainties is the pres-
ence of an undesirable ‘‘ cross-talk ’’ in the three-feature fits
in that the third-star velocities sometimes correlate with the
binary phase. We always check the third-star velocities for
dependence on the binary phase. We found such a correla-
tion in three cases, SW Lyn in Paper IV and in V2388 Oph
and II UMa in Paper VI; the rather extreme case of II UMa
is explicitly discussed in Paper VI. It is usually quite difficult
to find reasons for the cross-talk, and each case seems to be
unique. Faintness of the star (SW Lyn) and/or poor spectra
certainly magnify the problem, which appears to depend on
such factors as the location of the third peak in the BF rela-
tive to the peaks for the binary system stars (i.e., with which
component the third peak merges most of the time) or the
overall degree of the line splitting for the binary system
(which depends on the orbital inclination). Typically the
cross-talk increases the error per observation of the third
star from the expected level (for a sharp-line star) of 1.2–1.3
km s�1 to the level of 1.5–2.5 km s�1. Except for noting the
presence of the cross-talk, we are not in position to study it
more extensively given the different type of the binary-phase
dependence in each case. Our hope is that the cross-talk will
average out in the velocities of the third component,
although the final proof will come only through external
comparisons. The stress has always been on the quality of
the binary solutions, perhaps at the expense of the quality
of the radial velocity data for the third components.

We measure the radial velocities for the binary compo-
nents—and, if necessary, of a spectroscopic companion—
but do not estimate the accuracy of the radial velocity meas-
urements at this stage. In principle it is possible to establish
a relation between the S/N in the spectrum and in the
broadening function (Rucinski et al. 1993), but further
propagation of the errors into the velocity errors is more
complex and depends on many factors. While such a rela-
tion would definitely be needed for a full modeling of the
BFs, we feel that the complexity of the error analysis is not
warranted in our case. Thus we do not determine the radial
velocity errors from the individual BFs but evaluate them
externally later from the orbital velocity solutions. Such
estimates may perhaps be overly pessimistic, as they incor-
porate systematic deviations from the orbital motion mod-
els. Most importantly, however, the random errors are not
the limiting factor in our results; the real difficulty is in the
evaluation of the systematic uncertainties. We address this
issue in x 9 after describing the orbital solutions (x 7) and the
externally evaluated random errors (x 8).

7. ORBITAL SOLUTIONS

Step 4 of the reductions is the determination of the radial
velocity orbit using the individual velocities of both compo-
nents at all observed orbital phases. Currently, we do so by
measuring the individual velocities of components,
although a more global approach involving the modeling of
the broadening functions would definitely be much prefera-
ble. The broadening functions have the potential of provid-
ing much more information than just simple velocity
centroids, so that the orbital solutions could be carried to a
much higher level of sophistication than in this series of
papers. Such use of the BFs was described in Rucinski
(1992), Lu & Rucinski (1993), and Rucinski et al. (1993),
where the modeling of the BF shape was advocated. Full
modeling of this type requires knowledge of the orbital incli-
nation, which is usually not available, and involves a simul-
taneous determination of the radial velocity span K1 + K2,
the mass ratio q, and the degree-of-contact parameter f. The
complexity of such a global approach is the main reason
why we continue to use single velocities to characterize
motions of stellar components, but we do recognize limita-
tions of this approach, which may generate systematic
uncertainties in the final results; this is discussed in x 9. We
should add that originally this program was intended to
provide theV0-values from a small number of radial velocity
measurements to relate to the then newly available
Hipparcos tangential velocities. However, with time our
program acquired its current significance as the main con-
tributor of radial velocity orbits for short-period binaries
(this circumstance taking place partly ‘‘ by default ’’ through
a surprising lack of similar programs at other observato-
ries). Thus we continue to use the Gaussian fits but recog-
nize that all our spectra and the broadening functions may
be used for a much more extensive modeling.

All short-period binary systems observed by us so far
have circular orbits resulting in sine-curve variations of
orbital velocities. The only exception that we had to con-
sider is the third star in the system of HT Vir (Paper IV),
which is on an eccentric orbit; for this case we used the
model of Morbey (1975). Because eclipse effects of rotation-
ally broadened lines change line shapes and produce unde-
sirable radial velocity shifts, we eliminate observations close
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to orbital conjunctions, usually within the phase ranges
0.85–0.15 and 0.35–0.65.

