
FOURIER TECHNIQUES FOR VERY LONG ASTROPHYSICAL TIME-SERIES ANALYSIS

ScottM. Ransom,
1,2

Stephen S. Eikenberry,
3
and JohnMiddleditch

4

Received 2002 April 23; accepted 2002 June 11

ABSTRACT

We present an assortment of both standard and advanced Fourier techniques that are useful in the analysis
of astrophysical time series of very long duration—where the observation time is much greater than the time
resolution of the individual data points. We begin by reviewing the operational characteristics of Fourier
transforms of time-series data, including power-spectral statistics, discussing some of the differences between
analyses of binned data, sampled data, and event data, and we briefly discuss algorithms for calculating dis-
crete Fourier transforms (DFTs) of very long time series. We then discuss the response of DFTs to periodic
signals and present techniques to recover Fourier amplitude ‘‘ lost ’’ during simple traditional analyses if the
periodicities change frequency during the observation. These techniques include Fourier interpolation, which
allows us to correct the response for signals that occur between Fourier frequency bins. We then present tech-
niques for estimating additional signal properties such as the signal’s centroid and duration in time, the first
and second derivatives of the frequency, the pulsed fraction, and an overall estimate of the significance of a
detection. Finally, we present a recipe for a basic but thorough Fourier analysis of a time series for well-
behaved pulsations.
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1. INTRODUCTION

The analysis of time-series data is an important tool in
many areas of astrophysics, including research involving
white dwarfs, black holes, and neutron stars. In the study of
neutron stars, time-series analysis has had particular impor-
tance for pulsar research because of the high coherence of
pulsar periodicities. While many techniques can be used to
investigate the properties of these periodic signals, the com-
putational efficiency of the fast Fourier transform (FFT)
makes Fourier analysis the preferred approach for many
applications (see, e.g., Burns & Clark 1969). The literature
contains literally hundreds of descriptions of various
aspects of Fourier analysis, most of which deal with signal
detection using the power spectrum.

Because of this concentration on power spectra, many
researchers discard a wealth of information provided by the
Fourier phases. Techniques that use this phase information
exist and can provide insight intomany useful signal proper-
ties. While many of these techniques have been known for
some time (see, e.g., Middleditch 1976), few have appeared
in textbooks or refereed journals, and fewer still have been
presented with any sort of derivation or insight into their
assumptions and/or limitations.

A second, more practical problem with most astronomi-
cal Fourier analysis is its concentration on short time series.
We define ‘‘ short ’’ to mean either that the full time series of
binned or sampled data can fit into the core memory of
one’s computer (N d 107 points) or, for data consisting of
events (such as photon arrival times in X-ray astronomy),

that the time resolution (dt) of each event makes up a nonne-
gligible fraction of the total time duration (T) of the data
(T/dt d 107). Gigapoint FFTs have been used successfully
in the past (e.g., Anderson 1992;Mattox et al. 1996;Middle-
ditch et al. 2000), but each required the use of state-of-the-
art supercomputing facilities. Today, such analyses are
possible using clusters of workstations or even individual
desktop machines. Many projects, such as pulsar searches
of globular clusters, astero- or helioseismological obser-
vations, and gravitational wave experiments, require
extremely large Fourier transforms in order to make the
highest sensitivity (i.e., coherent) searches for pulsations and
to extract the maximum amount of information from
signals found in these searches.

It is our goal in this paper to present some useful Fourier
analysis techniques that for various reasons are used only
rarely when working with long time series. Most of our
examples pertain to pulsar searches of very long time series,
but the methods can be used in the Fourier analysis of virtu-
ally any coherent periodicity. This paper will briefly discuss
the properties of the discrete Fourier transform (DFT), its
response to periodic signals and noise, and methods for its
computation. We will discuss methods for interpolating
Fourier amplitudes, estimating a signal’s duration and cent-
roid in time, accurately determining its frequency and fre-
quency derivative, correcting for changing pulsation
frequency during an observation, and estimating the phase
or amplitude modulation of a signal. Such techniques allow
the detection of signals whose frequencies or amplitudes
change significantly during an observation—for instance, as
a result of orbital motion or pulsar spin-down.

2. DISCRETE FOURIER TRANSFORM

In order to present more advanced Fourier techniques
later, we first review some fundamentals of the DFT and its
most common implementation, the FFT. Since thorough
discussions of the Fourier transform in both its continuous
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and discrete variants exist in the literature (e.g., Bracewell
1999), we will mention only a few topics of particular
relevance to astrophysical data analysis, closely following
Middleditch (1976).

2.1. Introduction to the DFT

The kth element of the discrete Fourier transform of a
uniformly spaced time series nj ( j = 0, 1, . . . , N�1) is
defined as

Ak ¼
XN�1

j¼0

nje
�2�ijk=N ; ð1Þ

where i = (�1)1/2 and k is the Fourier frequency or wave
number (k = 0, 1, . . . ,N�1). For a time spacing dt between
successive data elements, the frequency of the kth element is
fk = k/(N dt) = k/T, where T is the total time duration of
the sequence being transformed. This frequency spacing of
1/T, for evenly sampled, unpadded, and nonwindowed
data, is often called the independent Fourier spacing (IFS)5

and defines the finest frequency resolution available while
maintaining completely independent Fourier amplitudes.
Fourier frequencyN/2T is known as the Nyquist frequency.

If we view the DFT summation in the complex plane, we
see that it is a simple vector addition with each element
rotated by�2�k/N from the previous element. If the nj have
a constant value, the sum will form k regularN/k-sided pol-
ygons with each polygon returning near to the origin and
with the last one returning exactly to the origin. Therefore,
the DFT of a constant data string will be identically zero for
all k > 0 and equal to the sum of the data elements for k = 0
(the ‘‘ DC ’’ frequency element).

For most astrophysical observations the data points are
real-valued. This property adds an important feature to
Fourier transforms of these time series—they are symmetric
about the Nyquist frequency such that AN�k = A�k , where
A�k represents the complex conjugate of Ak. This symmetry
allows us to calculate the full DFT of a time series by
computing amplitudes at only half of the normal Fourier
frequencies, thereby speeding up computation of the DFT
by nearly a factor of 2 (see, e.g., Press et al. 1992).

When deriving properties and techniques based onDFTs,
it is often both computationally and intuitively easier to
work with a time-normalized data series, where T = 1 and u
represents the fraction of the observation complete at any
given instant (such that 0 � u � 1). In this case, instead of
working with frequencies f, or integral wavenumbers k, we
define r, which represents any real wavenumber (including
nonintegers). If the number of samples, N, from our data
source, n(u), is large, we can compute a continuous Fourier
transform (FT)

Ar ¼ N

Z 1

0

nðuÞe�2�iru du ; ð2Þ

which is almost identical to our DFT when r = k and
produces very high accuracy estimates of the Fourier ampli-

tudes at any frequency such that 05 r5N/2. We will use
this approximation in many of our derivations.

2.2. Computation of Very Long FFTs

The fast Fourier transform is a family of well-known
computer algorithms that quickly calculate a DFT in only
O(N log2 N) operations, as opposed to the O(N2) opera-
tions of a brute-force DFT. FFTs, their computation, and
their origins have been described in numerous articles and
books over the last few decades (see Bracewell 1999 for an
introduction). Therefore, we will describe only a few special
versions that have become generally known only recently
and that are useful in the analysis of extremely long time
series.

High-energy pulsar searches using photon-counting
systems (infrared, optical, X-ray, and gamma-ray detectors)
or pointed radio telescope searches (e.g., searching globular
clusters) often utilize very high sampling rates (i.e., 10–
50 kHz) and very long integration times of hours, days, or
even weeks. These observations result in time series with
hundreds of millions or even billions of data points. The
subsequent FFTs are impossible to perform using conven-
tional FFT algorithms unless the full time series fits into the
core memory of the computer being used. Utilizing special
‘‘ out-of-core ’’ FFT methods, we can transform such huge
arrays using distributed memory parallel systems or with a
single workstation and manageable numbers of passes
through the data stored on external media. Most of these
methods are based on the ‘‘ four-step ’’ FFT and/or special
external media array permutation methods (Fraser 1976;
Bailey 1990).

2.2.1. The Four-Step FFT

Closely following the derivation described by Sweet &
Wilson (1995), we can think of our one-dimensional time
series as a ‘‘ C-like ’’ or row-ordered, two-dimensional
matrix of sizeN = NrNc, whereNc is the number of columns
(i.e., the length of a row) and Nr the number of rows (i.e.,
the length of a column). Using this data decomposition, the
FFT is computed by (1) FFTing the columns of the matrix,
(2) multiplying the data by complex ‘‘ twiddle factors,’’ (3)
FFTing the rows of the matrix, and (4) matrix-transposing
the result. If we define indices x = 0, 1, . . . , Nc � 1, y = 0,
1, . . ., Nr � 1, l = 0, 1, . . . , Nr � 1, and m = 0, 1, . . . ,
Nc � 1, we can write our signal and its DFT amplitudes as

nðx; yÞ ¼ nj ; j ¼ Ncyþ x ; ð3Þ
Aðl;mÞ ¼ Ak ; k ¼ Nrmþ l : ð4Þ

Substituting into the definition of the DFT (eq. [1]) and
simplifying, we obtain

Aðl;mÞ ¼
XNc�1

x¼0

�
e�2�ixl=N

XNr�1

y¼0

nðx; yÞe�2�iyl=Nr

�
e�2�ixm=Nc :

ð5Þ

Note that the bracketed terms are really Nc DFTs of length
Nr—FFTs of the matrix columns multiplied by the twiddle
factor e�2�ixl/N. We denote these column FFTs as

Acðx; lÞ ¼ e�2�ixl=N
XNr�1

y¼0

nðx; yÞe�2�iyl=Nr : ð6Þ

5 The IFS is important when trying to determine the overall significance
of a candidate from a search. The number of IFSs searched corresponds to
the number of independent trials searched and should therefore be included
in calculations that try to determine if a candidate was produced by noise.
(See Vaughan et al. 1994.)
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We now see that the outer summation is Nr DFTs of length
Nc—FFTs of the matrix rows composed of the Ac(x, l)
terms. We denote the result of these transforms as

Arðm; lÞ ¼
XNc�1

x¼0

Acðx; lÞe�2�ixm=Nc : ð7Þ

To recover the full FFT in its normal order, we simply trans-
poseAr(m, l):

Aðl;mÞ ¼ AT
r ðm; lÞ : ð8Þ

The four-step algorithm only needs small portions of the
data in memory at any one time. Unfortunately, the short
FFTs are strided in memory6 instead of being stored contig-
uously. This results in a significant inefficiency in today’s
cache-based processors and requires internode communica-
tions when distributing the short FFTs over many process-
ors on parallel computer systems. These shortcomings can
be overcome with the ‘‘ six-step ’’ algorithm (Bailey 1990).

2.2.2. The Six-Step FFT

If the initial data set is transposed from an Nc � Nr

matrix into an Nr � Nc matrix, the strided column FFTs of
length Nr become contiguous row FFTs. This memory
locality facilitates the use of processor cache systems,
greatly increasing memory response times, and allows inde-
pendent calculation of the row FFTs by different processors
in parallel systems. A second transpose operation after the
row FFTs have been calculated counteracts the effects of the
first transpose operation and makes the next set of row
FFTs contiguous in memory as well. The FFT is finished
with a final transpose operation that brings the data into
normal order.

These transpose operations are relatively efficient on dis-
tributed memory parallel systems with fast internode com-
munications, and they add little time to the overall FFT. In
fact, for applications with very large N the time required to
move the data from external media to computer memory
and vice versa tends to dominate the FFT time. The six-step
algorithm has become the ‘‘ standard ’’ FFT algorithm for
distributed memory systems, where the serial nature and
large number of short FFTs exploit parallel computation
strengths.

Unfortunately, if the data do not all fit into the core mem-
ory of a workstation or parallel machine, the transposes
become extremely slow operations, since data must be read
to and written from much slower external media. Fraser
(1976) devised optimized methods for dealing with such
data permutations on external media including the ‘‘ two-
pass ’’ FFT algorithm.

2.2.3. The Two-Pass Out-of-Core FFT

Fraser (1976) and Bailey (1990) both describe how a very
large data set may be Fourier-transformed with only two
read-write passes through externally stored data if a scratch
area on the external media the same size as the input data
set exists. The method uses the four-step algorithm with

out-of-core transposes. These transpose algorithms allow
blocked external media access and perform most of the
transposition work in core memory. While external media
access speeds and transfer rates are orders of magnitude
slower than core-memory systems, the two-pass algorithm
allows huge arrays to be transformed in manageable times.

3. FOURIER TRANSFORMS OF REAL DATA

3.1. Fourier Response to Noise

If our data nj are composed of some constant value cj plus
random real-valued noise fluctuations dj with zero mean,
the transform terms become

ðcj þ djÞe�2�ijk=N ¼ cje
�2�ijk=N þ dje

�2�ijk=N : ð9Þ

The linear nature of the Fourier transform allows us to treat
the DFT of the dj independently from the constant length
steps cj. Since the complex phase factor for a given j and k is
fixed, the direction of each element in the sum is nearly fixed.
However, since the sign of the dj may be either positive or
negative, the vector direction of the jth element may be
reversed. Thus the DFT of the dj creates a kind of random
walk in the complex plane.

The statistical properties of this random walk for DFTs
of pure noise have been well studied (see, e.g., Blackman &
Tukey 1959), and result in power spectra distributed accord-
ing to an exponential distribution (a �2 distribution with 2
degrees of freedom) with average and standard deviation
equal to Nhd 2

j i. If we normalize the powers by dividing by
Nhd 2

j i, the probability for a power P = |Ak|
2 in a single bin

to equal or exceed a power P0 by chance is7

Pr ðP � P0Þ ¼ e�P0
: ð10Þ

Similarly, if we sum m properly normalized powers, the
probability for the summed power Pm to exceed a power P0

is given by

Pr ðPm � P0Þ ¼
Xm�1

j¼0

ðP0Þj

j!
e�P0

; ð11Þ

which is the probability for a �2 distribution of 2m degrees
of freedom to exceed 2P0. Such an incoherent (since no phase
information is used) summation of powers is often useful
when searching for signals suspected of having power in
many harmonics (see x 3.2.2).

Proper normalization of the powers is essential for an
accurate estimate of a signal’s statistical significance or lack
thereof. We often cannot normalize our power spectrum by
simply dividing by Nhd 2

j i since frequency-dependent noise
may be present throughout our power spectrum—perhaps
as a result of instrumental, atmospheric, or astrophysical
processes. Typically, these processes produce noise that
increases in strength toward the low-frequency part of the
spectrum and is correspondingly called red noise.

Techniques to flatten or remove this ‘‘ colored ’’ noise
component from the power spectrum are described by Israel
& Stella (1996) and usually involve dividing short portions
of the power spectrum by the locally determined average

6 ‘‘ Strided ’’ means that the data is stored in a sequence of noncontig-
uous memory locations spaced by a constant amount of memory known as
the ‘‘ stride.’’

7 This is different from the probability for an actual signal to produce a
power P > P0 in the presence of noise (see x 3.3). This difference is
important in setting upper limits on the amplitudes of periodic signals, as
discussed in Vaughan et al. (1994).
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power level Plocal, such that

Pk;norm ¼ Akj j2

Nhd2
j i

’ Akj j2

Plocal
¼ Pk

Plocal
: ð12Þ

As long as the number of averaged powers is small enough
that the power spectrum is roughly constant over the range
in question, a white noise–like power spectrum is produced
with average and standard deviation of approximately 1
and an exponential distribution (eq. [10]).

Since strong narrowband signals near some frequency of
interest will skew a local power average upward (and corre-
spondingly decrease the calculated significance of a signal
detection), it is important to exclude such powers from the
calculation of Plocal. A simple and effective way to accom-
plish this is by normalizing with a corrected local median
power level instead of the local power average. An exponen-
tial distribution with unity mean and standard deviation has
a median of ln 2. Therefore, dividing a section of raw
powers by 1/(ln 2) times the local median value is theoreti-
cally equivalent to normalizing with the local mean, but it
has the advantage of being insensitive to high-power out-
liers in the spectrum.

More advanced algorithms for the removal of ‘‘ colored ’’
noise and power normalization do exist. A simple example
involves fitting polynomial models to portions of the power
spectrum and then dividing the power spectrum by the
models. These methods work well for Fourier frequencies
near zero, where the assumption of roughly equivalent
power levels for the local powers may be unwarranted.

For the special case where the noise in our data is purely
Poissonian (i.e., for binned photons in an optical or X-ray
observation), we have hd 2

j i = hnji. In this case our properly
normalized power for the kth DFT element is

Pk;norm ¼ Akj j2

Nhd2
j i

¼ Akj j2

nph
; ð13Þ

where nph = Nhnji is the sum of the nj (or the total number
of photons for a photon-counting system), which is also
equal to the ‘‘ DC ’’ frequency value of the FT (see x 2.1).
However, the same processes that caused the ‘‘ colored ’’
noise discussed above can significantly alter this situation
and require a power normalization based on local powers
(see eq. [12]).

3.2. Fourier Response to Periodic Signals

One of the more useful properties of the FT for astronom-
ical purposes is its response to periodic signals. Since all real
periodic signals can be expanded into a series of sinusoids, it
is important to understand the FT response to a simple sine
wave.

3.2.1. Sinusoidal Signals

If we now let our nj represent a sampled cosinusoid of
amplitude a, phase �, and frequency fr = r/T (where
wavenumber r is an integer and fr an ‘‘ integral fre-
quency ’’), we can write

nj ¼ a cosð2�frj dtþ �Þ ð14aÞ
¼ a cosð2�jr=N þ �Þ ð14bÞ
¼ 1

2 aðe
2�ijr=Nþi� þ e�2�ijr=N�i�Þ : ð14cÞ

From this expression, we see that the kth element of the
DFT is given by

Ak ¼ a

2

XN�1

j¼0

e�2�ijk=Nðe2�ijr=Nþi� þ e�2�ijr=N�i�Þ ð15aÞ

¼ a

2

XN�1

j¼0

e2�ijðk�rÞ=Nþi� þ e�2�ijðkþrÞ=N�i�; ð15bÞ

and represents the summation of two vectors in the com-
plex plane. For k 6¼ r, the first term traces out |k � r|
complete ‘‘ rotations ’’ (pseudopolygons that start and
end at the origin) in the complex plane (since k � r is an
integer), giving a net contribution of zero to the kth
DFT element. The second term traces out k + r complete
rotations and once again contributes nothing to the kth
DFT element (since k and r are both positive) and there-
fore k + r 6¼ 0.

When k = r, however, the consecutive terms in the
summation add coherently (i.e., in phase and therefore
without rotation) since the rotation caused by the DFT
exponential exactly cancels that from the signal exponen-
tial (the Fourier transform ‘‘ derotates ’’ the signal). As a
result, each element of the sum is a step in the complex
plane of magnitude a/2 in a direction parallel to that set
by the arbitrary initial phase of the signal �. For a cosi-
nusoidal signal with integral frequency fr, the DFT will
be uniformly zero, except in the rth frequency bin, where
the response is

Ar ¼ 1
2Naei� : ð16Þ

The Fourier response is more complicated for sinusoids
with nonintegral frequencies (i.e., wavenumber r is a non-
negative real number). The kth DFT element is still given by
equation (15b), but not all of the signal ends up in a single
DFT binAk. When k = [r] (where [r] is the nearest integer to
r), the first term in equation (15b) traces out a fraction
(k � r) of a complete rotation in the complex plane, while
the second term traces out k + [r] complete rotations plus
an additional fractional rotation.

When N is large, these complete and fractional ‘‘ rota-
tions ’’ can be treated as circles and arcs, respectively. There-
fore, the first term of equation (15b) results in a semicircular
arc of length Na/2 along the arc, while the second term pro-
duces a semicircular arc of length a(N mod k + [r])/2 along
the arc. The DFT response is simply a vector drawn from
the origin to the end of the arc (see Fig. 1). Since virtually all
astrophysical applications involve r 4 1, where the first
term dominates the response, we will ignore the second term
in the rest of our analysis.