The orbital solutions are obtained iteratively. First, we
use the linear model of two sine curves and one constant
value, with an assumed moment of the primary eclipse T0.
Thus, for k observations, we simultaneously fit by least-
squares 2 � k equations of the type

V1ð�lÞ ¼ V0 � K1 sin�l þ 0 ; ð5Þ
V2ð�lÞ ¼ V0 � 0þ K2 sin�l ;

l ¼ 0; . . . ; k � 1 ; ð6Þ

where � is the orbital phase, �l = (tl � T0)/P. Similarly to
T0, the period P is usually taken from literature sources and
is fixed; only in a few cases we attempted to improve its
value. The equations can be weighted at this point when
observations are of different quality. The weighting schemes
are discussed in descriptions of stellar systems in individual
papers and are given in the tables with radial velocities.
Note the sign convention in the equations, which implies
that we usually start with an assumption that the primary,
more massive component (star 1) is eclipsed at the photo-
metric primary minimum. In other words we assume that,
for a contact system, the configuration is of an A-type con-
tact binary. We identify the W-type systems when this
assumption is not valid.

The resulting V0, K1, K2 are the first approximations of
the orbital parameters. The next step in the iterative solu-
tion consists of the application of the linearized versions of
equations (5)–(6) for DV0, DK1, DK2, and DT0. We always
first use any available literature value for T0 and then
improve it by solving the linearized equations until all cor-
rections D no longer change. It is at this stage that we deter-
mine random-error uncertainties of the orbital parameters
and the radial velocity errors per observation.

8. MEAN STANDARD ERRORS

Least-squares solutions of the linearized equations (5)–
(6) can provide the mean standard errors of the orbital
parameters V0, K1, K2, and T0. We do not use such errors
because they usually underestimate the random error uncer-
tainties. Instead we use the ‘‘ bootstrap-sampling ’’ techni-
que, which involves multiple (thousands of times)
resampling of the data with possible repetitions, with subse-
quent solutions of all such data sets. By forming statistics of
the spread in the resulting parameters and by determining
the inner 67% distribution ranges, we estimate equivalents
of the mean standard errors. They are sometimes close to
the linear estimates but are usually larger. In any case we
consider them to be more realistic as they include interpara-
meter correlations.

We have a sufficient amount of information from all of
our orbital solutions to analyze the sizes and distributions
of our random errors. For that purpose we used all of the
available solutions, eliminating three systems observed at
the Dominion Astrophysical Observatory, as reported in
Paper I, and adding W Crv, described separately (Rucinski
& Lu 2000), totaling 58 orbital solutions altogether.

The statistics of the mean standard errors per single
observation �i for the primary (i = 1) and the secondary
(i = 2) components are shown in the top left panel of
Figure 3. The median values of the errors are h�1i = 5.48 km

s�1 and h�2i = 11.50 km s�1. The corresponding distribu-
tions for the errors of the radial velocity amplitudes �(Ki)
are shown in the top right panel. The median values are
h�(K1)i = 1.11 km s�1 and h�(K2)i = 1.96 km s�1. The cen-
ter-of-mass velocities V0 are better established than Ki

because two stars contribute in each solution to one num-
ber. The median value of these errors is h�(V0)i = 1.07 km
s�1. Finally, the distribution of the mean standard errors of
the initial epoch �(T0) is shown in the bottom right panel of
Figure 3. The median value for this error is h�(T0)i =
0.0011 days (about 1.5 minutes).

The mean standard errors of the orbital parameters are
correlated. The most interesting correlations are shown in
Figure 4. The two top panels show the mean error of the
center-of-mass velocity �(V0), which appears to be a con-
venient measure of the quality of the orbital data. It depends
on the brightness of the system and on the orbital period. It
is confined within less than 1.5 km s�1 for Vmax < 8.5 but
increases to slightly over 2 km s�1 for Vmax � 10 (top left).
The scatter in �(V0) increases for short-period systems (top
right), but this may be due to the fact that most of our tar-
gets had periods within 0.3–0.6 days, in a range where a gen-
uine frequency maximum exists in the volume-limited
samples of contact binaries (Rucinski 1998). The systems
with longer periods (P > 0.8 days) tend to show small
errors, but these are exactly the binaries that had been over-
looked before among the bright stars and have been
easy targets for our program. The error �(V0) correlates
tightly with �(Ki) and with �i, as shown in the four bottom
panels of Figure 4. A particularly close correlation with the
slope close to unity exists between �(K1) and �(V0) (middle
left).