The final response is a chord subtending 2�(k � r) rad of
a circle of radius Na/4�(k � r). The equation for the length
of a chord is

C ¼ 2
s

�
sin

�
�

2

�
; ð17Þ

where s is the arc length and� is the angle subtended by the
chord. The curvature of the arc away from the signal’s start-
ing phase � results in a phase change of e�i�(k�r). Therefore,
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Fig. 1.—Fourier responses plotted as a series of vector additions in the complex plane. The outer circles in each plot show the Fourier amplitude of a signal
where all power is recovered by the vector addition (i.e., calculation of the DFT at the correct signal frequency r and frequency derivative _rr for signals with
linear changes in frequency over time). The endpoints of the vector additions are the Fourier amplitudes. For (a) and (b) a fully recovered signal would start at
0 + 0i and end at 1 + 0i. (a) and (b) Effects on Fourier amplitude and phase when a signal’s intrinsic frequency (r in bins or wavenumber) or frequency
derivative (_rr in bins per observation) differs from the computed values. For (b) the average Fourier frequencies in each case were correct, and only the
frequency derivatives were in error. (c) Response of PSR J1807�2459 during its discovery observation (Ransom et al. 2001) with and without corrections for
pulsar acceleration (_rr) and interpolation in Fourier frequency (r). The vectors were calculated using the method shown in x 4.2.3. The fact that the corrected
vector does not quite reach the circle implies that higher order effects of the orbital motion remain uncorrected (see Fig. 6). (d ) Corrected and uncorrected
responses of 10,000 randomly selected photons from a 2.4 dayROSAT observation of the Crab pulsar.



the DFT response and power are

Ak ¼ ei�e�i�ðk�rÞ2
Na=2

2�ðk � rÞ sin
�
2�ðk � rÞ

2

�
ð18aÞ

¼ Na

2
ei�e�i�ðk�rÞ sin½�ðk � rÞ�

�ðk � rÞ ð18bÞ

¼ A0e
�i�ðk�rÞsinc ½�ðk � rÞ� ; ð18cÞ

Pk ¼ Akj j2¼ P0 sinc
2 ½�ðk � rÞ� ; ð18dÞ

where A0 = Na/2 ei� is the DFT response for an integral
frequency signal (eq. [16]), P0 is the corresponding Fourier
power, and the sinc function is defined as sinc x = sin (x)/x.
This result is easily confirmed by a direct integration of
equation (2), where n(u) is equal to equation (14c) with
j/N ! u.

The sinc factor in equation (18c) produces a loss of sensi-
tivity for the standard FFT to most real-world signals
(where r is not an integer). This effect, often called ‘‘ scallop-
ing ’’ (e.g., Middleditch, Deich, & Kulkarni 1993), is shown
in Figure 2, and it causes a worst-case (when |k � r| = 1

2)
amplitude reduction of |Ak| = 2|A0|/�—nearly a 60% loss of
signal power. On average, scalloping results in a �23% loss
of signal power (van der Klis 1989). It is important to
remember, though, that this loss in sensitivity is due to the
finite frequency resolution of the FFT algorithm rather than
an intrinsic feature of the data themselves. In x 4.1 we dis-
cuss various methods to reduce or even eliminate this loss of
sensitivity.

3.2.2. Nonsinusoidal Signals

Many real-world periodic signals are not sinusoidal. For-
tunately, we can expand all real-valued pulsations as a series
ofm sinusoidal components:

nj ¼
Xm
h¼1

ah cosð2�jhr=N þ �hÞ ð19aÞ

¼
Xm
h¼1

ah
2
ðe2�ijhr=Nþi�h þ e�2�ijhr=N�i�hÞ ; ð19bÞ

where h = 1, 2, . . . , m specifies the harmonic number (with
h = 1 known as the ‘‘ fundamental ’’), and ah and �h repre-
sent the amplitude and phase of each component, respec-
tively. Because of the linear nature of the FT, we can treat
the harmonics as independent sinusoidal signals. Each
of these sinusoids produces a Fourier response equiva-
lent to equation (18c), except that A0 becomes Ah =
Nah/2 ei�h ).

For nearly sinusoidal pulsations only the first few terms
of equation (19a) contain significant amplitudes ah. This
results in a similarly small number of significant peaks in the
corresponding power spectrum of the data. Low duty cycle
pulsations (i.e., those with a pulse that is short compared
with the pulse period), such as most radio pulsars, on the
other hand, have dozens of significant terms in their expan-
sions and therefore harmonics in their power spectra.

A useful pulsation model, particularly for radio and
X-ray pulsars, can be constructed based on a modified von
Mises distribution (MVMD):

f ð�; tÞ ¼ a
e� cosð2�frtþ�Þ � e��

I0ð�Þ � e��
; ð20Þ

where 0 � t � T is the instantaneous time, I0 is the modified
Bessel function of zeroth order, and the shape parameter �
determines the width of the function (e.g., Mardia &
Zemroch 1975). In the limit � ! 0, the MVMD becomes a
sinusoid, while as � ! l it becomes a Gaussian (see Fig. 3).
The integral of theMVMD over a single pulse period is sim-
ply a, all of which is pulsed (i.e., the pulsed fraction is 1).
The full width at half-maximum (FWHM), as a fraction of
a pulse, is

FWHMMVMD ¼ ��1 arccos½lnðcosh �Þ� ; ð21Þ

and the maximum value is

max
MVMD

¼ 2a cosh�

I0ð�Þ � e��
: ð22Þ

The FT of the MVMD can be computed in a particularly
convenient form for harmonic analysis. According to
Abramowitz & Stegun (1972; eq. [9.6.34]), we can expand
the exponential in theMVMD as

e� cos x ¼ I0ð�Þ þ 2
X1
h¼1

Ihð�Þ cosðhxÞ ; ð23Þ

where Ih is the modified Bessel function of order h. When
combined with the rest of theMVMDdefinition, we have

f ð�; tÞ ¼ aþ 2a
P1

h¼1 Ihð�Þ cosð2�hfrtþ h�Þ
I0ð�Þ � e��

: ð24Þ

Fig. 2.—The sinc function amplitude responses of raw (or integer) FFT
bins (thin solid lines). The point where these lines cross (at an offset of 1/2
and an amplitude of 1 � 2/� � 0.637 of the full response) is the worst-case
response for an uncorrected FFT (see eq. [18c]). The thin dashed line is the
response of an ‘‘ interbin ’’ as calculated using eq. (31). The thick black line
shows the overall ‘‘ scalloping ’’ when interbinning is used. Worst-case
responses with interbinning occur at offsets of �(1 � �/4) � 0.215 with
amplitudes of�0.926 of the full response.
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This expression is simply a ‘‘DC ’’ term (since the integral
over a pulse equals a) plus a series of independent cosinu-
soidal harmonics. After Fourier-transforming (i.e., substi-
tuting into eq. [2] with frt ! ru), we are left with a series of
harmonics of amplitude aN Ih(�)/[I0(�) � e��] and phase
h� at Fourier frequency hr. It is important to note that, as
� ! l and the pulse becomes narrower, the Fourier ampli-
tudes of the low-order harmonics are twice that of a sinus-
oid with the same pulsed fraction (see Fig. 4, dashed line).
This fact, along with the large number of harmonics that
low duty cycle pulsations generate, can significantly increase
search sensitivities to such pulsations (see Fig. 5).

Figure 4 shows the approximate number of significant
harmonics (meaning that a harmonic’s amplitude is greater
than one-half the amplitude of the fundamental) generated
by an MVMD pulsation, as well as a histogram of the duty
cycles of over 600 radio pulsars (the majority of which are
from Taylor et al. 19958). Most radio pulsars have duty
cycles of d5%, corresponding to e10 significant harmon-
ics—assuming a sufficient data sample rate.

3.3. Periodic Signals with Noise

When a periodic signal is present in a noisy time series, a
sum of m powers Pm, containing some amount of signal
power Ps, is no longer described by a �2 distribution with
2m degrees of freedom (see x 3.1). Groth (1975) calculated
the expectation value and variance of Pm as hPmi = m + Ps

and hP2
m � hPmi2i = m + 2Ps, respectively. He also derived

the exact probability density function for Pm, which can be
integrated to give the probability that Pm is greater than or

8 Available at http://pulsar.princeton.edu/pulsar/catalog.shtml.

Fig. 3.—Sample pulse profiles from the modified von Mises distribution
(MVMD) as described in x 3.2.2. FWHM is the fractional full width at half-
maximum and � is the MVMD shape parameter. High values of � result in
Gaussian profiles, while as � ! 0, the pulse shape becomes more and more
sinusoidal. The integral of a full pulse is equal to one unit, all of which is
pulsed (i.e., the pulsed fraction is 1).

Fig. 4.—Approximate number of harmonics from an MVMD signal
(thick solid line; see x 3.2.2 and Fig. 3) that produce Fourier amplitudes
greater than one-half the amplitude of the fundamental. The thin solid line
is the 1/FWHM rule of thumb that is often used to estimate the number of
significant harmonics a signal will generate. The thin dashed line plots the
ratio of the fundamental amplitude for an MVMD signal to a sinusoidal
amplitude of the same pulsed intensity. The gray histogram shows the
distribution of pulse widths (FWHM) for over 600 radio pulsars.

Fig. 5.—Sensitivities to MVMD signals (thick solid line; see x 3.2.2 and
Fig. 3) for the incoherent summing of 1, 2, 4, 8, 16, or 32 harmonics, as com-
pared to searches made without harmonic summing (x 3.1). Lower numbers
represent better sensitivity (i.e., fainter signals are detectable). The best pos-
sible sensitivity using incoherent harmonic summing is shown by the thick
black line. It should be noted that incoherent summing produces worse sen-
sitivities than not summing if the duty cycles of the pulsations are large.
This results from the fact that such pulsations have only a small number of
significant harmonics (see Fig. 4), so that summing tends to add only noise
rather than signal.
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equal to some power P0,

Pr ðPm;PsÞ � P0½ � ¼ e�ðP0þPsÞ
X1
k¼0

Xkþm�1

j¼0

ðP0ÞjPk
s

j!k!
: ð25Þ

When Ps = 0, this equation reduces to equation (11).
The fact that the probability density function for a signal

plus noise is different from a �2 distribution with 2m degrees
of freedom is very important when trying to determine the
sensitivity of a search for pulsations or an upper limit to the
amplitude of a periodic signal present in a time series.
Vaughan et al. (1994) describe a procedure9 for correctly
determining search sensitivities and upper limits using the
equations of Groth (1975).

3.4. Photon-Counting Data

Since many of today’s astronomical time series come
from photon-counting experiments, it is important to raise
some of the issues particular to Fourier analysis of such
data. If we can assume purely Poissonian statistics, a power
spectrum of pure noise is flat and can be normalized simply
by dividing by the total number of photons in the data (the
zeroth, or ‘‘ DC,’’ frequency bin from the DFT; see x 3.1). In
addition to this difference in power-spectrum normaliza-
tion, the other points worth noting comes from the fact that
photon-counting data is based on the measurement of
events rather than the instantaneous sampling of a continu-
ous process.

One important issue, which is beyond the scope of this
paper, is dead-time correction. Dead-time effects modify a
detector’s sensitivity to photons for some time after the
detection of an earlier photon. These effects can cause com-
plicated nonlinear and frequency-dependent systematics
during Fourier analysis. We refer the reader to Zhang et al.
(1995) and references therein for a thorough discussion of
this topic.

3.4.1. Binned versus Sampled Data

Many high-energy telescopes and detectors produce time
series of binned photons rather than the sampled data pro-
duced by radio telescopes. Since binning essentially aver-
ages a periodic signal’s instantaneous rate over the binning
time (dt), it modifies the Fourier response to the signal. Bin-
ning removes phase information from the data and causes
the Fourier response to sinusoidal pulsations to become
frequency dependent—resulting in decreased sensitivity at
high frequencies (see, e.g., Middleditch 1976; Leahy et al.
1983).

The frequency-dependent loss in Fourier amplitude due
to binning is sinc (�fr dt), or sinc (�r/N). The binned-data
Fourier response to a sinusoid is therefore equation (18c)
times this factor. This decrease in sensitivity corresponds to
a loss in signal power of about �19.8% at half the Nyquist
frequency and�59.5% at the Nyquist frequency itself.

For Poissonian noise (i.e., from a photon-counting
experiment that does not introduce count rate–dependent
systematics), which is independent of the sampling interval,
the Fourier response is flat over all frequencies. This is in
contrast to a sinusoidal signal passing through the same sys-

tem, which suffers the frequency-dependent attenuation
described above (Middleditch 1976). Such behavior is
important when trying to estimate limits or amplitudes for
pulsations in a time series (Vaughan et al. 1994).

3.4.2. Low Count Rate Data

The Fourier analysis of gamma-ray or X-ray observa-
tions often places us in a unique regime—very long integra-
tion times (e104 s) with very low numbers of counts (d103

photons). In addition, because of visibility constraints based
on the orbits of the telescopes, large fractions of the time
between the first and last photons may be devoid of counts.

Fourier analysis of such data can overwhelm present
computational resources. For example, a 106 s observation
(about 11.6 days) with photon time-of-arrival (TOA) reso-
lution of 10�4 s would require a 10 gigapoint FFT for a full-
resolution analysis. Such FFTs, while possible, are
extremely difficult to compute unless very special and dedi-
cated hardware resources are available. If these data contain
only a small number of photons, however, we can exactly
compute the DFT over any frequency range and to any
frequency resolution using a brute-force implementation of
the FT.

If we treat each TOA as a sample of amplitude 1, an exact
DFT amplitude at arbitrary Fourier frequency r becomes

Ar ¼
Xnph
j¼1

e�2�irðtj�t0Þ=T ; ð26Þ

where nph is the number of photons, tj is the TOA of the jth
photon, t0 is the time of the start of the observation, and T is
the total duration of the observation. Very quick harmonic-
summing searches of an observation are possible using this
technique, with the added benefit that ‘‘ scalloping ’’ (see
x 3.2.1) is nonexistent.

Since equation (26) only involves a summation over the
number of photons, it can be computed quickly if nph is rela-
tively small. Great increases in computation speed can be
had if we search a regular grid of Fourier frequencies. Trigo-
nometric recurrences, such as

cosð�þ �Þ ¼ cos �� ð� cos �þ � sin �Þ ; ð27aÞ
sinð�þ �Þ ¼ sin �� ð� sin �� � cos �Þ ; ð27bÞ

where � = 2 sin2 (�/2) and � = sin �, allow extremely effi-
cient calculation of the complex exponential for each TOA
(Press et al. 1992). This technique allows one to calculate bil-
lions of Fourier frequencies from a few hundred photons
using only modest computational resources.

4. IMPROVING THE DFT RESPONSE TO
ARBITRARY SIGNALS

4.1. Fourier Interpolation

The potential for up to a 30% decrease in signal-to-noise
ratio (S/N /

ffiffiffiffi
P

p
) due to an essentially arbitrary difference

between the signal frequency and the integer frequency of
the nearest Fourier bin is clearly a drawback in the use of
the DFT (see x 3.2.1). However, if we could calculate the FT
at a higher frequency resolution than the 1/T spacing that
results from the FFT, we could significantly reduce or elimi-
nate scalloping and effectively flatten the Fourier response
as a function of frequency.

9 Note that Vaughan et al. (1994) use a power normalization that is a
factor of two higher than ours.
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One possibility for increasing the frequency resolution is
to simply calculate the DFT by a brute-force summation at
frequencies between the integer frequencies. Such a techni-
que is possible in special situations (see x 3.4.2), but for most
applications the computational costs would be unaccept-
ably high. Another well-known possibility is to ‘‘ pad ’’ the
end of the time series with a large number of points with val-
ues equivalent to the mean of the data.10 The padding adds
no power to the data, but it does increase the Fourier resolu-
tion since T has been artificially increased by the padding.
While this technique is simple and effective for short time
series, the difficulties involved in performing very long FFTs
(x 2.2) makes this technique difficult when dealing with long
time series.

Yet another way to calculate a higher resolution Fourier
response is to use the complex amplitudes produced by the
standard FFT to interpolate responses at noninteger fre-
quencies—a process known as ‘‘ fine-binning ’’ or ‘‘ Fourier
interpolation ’’ (e.g., Middleditch et al. 1993). Similar tech-
niques allow the full recovery of a signal’s theoretical coher-
ent response provided that the signal’s behavior during the
observation is either known or can be guessed.

The purpose of Fourier interpolation is to calculate a
complex Fourier amplitude at an arbitrary frequency
fr = r/T, where r is any real number, such that the result is
sufficiently close to the exact calculation,

Ar ¼
XN�1

j¼0

nje
�2�ijr=N : ð28Þ

We can rewrite this expression as

Ar ¼
XN�1

k¼0

Ake
�i�ðr�kÞ sinc ½�ðr� kÞ� ; ð29Þ

where the Ak are the complex FFT amplitudes at the integer
frequencies l (see Appendix A and x 4.2.2 for a derivation
and discussion of this result).

The sinc function in equation (29) provides the key to
computing an accurate interpolated amplitude using a rela-
tively small number of operations. Since sinc [�(r � k)] ! 0
as �(r � k) ! �l, the expansion of Ar in terms of the Ak is
dominated by the local Fourier amplitudes (i.e., where
k � r). We can therefore approximateAr as

Ar ’
X½r�þm=2

k¼½r��m=2

Ake
�i�ðr�kÞ sinc ½�ðr� kÞ� ; ð30Þ

where [r] is the nearest integer to r and m is the number of
neighboring FFT bins used in the interpolation. Note that
the interpolation is simply a correlation of the local FFT
spectrum around the desired frequency element with a
‘‘ template ’’ response—in this case, the theoretical response
of a DFT to a sinusoid as described by equation (18c).

The top panel in Figure 6 shows the raw FFT power spec-
trum (gray dots) and the interpolated power spectrum (gray
line connecting the dots) for a radio observation of the short-
period binary pulsar PSR J1807�2459. The black line with-
out dots, which traces a very significant peak in power, was

calculated using an extension of the interpolation techni-
ques that accommodates a signal with a nonzero but con-
stant frequency derivative (see x 4.2.2). The power spectra
cover a narrow frequency range near the pulsar’s rotational
frequency and were calculated using m = 32 and a fre-
quency step size of Dr = 1/16 (compared with the raw FFT
frequency step size of Dr = 1). The true signal amplitude,
phase, and location (i.e., frequency) can be reconstructed
using these techniques. We will see in x 5 how this informa-
tion can be used to deduce further properties of the signal.

A computationally less expensive version of Fourier
interpolation is ‘‘ interbinning,’’ where we approximate the
FT response at half-integer frequencies using only the near-
est two integer frequency bins. By using the Fourier interpo-
lation equation (eq. [30]), with m = 2, ignoring an overall
phase shift, and boosting the response such that the best-
case response (at half-integer frequencies) is equivalent to
the full response, we obtain

Akþð1=2Þ ’ 1
4�ðAk � Akþ1Þ : ð31Þ

This particular formulation of interbinning was reported by
van der Klis (1989), and its response is shown in Figure 2.
Middleditch et al. (1993) have contributed a correction to
this formula for use when the data are padded at the end.

Interbinning is extremely useful, since such a computa-
tionally inexpensive calculation reduces the maximum loss
of signal-to-noise ratio from 1 � 2/�, or �36% at a fre-
quency offset of 1

2 bin, to �7.4% at an offset of �(1 � �/4)
bins. This large but cheaply obtained reduction in scalloping
can be extremely beneficial when searching large numbers
of FFT bins and interbins.

It is important to note that interbins as defined above
have three different properties than integer FFT bins. First,
they have different noise properties, which makes calcula-
tion of the significance of interbin powers much more diffi-
cult. Second, each interbin is correlated with the integer bins
it was created from, meaning that interbins are not inde-
pendent Fourier trials (see x 2.1 for a discussion of the IFS).
And finally, interbins do not recover the correct phase of a
sinusoid at the interbin frequency. In general, since interbins
are most commonly used during searches to simply identify
signals in the power spectrum that would otherwise have
been lost as a result of scalloping, these weaknesses do not
degrade the usefulness of their calculation. When a signal is
identified, a full-scale interpolation of the Fourier ampli-
tudes around the signal using equation (30) allows accurate
estimates to be made of the signal’s significance and other
properties (see x 5).