Binaries observed in spectroscopic triple systems show
slightly larger random errors than when isolated, typically
by less than 1 km s�1 in the errors of V0, K1, and K2. Such
binaries are shown by open symbols in all plots in Figure 4.

9. SYSTEMATIC UNCERTAINTIES

It is difficult to evaluate systematic uncertainties of our
results. The systematic errors depend in a complex way on
the orbital parameters and couple with the random errors.
The main source of systematic errors is the measurement of
radial velocities from the broadening functions. We approx-
imate the center-of-mass positions with the light centroids
and measure the centroids by fitting Gaussians. The latter
assumption, that the radial velocities of the light centroids
coincide with radial velocities of the mass centers, is—in
general—not fulfilled by distorted components in close
binary systems and is particularly dangerous for contact
binaries where the peaks in the BFs are not symmetric, with
steeper outer parts and more gently sloping inner parts.
Direct modeling of the BFs would avoid this systematic
error (see the end of this section).

Some insight into systematic uncertainties involving the
Gaussian approximation of the peaks in the broadening
functions can be obtained by applying Gaussians of various
widths and evaluating systematic shifts in the results. We
will consider here, as a case study, a typical, 9 mag, A-type
contact system, GM Dra, from the immediately preceding
paper in this series, Paper VI.

Let us first consider one broadening function for the
orbital phase 0.283 of GM Dra (bottom, Fig. 5). For this
particular broadening function we would normally select
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the best-fitting Gaussians to have the width parameters
a31 = 120 km s�1 and a32 = 80 km s�1 (see eq. [4]). How-
ever, as an experiment, we considered widths between the
estimated narrowest and widest acceptable values of a3i:
a31 = 100–140 km s�1 and a32 = 60–100 km s�1. The
extreme cases are shown by dotted and broken lines in
Figure 5. For the full range of widths the change in the
measured velocity of the primary component is from
�28.86 km s�1 to �31.27 km s�1, while the change for
the secondary component is from +261.44 km s�1 to
+262.49 km s�1. Thus systematic errors in radial veloc-
ities appear to be at a level of 1.5 to 2.5 km s�1, with
larger velocities (in the absolute sense) associated with
larger assumed widths of the fitting Gaussians.

Analysis of the type presented above can be done for
all available broadening functions at all orbital phases.
The four top panels of Figure 5 show the shifts in the
measured centroids for all available observations of GM
Dra, obtained around the orbital quadratures within the
orbital phase ranges 0.15–0.35 and 0.65–0.85, as marked
in the figure. The Gaussian widths a3i were incremented
in equal steps, and for each assumed width a full radial
velocity determination was performed. As we can see in
the figure, the systematic effects are clearly present, espe-
cially for the secondary (less massive) component. The
shifts are typically at the level below 2 km s�1 for the pri-
mary component, but shifts of the order 5–7 km s�1 are
not uncommon for the secondary component. The shifts
depend on the side of the binary system (or the sign of
the radial velocity) observed at a given orbital quadra-

ture. The overall tendency appears to be that the wider
Gaussian width a3i results in velocities farther away from
the center-of-mass velocity, i.e., ones that should lead to
systematically larger values of the orbital amplitudes Ki.
This is confirmed by the actual determinations of the
radial velocity orbits for the extreme values of (a31, a32)
pairs, selected to deviate from the optimal values of 120
and 80 km s�1 by �20 km s�1. The systematic changes
for the particular case of GM Dra strongly depend on
the parameter considered. While the changes in V0 are
within +0.09 and �0.16 km s�1, those in the amplitudes
are larger: �0.34 and +0.15 km s�1 for K1 and as much
as �4.30 and +5.97 km s�1 for K2. While the ranges of
the Gaussian widths a3i were intentionally exaggerated in
the experiment to estimate the largest systematic devia-
tions, we clearly see that systematic effects may set an
important limitation on our results. For comparison, we
note that the random errors of the orbital parameters of
GM Dra are �(V0) = 1.52 km s�1, �(K1) = 1.75 km s�1

and �(K2) = 2.50 km s�1 (Paper VI). Thus, for this par-
ticular binary, the systematic uncertainty appears to be
larger than the random error only for K2, but then it is
even 2 times larger.