4.2. General DFT Response Correction

Fourier interpolation serves as a specific example of a
much more general technique—the ability to completely
recover the fully coherent response for virtually any signal.
For Fourier interpolation we can exactly calculate the
response of any Fourier frequency based purely on the
properties of the FT. To correct the Fourier transform’s
response to a particular signal, we must know not only the
properties of the FT but the properties of the signal we are
looking for as well. For the cases we will discuss, this ability
comes in one of two forms: matched filtering in the Fourier
domain using only the ‘‘ local ’’ Fourier amplitudes near the
Fourier frequencies of interest (which we call the ‘‘ correla-
tion technique ’’), or the straightening of the curved Fourier

10 Padding with the data mean is preferable to zero-padding since zero-
padding introduces low-frequency power into the Fourier response.
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vector addition in the complex plane (which we will call
‘‘ vector bending ’’).

4.2.1. Correcting for Constant Frequency Derivative

In order to illustrate these two methods, we demonstrate
how to correct for a signal whose response is reduced
because of a constant frequency derivative _ff (or in Fourier
frequency bins, _rr = _ff T 2). The DFT operates, as we noted in
x 3.2.1, by derotating the vector addition of the data in the
complex plane by changing the phases of each of the vector
elements—causing a straight line to form for a sinusoidal
signal with integral frequency. In the presence of a fre-
quency derivative however, the signal frequency may
change by one or more frequency bins over the course of the
observation. The complex phase corrections provided by

the DFT will fail to completely derotate the data, and pulsa-
tion power will be ‘‘ smeared ’’ across several nearby fre-
quency bins—causing a decrease in the measured DFT
response (see, e.g., Johnston & Kulkarni 1991). Figure 1
illustrates this effect in the complex plane.

As with a frequency error, an uncorrected frequency
derivative causes the vector addition to form an arc,
although in this case quasi-parabolic rather than circular.
The decreased DFT response equals the distance from the
origin to the end of the arc. This distance is significantly
shorter than that of a coherently detected signal which
equals the length along the arc.

Signals with constant or nearly constant _ff are quite com-
mon in pulsar astronomy—especially when dealing with
time series of very long duration. In such long observations
even the very small spin-downs typical of pulsars can cause

Fig. 6.—An 18 	 (single trial) detection from the discovery observation of the 1.7 hr binary PSR J1807�2459 in the globular cluster NGC 6544 using a Four-
ier-domain ‘‘ acceleration ’’ search. Contour intervals correspond to 30, 60, 90, 120, and 150 times the average local power level. The intrinsic pulsar period
and _ff = 0 (which corresponds to an unaccelerated FFT of the data) are marked by the solid gray lines. The dots correspond to the ‘‘ raw ’’ or uninterpolated
powers from the original FFT of the observation. The gray ellipse is the predicted ‘‘ path ’’ of the pulsar in the f- _ff plane given the known binary parameters.
During the 28.9 minute observation, the pulsar moved from�11 o’clock to�3 o’clock on the ellipse. The peak’s slight offset from the ellipse and the presence
of ‘‘ shoulders ’’ indicate that the constant- _ff assumption of the acceleration search could not fully correct for the orbital motion during this observation. The
top and right-hand panels show cuts through the peak in the f- and _ff -directions, respectively. The line in the top panel with gray dots shows the Fourier
interpolated _ff = 0 power spectrum (calculated as per x 4.1).
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a signal to drift across numerous Fourier bins. The Doppler
effects of binary pulsar orbits cause similar frequency drift-
ing when the observation time is much shorter than the
orbital period.

The ‘‘ standard ’’ method to correct for a constant fre-
quency derivative is to ‘‘ stretch ’’ the original time series to
compensate for the known or assumed _ff . This process
involves resampling the data ensemble nj using a trans-
formation similar to

t0 ¼ tþ 2 _ðf=f0Þðf=f0Þt2 ; ð32Þ

where t is the time used when sampling the original data, _ff is
the frequency derivative, and f0 is the initial frequency of the
signal. Additional details and variations on the theme can
be found in Middleditch & Kristian (1984), Anderson et al.
(1990), Johnston & Kulkarni (1991), and Wood et al.
(1991).

By stretching the data using the appropriate transform
and then FFTing the corrected time series, we can recover
the fully coherent response. Such techniques have been used
with significant success in searches of relatively short time
series (e.g., Camilo et al. 2000). However, this technique
runs into significant difficulties when trying large numbers
of transformations using long time series where computa-
tion of the FFT is nontrivial. Both techniques that we will
mention allow full corrections to be made to a signal with-
out requiring multiple FFTs of the full original data set.

4.2.2. Correlation Technique

The correlation technique is the more powerful of the two
methods and uses matched filtering in the Fourier domain
to ‘‘ sweep up ’’ signal spread over a number of frequency
bins into a single bin. In astrophysical applications we usu-
ally have some sort of ‘‘ pure ’’ signal (like a harmonic from
a millisecond pulsar), whose frequency changes as a func-
tion of time due to some other process (such as orbital
motion or pulsar spin-down). In the Fourier domain, these
processes cause the perfect sinclike response of a harmonic
to be spread over numerous local Fourier bins—in effect,
the sinc response is convolved with a finite impulse response
(FIR) filter (where finite in this case refers to a small por-
tion, say, m bins, of the frequency range analyzed rather
than a short period of time). If we can predict the complex
form (and phase) of that FIR filter, we can recover the
coherent response (i.e., the perfect sinc function) by corre-
lating the appropriate Fourier bins with a ‘‘ frequency-
reversed ’’ and complex-conjugated template that matches
the filter.

In mathematical terms, consider a signal with a normal-
ized Fourier response of Ak�r0 , where k � r0 is simply the
frequency offset of bin k from some reference frequency r0,
which goes to zero as |k � r0| approaches some number of
bins m/2. For Fourier interpolation as described in x 4.1,
this response is equal to equation (18c) without theA0 factor
(i.e., normalized to an amplitude of one for a coherent
response). The complex-valued Fourier response of such a
signal at frequency r0 can be calculated with the sum

Ar0 ’
X½r0�þm=2

k¼½r0��m=2

AkA
�
r0�k : ð33Þ

If r0 is initially unknown (i.e., we are searching for a signal

with the response shape as defined by the template but at an
unknown frequency), we simply compute this summation at
a range of frequencies r.

Calculating equation (33) over a range of evenly spaced
frequencies is equivalent to correlating the raw FFT ampli-
tudes with the template and is therefore most efficiently
computed using short FFTs and the convolution theorem.
With FFTs of length M, such that m5M5N/2, we can
search a very long FFT of length N/2 for any signal whose
Ak�r0 we can compute, using overlap-and-save or overlap-
and-add techniques (see, e.g., Press et al. 1992). Such calcu-
lations have advantages over standard time-domain stretch-
ing techniques in that they are memory-local and can be
easily parallelized—important properties when dealing with
very long time series and modern distributed memory com-
puter architectures.

Moving to our example of a signal with a constant fre-
quency derivative, a single harmonic of the signal has the
form

nðuÞ ¼ a cos½2�ðr0uþ 1
2
_rru2Þ þ �� ð34aÞ

¼ 1
2 a½e

2�iðr0uþ_rru2=2Þei� þ e�2�iðr0uþ_rru2=2Þe�i�� ; ð34bÞ

where we use the same notation as x 2.1. Neglecting the sec-
ond term as in x 3.2.1 and Fourier-transforming at some
‘‘ center ’’ or average frequency r0c = r + _rr/2, we obtain

Ar0c ¼
aN

2
ei�

Z 1

0

ei�ð_rru
2þ2qruÞ du ; ð35Þ

where qr = rc � r0c and the real ‘‘ center ’’ frequency of the
signal is rc = r0 + _rr/2. This integral can be evaluated in
closed form:Z 1

0

ei�ð_rru
2þ2qruÞ du

¼ 1ffiffiffiffiffi
2_rr

p e�i�q2r=_rrfSðZrÞ � SðYrÞ þ i½CðYrÞ � CðZrÞ�g ; ð36Þ

where Yr = (2/_rr)1/2qr, Zr = (2/_rr)1/2(qr + _rr), and C(x) and
S(x) are the Fresnel integrals

CðxÞ ¼
Z x

0

cos

�
�

2
t2
�
dt ; SðxÞ ¼

Z x

0

sin

�
�

2
t2
�
dt : ð37Þ

The Fourier transform response then becomes

Ar0c ¼
aN

2
ffiffiffiffiffi
2_rr

p eið���q2r =_rrÞfSðZrÞ � SðYrÞ þ i½CðYrÞ � CðZrÞ�g :

ð38Þ

Using the correlation technique, the coherent response
can be recovered by convolving local Fourier amplitudes
with the ‘‘ frequency-reversed ’’ and complex-conjugated
template as defined by equation (38). This response, at aver-
age Fourier frequency rc and Fourier frequency derivative _rr,
can therefore be written as

Arc;_rr ¼
Xk¼½r�þm=2

k¼½r��m=2

Ak
1ffiffiffiffiffi
2_rr

p

�
�
ei�q

2
k
=_rrfSðZkÞ � SðYkÞ � i½CðYkÞ � CðZkÞ�g

�
: ð39Þ
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Equation (39) takes into account the fact that the signal
has been ‘‘ spread ’’ relatively evenly into the _rr closest fre-
quency bins to rc, while an additional small amount of signal
has ‘‘ leaked ’’ into bins farther away—much like the non-
zero wings of the sinclike response to a constant frequency
signal. As a rule of thumb, the correct Fourier amplitude
will be well approximated if m is chosen such that
_rr < m d 2_rr.
Large-scale searches of pulsations with constant fre-

quency derivatives have been conducted using the correla-
tion technique. A successful example is a search for pulsars
in globular cluster NGC 6544, using data taken with the
Parkes radio telescope (Ransom et al. 2001). The search was
conducted using an FFT of 13,865,600 points over Fourier
_rr-values from �100 to 100 with a step size of D_rr = 2 and
included the calculation of amplitudes at half-bin frequency
intervals. The search resulted in the detection of the 3.06 ms
PSR J1807�2459 in a low-mass binary with orbital period
1.7 hr, the second shortest radio pulsar orbital period
known. A detailed view of the pulsar’s fundamental har-
monic is shown in Figure 6. The plot was calculated using
the correlation technique with spacings of Dr = 1/16 and
D_rr = 1/4. The generation of such a piece of the f- _ff plane
takes only a fraction of a second on a rather modest work-
station.

4.2.3. Vector Bending

Vector bending is one of the simplest and most straight-
forward methods to correct a Fourier response that has
been smeared over several local frequency bins. As we
described in x 2.1, the DFT can be thought of as the vector
addition of N complex numbers. This addition produces a
straight line in the complex plane for a coherently detected
sinusoid. For a sinusoid with a nonintegral or time-varying
pulsation frequency, the standard DFT addition produces a
curved shape (see Fig. 1). Since the amplitude of the Fourier
response is the distance between the origin and the endpoint
of the vector addition, any curvature in the vector addition
implies nonoptimal signal detection.

The precise shape of the response curve in the complex
plane depends on the mismatch of the signal’s (possibly
time-dependent) pulsation frequency and the frequency
used in forming the DFT addition (i.e., the closest FFT
bin). Regardless of the shape, though, for short enough seg-
ments of the curve the segments differ little from straight
lines. We can therefore approximate the shape of the curve
as a sum of G linear segments, each of which contains N/G
points from the full-resolution vector addition. In terms of
the rth DFT amplitude, we can write this as

Ar ¼
XG�1

g¼0

Br;g ¼
XG�1

g¼0

XN=G�1

h¼0

nje
�2�ijr=N ; ð40Þ

where j = gN/G + h. This is equivalent to calculating and
then summingG independent DFTs (the Br,g), each of which
suffers virtually no loss in sensitivity when the curvature
over a segment is small.

Using these vector addition segments or subvectors, we
can correct for the loss of sensitivity due to curvature by
simply straightening the vector addition. If we can predict
the true pulsation frequency of a signal as a function of time,
we can predict how much curvature will accumulate in each

subvector and then remove it by rotating the segment
appropriately.

For our example of a signal with constant frequency
derivative the instantaneous phase (ignoring the intrinsic
phase of the signal) is equal to

�trueðuÞ ¼ 2�

Z
rðuÞdu ð41aÞ

¼ 2�

Z
ðr0 þ _rruÞdu ð41bÞ

¼ 2�r0uþ �_rru2 ; ð41cÞ

where r0 = f0T is the initial pulsation frequency of the sig-
nal, and _rr = _ff T2 is the frequency derivative. The process of
taking a DFT removes an instantaneous phase equivalent
to �DFT(u) = 2�ru from the signal (see eq. [2]). So the
instantaneous phase error is equal to

�errorðuÞ ¼ �trueðuÞ � �DFTðuÞ ð42aÞ
¼ 2�ðr0 � rÞuþ �_rru2 : ð42bÞ

Therefore, to correct a particular signal using vector bend-
ing, we first calculate the Br,g using equation (40) for a par-
ticular Fourier frequency r (such as the frequency of a
known pulsar). Now we attempt to unbend the full Fourier
response by summing the Br,g after correcting for the phase
errors �error(ug) as defined by equation (42a). The corrected
response is equal to

Ar;_rr ¼
XG�1

g¼0

Br;ge
�i�errorðugÞ : ð43Þ

A choice of G � 103 will essentially eliminate the loss of
response for reasonable frequency offsets and frequency
derivatives (i.e., less than a few tens of Fourier bins).

While impractical for large-scale searches because of
the fact that the Br,g must be recomputed every few r,
vector bending offers significant computational advan-
tages in certain situations. In particular, X-ray observa-
tions often consist of short (<1 hr) on-source segments
separated by hours, days, or even weeks of off-source
time (see also x 3.4). An FFT of the entire time series
might be prohibitively expensive. However, if we can
determine an ‘‘ initial-guess ’’ frequency (e.g., by FFTing
one segment of the observation or from an ephemeris),
we can quickly calculate the Bk,g at this frequency from
the on-source intervals alone. We can reconstruct the f- _ff
plane around our frequency of interest without ever cre-
ating the full ‘‘ filled-in ’’ or padded time series, let alone
calculating a potentially huge FFT. Such techniques have
allowed us to perform frequency analysis of very long
stretches of data from ROSAT observations of PSR
B0540�59 (Eikenberry, Fazio, & Ransom 1998). Simi-
larly, Figure 1 shows the use of the method for a 2.4 day
observation of the Crab pulsar.

5. SIGNAL PROPERTY ESTIMATION

Besides correcting for losses of sensitivity, Fourier inter-
polation and the other response-correcting techniques men-
tioned in x 4.2 allow us to determine other useful properties
of a detected signal. Using detailed amplitude and phase
information from a signal’s Fourier harmonics, we can
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estimate properties such as the statistical significance of the
signal, the location and duration of the signal in the time
series (the ‘‘ centroid ’’ and ‘‘ purity,’’ respectively), the pre-
cise pulsation frequency, as well as the measurement errors
for Fourier power and phase.

The first step when estimating signal properties in the
Fourier domain is to isolate the true peak of the Fourier
response in power. This is easily accomplished by using the
matched filtering techniques to generate an oversampled
grid of amplitudes near and around the signal candidate
(see Figs. 6 and 7). Simple optimization algorithms, such as
the downhill simplex method, can then be used to refine the
peak location (e.g., Press et al. 1992). Once the peak has
been located, estimates of the first and second derivatives of
power and phase with respect to Fourier frequency,
obtained using Fourier interpolation, can be used to calcu-
late various useful signal properties (Middleditch et al.
1993).

5.1. Power, Phase, and Signal Amplitude

When the peak of the Fourier response has been located
as a function of Fourier frequency and the other search
parameters, the measured power is defined as

Pmeas ¼ Ar;...

�� ��2=Pnorm ; ð44Þ

where Pnorm is the expected noise power and is usually
described by one of Nhd 2

j i, Plocal, or nph, as discussed in x
3.1. Groth (1975; see x 3.3) showed that since the measured
power is a random variable because of the presence of noise,
its variance is 2Psignal + 1, where Psignal is the power caused
by the signal. Since we do not a priori know the true signal
power, a good estimate for the variance of the measured
power is simply 2Pmeas � 1, since hPmeasi = Psignal + 1.

Using Pmeas, as well as the knowledge that a sinusoid of
amplitude a in a noisy time series produces a power with
an expectation value of hPmeasi = a2N2/(4Pnorm) + 1 (see

Fig. 7.—Theoretical response for a boxcar-windowed signal with a constant frequency derivative. Contours plotted are 10%, 30%, 50%, 70%, and 90% of
peak (i.e., fully corrected) power. The top panel shows the familiar sinc response of the signal along the _ff = 0 line. The right panel shows a similar cut along
the Dr = 0 line (i.e., the calculated average frequency is the true average signal frequency). The relatively uniform spread of signal power over the local power
spectrum is apparent for all values of frequency derivative.
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x 3.2.1), we can estimate the signal amplitude as

hai ¼ 2N�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PnormðPmeas � 1Þ

p
: ð45Þ

For binned data containing a signal with Fourier frequency r,
the measured power should bemultiplied by 1/sinc2 (�r/N) to
correct for the loss in sensitivity due to binning (see x 3.4.1).
Vaughan et al. (1994) provide detailed instructions on how
to estimate upper limits on pulsation amplitudes, as well as
estimate the overall sensitivity of a search.

The statistical significance of a signal is also determined
by Pmeas. The probability that noise caused a particular
power to equal or exceed Pmeas is given by e�Pmeas (eq. [10]
with P0 = Pmeas). But for a search over NIFS independent
Fourier powers, the probability that at least one of the noise
powers exceeds Pmeas is given by

Pr ðPnoise � PmeasÞ ¼ 1� ð1� e�PmeasÞNIFS : ð46Þ

Vaughan et al. (1994) show how to use this information to
set detection thresholds that minimize the number of spuri-
ous candidate signals and give high confidence that signals
with powers above the thresholds are real.

Using the real and imaginary parts of the peak Fourier
response, we can also calculate the phase of the sinusoidal
signal as

�meas ¼ arctan
Im ðAr;...Þ
Re ðAr;...Þ

� �
rad : ð47Þ

Using similar arguments as for the measured power,
the variance of the measured phase is approximately
1/(2Pmeas � 1) rad.

5.2. Signal Location and Duration in Time

Astronomical observations of pulsations effectively con-
sist of a window of on-source time where pulsations are
present and the rest of the time when they are not. For most
of this paper we have assumed that a signal is present
throughout the observation as evidenced by the limits of
integration for equation (2), which in time-normalized units
have the range 0 � u � 1, or equivalently, 0 � t � T. In
effect, pulsations such as that defined in equation (14a) are
multiplied by a square window function, defined as 1 during
the observation and 0 at all other times. This window func-
tion is simply a property of the DFT and is due to the finite
duration of our observation.

It is possible, though, and for various reasons often likely,
that a signal we are observing turns on and off or varies in
intensity during an observation. The behavior of the signal
itself effectively defines a new window function, W(u). By
measuring the moments of this window function with
respect to time, we can determine approximately where in
our data a signal is located and for how long.

The approximate location of a signal in a time-
normalized time series is described by its centroid,
ĈC = hui = hti/T, which is proportional to the first moment
of the window function with respect to time. More
specifically,

ĈC ¼
R1
�1 uW ðuÞduR1
�1 WðuÞdu

: ð48Þ

Middleditch & Córdova (1982) wrote this in terms of the

measured Fourier response as

ĈC ¼ � 1

2�

@�ðr0Þ
@r

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24Pðr0Þ

p ; ð49Þ

where P(r0) and �(r0) is the phase measured at the peak of
the Fourier response (i.e., �meas) and r is the Fourier fre-
quency (see Appendix D for a derivation). Signals present
throughout an observation have ĈC = 1

2, while those present
in only the first or second half of the observation have ĈC = 1

4
or ĈC = 3

4, respectively.
The second moment of the window function with respect

to time is related to the moment of inertia of a function and
can therefore be used to estimate the rms dispersion of the
pulsations in time about the centroid. Using this informa-
tion, Middleditch & Córdova (1982) defined a parameter
called the ‘‘ purity ’’ (and symbolized by �) as

� ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

2Pðr0Þ
@2Pðr0Þ
@r2

s
� 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10Pðr0Þ

p ; ð50Þ

where P(r0) is the measured power at the peak of the Fourier
response (i.e., Pmeas, see Appendix E for a derivation). The
scaling in equation (50) is chosen such that the rms disper-
sion of the signal about the centroid for a window function
W(u) is equivalent to that of a rectangular window function
of duration � (in units of the time-series length) centered on
the centroid. A signal present throughout the data would
have � = 1, while one present in only half the data (in a con-
tinuous section) would have � = 1

2. Signals present only at
the start and end of an observation but absent in the middle
have � > 1. Purity can also help to identify sidelobes caused
by a periodic modulation of a signal, as these Fourier ampli-
tudes have � =

ffiffiffi
3

p
.