Optimally, the systematic effects resulting from the use of
different widths in the Gaussian fits should be evaluated for
each binary through a process similar to that applied to GM
Dra. However, we feel that it is impractical to perform simi-
lar analyses for all systems in this program. Besides we know
that the application of the Gaussian fits is—in any case—a
crude approximation and that the best approach would be

Fig. 3.—Distributions of mean standard errors for program binaries. The histograms give the distributions of the error per observation (for each
component) �i and of the errors of orbital parameters �(V0), �(K1), and �(K2), all expressed in kilometers per second. The bin sizes are given in the y-axis labels.
In the two top panels solid-line histograms are for the primary components [�1 and �(K1)], while the dotted histograms are for the secondary components
[�2 and �(K2)]. The last panel gives the distributions of mean standard errors for the initial epochT0 in units of 0.0001 days.
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to model the broadening functions as was done in Rucinski
(1992), Lu & Rucinski (1993), and Rucinski et al. (1993).
Full BF modeling would permit the inclusion of more spec-
tra than we utilize now, because currently we measure for
radial velocities only those BFs which show a clear splitting
of the spectral signatures. By the addition of these spectra
we would increase the available material by about 20%–
30%, which would only slightly reduce random errors and
thus produce a very modest improvement in accuracy.
Much more important would be a reduction or the entire
elimination of the systematic errors, which may reach levels
of 5–7 km s�1. For most binaries in this program, this would
typically correspond to about 2%–3% error in Ki, but in

some extreme cases of small semiamplitudes, the errors may
reach 10%–15%. While the approach involving combined
radial velocity and light-curve modeling would avoid the
main systematic effects, it would require a considerable
organizational and computational effort, introducing large
delays in our mostly observational program. Since our
radial velocity observations are—for most systems—the
first and the only ones, we decided to accept the level of sys-
tematic errors generated by the use of the measuring Gaus-
sians and make our solutions generally available, keeping in
mind their systematic uncertainties, which must be taken
into account when considering the overall accuracy of our
program.

Fig. 4.—Correlations between various mean standard errors as given in the axis labels. Top: �(V0) as a function of Vmax and the orbital period, P. �(V0) is a
convenient measure of the solution quality and correlates tightly with �(K1), as shown in the middle left panel. The middle right panel shows the correlation
between �(K1) and �(K2). This correlation is not perfect because of the very large range of mass ratios observed among binaries of this program. The two
bottom panels show the errors per observation �; the left panel shows the correlation between �1 and �(K1), while the right panel shows the correlation between
�1 and �2. In all panels binaries analyzed through subtraction of the third-component signatures from the broadening functions are marked by open circles. All
quantities are expressed in kilometers per second.
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10. CONCLUSIONS AND PLANS

The ongoing survey of close binary systems with periods
shorter than 1 day currently being conducted at the David
Dunlap Observatory has resulted in a consistent set of radial
velocity orbits for 60 previously unobserved binaries to
approximately the 11th magnitude. While at the start the
survey concentrated on systems that simply had not been
studied before (for various reasons, but mostly because of
inadequate instrumentation and data-analysis tools some
half a century ago, when this field was very active), the
photometric discoveries of the Hipparcos satellite are now
dominating in numbers. There was only one Hipparcos sys-
tem among the first 20 orbits (Papers I and II), nine such

systems among the next 20 orbits (Papers III and IV) and 15
such systems among the most recent 20 orbits (Papers V and
VI). About 50 known, photometrically discovered binaries
still remain to be observed and analyzed, and new ones are
constantly added to catalogs, some of them quite bright.
Regrettably, apparently there is no similar survey for the
southern hemisphere.