Since the location and duration of a signal in an time ser-
ies affects the Fourier response, it is important to under-
stand how equation (18c) changes if a signal is present
during only part of an observation. In Appendix F we show
that, when close to the peak of a signal’s Fourier response,

Ar ’ A0e
�2�iĈCðr�r0Þ sinc ½��ðr� r0Þ� ; ð51Þ

where A0 = Na/2 ei�0 , �0 is the intrinsic phase of the signal,
and r0 is the true signal frequency (in FFT bins). This equa-
tion demonstrates that for centroids different from 1

2, the
phase shift between consecutive FFT bins differs from the �
radians shown in equation (18c). Similarly, for purity values
different from 1, neighboring FFT bins show more or less
correlation with each other (i.e., the central peak of the sinc
function changes its width).

5.3. Pulsation Frequency and Frequency Derivative

The true pulsation frequency of the signal is located at the
point where @P/@r = 0. Furthermore, given the response in
equation (51), we can show (Appendix B) that the uncer-
tainty in this measurement (in Fourier bins) is given by

	r ¼
3

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Pmeas

p : ð52Þ

This uncertainty is considerably smaller than the often
quoted ‘‘ frequency error ’’ for the FFT of one bin width,
which is simply the frequency resolution returned by the
FFT algorithm.
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If the correlation method is used to isolate a peak in the
f- _ff plane as shown in Figures 6 and 7, we can calculate the
uncertainty in the measured _rr-value by using similar argu-
ments and methods as for the frequency uncertainty (see
Appendix C for a derivation). The uncertainty in the _rr (in
Fourier bins) is approximately

	_rr ¼
3

ffiffiffiffiffi
10

p

��2
ffiffiffiffiffiffiffiffiffiffiffi
Pmeas

p : ð53Þ

6. CONCLUSIONS

In this paper, we have described techniques that allow
sophisticated and fully coherent Fourier analysis of very
long time series. Most of these techniques use the wealth of
information provided by the Fourier phases—information
discarded during ‘‘ standard ’’ analyses based on raw power
spectra.

Significant gains in sensitivity and efficiency are possible
when using Fourier phase information during the search for
periodic signals (using the Fourier-domainmatched filtering
techniques described in x 4.2) and when characterizing sig-
nals that are known to be present in the data (using the
parameters described in x 5). The methods of Fourier-
domain matched filtering allow efficient, memory-local, and

inherently parallel analysis of extremely long time series,
with only modest computational resources. Gigapoint out-
of-core FFTs followed by fully coherent matched filtering
pulsation searches are possible on standard workstations.
More traditional time domain–based techniques (such as
acceleration searches performed by stretching or compress-
ing the time series followed by large in-core FFTs) on simi-
larly sized time series require specialized high-performance
computing resources, assuming they can be performed at
all.

As astronomical instruments become more sophisticated
and specialized, time series of ever increasing duration and
time resolution will appear. The Fourier-domain techniques
described in this paper should prove to be essential tools in
their analysis.
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APPENDIX A

DERIVATION OF FOURIER INTERPOLATION

Following the derivation found inMiddleditch et al. (1993), we begin with the definition of the kth DFT element

Ak ¼
XN�1

j¼0

nje
�2�ijk=N ; ðA1Þ

which we then rewrite by substituting the inverse DFT for the nj:

Ak ¼
XN�1

j¼0

�
1

N

XN�1

l¼0

Ale
2�ijl=N

�
e�2�ijk=N ðA2aÞ

¼ 1

N

XN�1

l¼0

Al

XN�1

j¼0

e�2�ijðk�lÞ=N : ðA2bÞ

The last summation can be computed exactly using the identity

XN�1

j¼0

ei�j ¼ ei�ðN�1Þ=2 sinðN�=2Þ
sinð�=2Þ ; ðA3Þ

such that, whenN 4 1, we have

XN�1

j¼0

e�2�ijðk�lÞ=N ¼ e�i�ðk�lÞð1�N�1Þ sin½�ðk � lÞ�
sin½�ðk � lÞ=N� ðA4aÞ

’ e�i�ðk�lÞ sin½�ðk � lÞ�
�ðk � lÞ=N ðA4bÞ

’ Ne�i�ðk�lÞ sinc ½�ðk � lÞ� : ðA4cÞ

Substituting this expression into equation (A2b) and changing the integer frequency k into a continuous real-valued frequency
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r, we arrive at equation (29):

Ar ¼
XN�1

l¼0

Ale
�i�ðr�lÞ sinc ½�ðr� lÞ� : ðA5Þ

APPENDIX B

DERIVATION OF FREQUENCY UNCERTAINTY

For a given Fourier frequency offset Dr = r � r0, where r0 is the Fourier frequency of the signal, the magnitude of the
Fourier response and the power vary as

AðrÞj j ¼ A0j j sinc ð��DrÞ ; ðB1aÞ
PðrÞ ¼ Pmeas sinc

2 ð��DrÞ ; ðB1bÞ

(see Appendix F), where � is the signal purity. We can expand the sinc function in order to approximate the expression for the
power near the peak of the response as

PðrÞ ¼ Pmeas

�
sinð��DrÞ
��Dr

�2
’ Pmeas

�
1� ð��DrÞ2

3

�
: ðB2Þ

Taking the derivative of power with respect to r and solving for Dr, we obtain

Dr ¼ � 3

2�2�2Pmeas

@P

@r
: ðB3Þ

As expected, when the Fourier frequency equals the true frequency of the pulsations (i.e., Dr = 0), the Fourier response peaks
and @P(r)/@r = 0.

In order to estimate the uncertainty in Dr, we apply standard propagation of errors to arrive at

	r ¼
3

2�2�2Pmeas
	P0ðrÞ ; ðB4Þ

where we have replaced @P(r)/@r with P0(r) to simplify the notation. The derivative of the power at the true frequency can be
approximated using finite differences as

P0ðrÞ ’ Pðr0 þ DrÞ � Pðr0 � DrÞ
2Dr

¼ Pþ � P�

2Dr
; ðB5Þ

where we have simply renamedP(r0 + Dr) and P(r0 � Dr). The uncertainty inP
0(r) can also be approximated using finite differ-

ences and error propagation. Since P+ and P� are highly correlated when Dr51, their uncertainties are also correlated, giving

	P0ðrÞ ’
1

2Dr
ð	Pþ þ 	P�Þ ’ 	Pþ

Dr
: ðB6Þ

Now we turn to the question of the uncertainty in P+, closely following Middleditch (1976). The amplitude of the Fourier
response at the true signal frequency can be written as

ffiffiffiffiffiffiffiffiffiffiffi
Pmeas

p
¼

XN�1

j¼0

yj cosð�jÞ ; ðB7Þ

where yj = nj/P
1=2
norm are the points in our time series as defined in equation (1), but scaled using the appropriate Pnorm such that

the measured power, Pmeas, is properly normalized (see x 3.1). Similarly, the �j represent the pulsation phases at times u = j/N,
but rotated by the measured Fourier phase �meas, such that the result of the vector addition lies along the real axis in the com-
plex plane (i.e., the final complex phase is zero). In effect, this transform isolates components of the data that are parallel to the
final Fourier response.

At a small frequency offset Dr from the true frequency, we can expand the power in a similar fashion as

ffiffiffiffiffiffiffi
Pþ

p
¼

XN�1

j¼0

yj cosð�j þ ��j
Þ ; ðB8Þ

where ��j
are the ‘‘ phase errors ’’ introduced by the frequency offset. The phase errors add curvature to the vector addition
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and are defined as

��j
¼ 2��Dr

�
j

N
� 1

2

�
¼ 2��Dr

�
u� 1

2

�
; ðB9Þ

where u is the normalized time, u = t/T = j/N. The 1/2 term in equation (B9) removes the accumulated phase error over the
course of the observation (i.e.,

Ð
1
0 2��Dru du = �� Dr) andmakes the vector summation of equation (B7) finish on the real axis.

Expanding the cosine in equation (B8) gives

ffiffiffiffiffiffiffi
Pþ

p
¼

XN�1

j¼0

yj cosð�jÞ cosð��j
Þ �

XN�1

j¼0

yj sinð�jÞ sinð��j
Þ : ðB10Þ

Considering the uncertainties in the separate terms of equation (B10), since the cosine term is an even function of ��j
, it is

symmetric about r0 and therefore does not contribute to the uncertainty in the P0(r) measurement as defined by equation (B5).
For the sine term, given that the cos (�j) derotates the signal onto the real axis by definition, we see that

XN�1

j¼0

yj sinð�jÞ ¼ 0 : ðB11Þ

Furthermore, since the �j and ��j
are uncorrelated, the average value of this term will be zero,	XN�1

j¼0

yj sinð�jÞ sinð��j
Þ



¼ 0 ; ðB12Þ

and has no systematic effect on P+. However, we can calculate the fluctuations introduced by this term	�XN�1

j¼0

yj sinð�jÞ sinð��j
Þ
�2


¼
	�XN�1

j¼0

yj sinð�jÞ
�2


hsin2ð��j
Þi ; ðB13Þ

where the cross terms average to zero since �j and ��j
are uncorrelated. Due to the normalization of the yj, the sum component

averages to 1
2. The ��j

component has an average of

hsin2 ��j
i ¼

Z 1

0

sin2ð��j
Þ du ðB14aÞ

’
Z 1

0

�2�j
du ðB14bÞ

’
Z 1

0

ð2��DrÞ2ðu2 � uþ 1
4 Þdu ðB14cÞ

’ 1
3 ð��DrÞ2 : ðB14dÞ

Therefore equation (B13) is equal to (��Dr)
2/6, and the variance of

ffiffiffiffiffiffiffi
Pþ

p
will be

	2 ffiffiffiffiffi
Pþ

p ¼
ffiffiffiffiffiffiffi
Pþ

p
ð��DrÞ2=6 : ðB15Þ

To get the standard deviation, we take the square root of this expression. Propagating errors to get the uncertainty in P+ adds
a factor of 2

ffiffiffiffiffiffiffi
Pþ

p
to give

	Pðr0þDrÞ ¼ 2��Dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pmeas=6

p
; ðB16Þ

where we have used the approximation P+ ’ Pmeas. Finally, substituting into equations (B6) and (B4), we have

	r ¼
3

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Pmeas

p : ðB17Þ

Amuch simpler derivation of equation (B17) is possible if we realize that properly normalized powers times 2 are distributed
according to a �2 distribution with 2 degrees of freedom (see x 3.1). For such a distribution a 1 	 error corresponds to a change
in the measured �2 of 1