Our survey is quasi-random in the sense that we observe
all short-period (P < 1 day), bright, previously unobserved
binaries. With such criteria the contact binaries absolutely
dominate in numbers. Among the 60 systems described in
the previous six papers, only eight were not contact systems.
This is partially due to strong selection effects against the
detection of detached binaries, but mostly due to the very

Fig. 5.—Top four panels: Shifts in the measured velocities for the primary (left) and secondary (right) components of GMDra (Paper VI) vs. the Gaussian-
width parameter a3i (see text). Each line is for one broadening function at one orbital phase within ranges around the two orbital quadratures, as marked in the
panels. The bottom panel shows one broadening function of GM Dra at the orbital phase 0.283, approximated by the Gaussians with the width parameters
[a31, a32] considered most extreme for this case: (100, 60) km s�1 (dotted line) and (140, 100) km s�1 (broken line).
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high frequency of contact binary systems in the old-disk
population, particularly in the period range 0.3 to 0.5 days
but with a tail extending beyond 1 day, to about 1.3–1.5
days. The high frequency of incidence is strongly manifested
in the volume-limited OGLE sample and in open clusters
(Rucinski 1998). Because our survey is magnitude limited,
we tend to include many brighter systems from the tail of
the distribution between 0.5 days and our current upper
limit of 1 day. Otherwise, we do not discriminate among
binary systems in any other way. In particular, the random
character of the survey has resulted in discoveries of the
largest (q = 0.97, V753 Mon; Paper III) and the smallest
(q = 0.066, SX Crv; Paper V) known mass ratios among
contact binaries.

The DDO survey is characterized by moderate random
errors of about 1–2 km s�1 for the orbital parameters V0,
K1, and K2, and—upon completion—can serve as a useful
database of parameters of very close binary systems. We are
aware, however, that our final parameters contain system-
atic uncertainties resulting from our radial velocity mea-
surement techniques. While the use of the broadening
functions permitted us to analyze close binaries in several
multiple, visual/spectroscopic systems, providing data
which were too ‘‘ difficult ’’ before, our extraction of individ-
ual radial velocities from the broadening functions through
Gaussian fitting is a disputable approach for contact binary
systems. Because the line broadening for such systems is
very strong, comparable to orbital velocities of hundreds of
kilometers per second, and—in fact—somewhat asymmet-
ric, our measuring technique may lead to systematic errors
reaching levels of 5–7 km s�1 or even more. Paradoxically,
through the use of the broadening functions in place of the
cross-correlation functions, we have uncovered real physical
reasons why the Gaussian approximation is only barely
appropriate. The correct approach avoiding the systematic
errors would be to model the broadening functions and
determine the radial velocities in terms of the mass ratio q
and the scaling factor (K1 + K2), with the shiftV0. The mod-
els would require independent input from parallel solution
of light curves, providing the orbital inclination angle i as
well as the degree of contact f. Currently, most of the pro-
gram targets have not had their light curves solved, and,
even if some attempts have been made, we would not trust
them for the following simple reason: we have seen so many
cases of the spectroscopic mass ratio being different from
the previous photometric mass-ratio determinations,
qsp 6¼ qphot, that we feel very strongly that the values of qphot

are usually not properly constrained and may be plainly
wrong4. But then the chances of total eclipses depend on the
mass ratio itself (a wider range of inclinations for small val-
ues of q), producing a very complex bias in the uncertainties
of qphot, leading to entirely incorrect combinations of orbital
parameters.

We envisage that the results of this survey will provide
just a first stage of an iterative process. In the future, our
spectroscopic values of the mass ratio qsp should permit the
solution of light curves that were previously unsolvable
because of the poorly constrained mass ratios. The derived
information on (i, f ) pairs would permit, in turn, a rediscus-
sion of the broadening functions and determination of the
final orbital parameters free of systematic uncertainties.

Concerning the instrumental developments at the DDO,
soon we plan to start using a new CCD system based on a
much more sensitive detector. While the analysis of the data
should remain the same as described above, we may have to
select the targets more discriminately. In particular, it may
turn out to be impractical to observe all binaries with peri-
ods shorter than 1 day down to the expected limiting magni-
tude of about 12.5 mag. Indeed, from the point of
astrophysical usefulness, it would be advantageous to
reduce the deficit of the intrinsically faint contact systems
among spectroscopically studied binaries of the magnitude-
limited sample by attempting to form a volume-limited
sample by giving preference to very short-period systems.
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tributions have been acknowledged there, special thanks are
due to Dr. Hilmar Duerbeck, who contributed to setting the
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author would like to thank Stefan Mochnacki and Mel
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the paper. Thanks are also due to the anonymous referee for
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