2. In the case of powers the �1 	 errors can therefore be found by starting with the expansion of the
power around P(r0) = Pmeas as given in equation (B2),

Pmeas½1� 1
3 ð��DrÞ2� ¼ Pmeas � 1

2 ; ðB18Þ

and then solving for the Dr that corresponds to Pmeas � 1
2. This yields

Dr ¼ 	r ¼
3

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Pmeas

p : ðB19Þ
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APPENDIX C

DERIVATION OF _ff UNCERTAINTY

If a peak in the f- _ff plane has been isolated using techniques similar to those shown in x 4.2.2, we can calculate the error in
the measurement of the true Fourier frequency derivative _rr0 = _ff 0T

2 in a manner similar to that for the frequency uncertainty
as described in Appendix B. Signals with nonzero frequency derivatives have Fourier peaks that are located off the _rr = 0 line
in the f- _ff plane, but the shapes of those peaks are independent of _rr and in fact depend only on the window function of the signal
(see Appendix F). The shape of the response in power as a function of D_rr = _rr� _rr0 at the ‘‘ correct ’’ Fourier frequency r = r0 is
described by equation (38) and can be written as

Aðr0; _rrÞ ¼ A0e
�i�D_rr=4

ffiffiffiffiffiffiffiffiffiffi
2

�2D_rr

s �
S

� ffiffiffiffiffiffiffiffiffiffi
�2D_rr

2

r �
� iC

� ffiffiffiffiffiffiffiffiffiffi
�2D_rr

2

r ��
; ðC1Þ

when qr is defined as

qr ¼ rc � r0c ¼
�
r0 þ

_rr0
2

�
�
�
r0 þ

_rr0 þ �2D_rr

2

�
¼ ��D_rr

2
: ðC2Þ

This definition of qr keeps the magnitude of the Fourier response symmetric about qr no matter what the value of D_rr. The
power as a function of D_rr is therefore

Pðr0; _rrÞ ¼ P0
2

�2D_rr

��
S

� ffiffiffiffiffiffiffiffiffiffi
�2D_rr

2

r ��2
þ
�
C

� ffiffiffiffiffiffiffiffiffiffi
�2D_rr

2

r ��2�
: ðC3Þ

If we expand the Fresnel integrals about 0 as

CðxÞ ’ x� �2

40
x5 . . . ; SðxÞ ’ �

6
x3 . . . ðC4Þ

and then substitute, the power becomes

Pðr0; _rrÞ ’ P0

�
1� ð��2D_rrÞ2

180

�
: ðC5Þ

Taking the derivative of P(r0, _rr) with respect to _rr and solving for D_rr gives

D_rr ¼ � 90

�2�4P0

@Pðr0; _rrÞ
@ _rr

ðC6Þ

From propagation of errors,

	_rr ¼ � 90

�2�4P0
	P0ðr0;_rrÞ ; ðC7Þ

where P0(r0, _rr) = @P(r0, _rr)/@ _rr. Similarly, after using a finite difference estimate of the power derivative following Appendix B,
we find

	P0ðr0;_rrÞ ¼ 	Pðr0;D_rrÞ=D_rr ; ðC8Þ

where P(r0, D_rr) represents the power as measured at _rr = _rr0 + D_rr.
Closely following Appendix B, we represent [P(r0, D_rr)]1/2 as a sum of the parallel components of the properly normalized

time-series points yj, as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðr0;D_rrÞ

p
¼

XN�1

j¼0

yj cosð�j þ ��j
Þ : ðC9Þ

The ��j
are the ‘‘ phase errors ’’ introduced when D_rr 6¼ 0 and are defined as

��j
¼ ��2D_rrðu2 � uþ 1

6 Þ ; ðC10Þ

where the u-term comes from keeping the response symmetric about r0 (i.e., qr = ��2D_rr/2) and the 1/6 removes the accumu-
lated phase error over the course of the observation (i.e.,

Ð
1
0 ��

2D_rr(u2 �u)du = ���2D_rr/6) and makes the vector summation of
equation (C9) finish on the real axis.

Expanding the cosine term of equation (C9) gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðr0;D_rrÞ

p
¼

XN�1

j¼0

yj cosð�jÞ cosð��j
Þ �

XN�1

j¼0

yj sinð�jÞ sinð��j
Þ : ðC11Þ

No. 3, 2002 FOURIER TECHNIQUES 1805



The first term shortens both P(r0, D_rr) and P(r0, �D_rr) by the same amount and does not affect the derivative of power. For the
sine term, since �j and ��j

are uncorrelated, the average value is zero (see Appendix B), but its fluctuations are important. To
calculate the fluctuations, we square the terms and obtain	�XN�1

j¼0

yj sinð�jÞ sinð��j
Þ
�2


¼
	�XN�1

j¼0

yj sinð�jÞ
�2


hsin2ð��j
Þi : ðC12Þ

Because the normalization of the yj, h(
P

N�1
j¼0 yj sin �j)

2i averages to 1
2, as before, and we can directly calculate hsin2 ��j

i as

hsin2ð��j
Þi ¼

Z 1

0

sin2ð��j
Þ du ðC13aÞ

’
Z 1

0

�2�j
du ðC13bÞ

¼ �2�4D2
_rr

Z 1

0

ðu2 � uþ 1
6 Þ

2du ðC13cÞ

¼ �2�4D2
_rr

180
: ðC13dÞ

The fluctuations from the sine term are therefore (��2D_rr)2/360, and, since squaring equation (C9) doubles the errors, the
standard deviation of P(r0, D_rr) is

	Pðr0;D_rrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðr0;D_rrÞ

p 2��2D_rrffiffiffiffiffiffiffiffi
360

p ’
ffiffiffiffiffiffiffiffiffiffiffi
Pmeas

p ��2D_rrffiffiffiffiffi
90

p : ðC14Þ

Substituting into equations (C8) and then (C7) as in Appendix B gives us the uncertainty in the frequency derivative,

	_rr ¼
3

ffiffiffiffiffi
10

p

��2
ffiffiffiffiffiffiffiffiffiffiffi
Pmeas

p : ðC15Þ

APPENDIX D

DERIVATION OF CENTROID

The centroid is a measure of the approximate location of a signal in a time series, as estimated by the first moment of the
signal with respect to time (see x 5.2). We can think of a sinusoidal signal in our data as being always present but modulated in
intensity by some window function W(u), where u = t/T is the normalized time and T is the length of the observation. A
‘‘ normal ’’ observation of a pulsar of constant intensity would therefore have W(u) = 1 when 0 < u < 1 and W(u) = 0 at all
other times (i.e., a square window). Our signal is therefore described by

sðuÞ ¼ a cos 2�r0uþ �0ð ÞWðuÞ ; ðD1Þ

where a is the amplitude, r0 = f0T is the Fourier frequency, and �0 is the phase of the sinusoid at time u = 0.
Since the centroid of a function is proportional to the first moment of the function with respect to time, we can easily

calculate the centroid using the moment theorem of Fourier transforms. Bracewell (1999) does this and defines the centroid as

hui ¼ � A0ð0Þ
2�iAð0Þ ; ðD2Þ

whereA(0) andA0(0) are the Fourier transform and its first derivative with respect to rmeasured at r = 0.
Equation (D2) is not directly applicable for our sinusoidal signal, since the information about the window function in

equation (D1) has been shifted to the frequency of the sinusoid in accordance with the modulation theorem of Fourier
transforms. Accordingly, we can apply the modulation theorem to equation (D2), which gives us

huisðuÞ ¼ � A0ðr0Þ
2�iAðr0Þ

: ðD3Þ

Finally, we can write A(r) in phasor form asA(r) = a(r)ei� (r), where a(r) and �(r) represent the Fourier amplitude and phase
as functions of the Fourier frequency r. The derivative with respect to Fourier frequency can be written

A0ðrÞ ¼ @aðrÞ
@r

ei�ðrÞ þ aðrÞi @�ðrÞ
@r

ei�ðrÞ : ðD4Þ

At the frequency of our signal, the amplitude is A(r0) = a(r0)ei�ðr0Þ and the Fourier response is at its peak, making
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@a(r0)/@r = 0. Therefore

A0ðr0Þ ¼ Aðr0Þi
@�ðr0Þ
@r

: ðD5Þ

Substituting equation (D5) into equation (D3), we arrive at

ĈC ¼ huisðuÞ ¼ � 1

2�

@�ðr0Þ
@r

; ðD6Þ

which is equivalent to equation (49).
We can also estimate the uncertainty on the measured value of the centroid. Following Appendix B from equations (B8)–

(B15), we note that the same noise fluctuations, introduced when offsetting from the true pulsation frequency by a small
amount Dr, that effect the Fourier amplitude will also effect the Fourier phases. When Dr is small and the powers are properly
normalized, the amplitude fluctuations of equation (B13) with variance �2D2

r/6 correspond to an uncertainty in the phase
measurement of 	�ðr0þDrÞ’�Dr/[6P(r0)]

1/2 radians, and therefore

	ĈC ¼ � 1

2�

	�ðr0þDrÞ

Dr
’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24Pðr0Þ
p : ðD7Þ

APPENDIX E

DERIVATION OF PURITY

The ‘‘ purity ’’ of a signal (see x 5.2) is a measure of the rms dispersion of the pulsations in time with respect to the centroid
and is directly proportional to the variance in time of the window function of the sinusoid from equation (D1). The time
variance is defined as

hðu� huiÞ2i ¼
R1
�1ðu� huiÞ2WðuÞduR1

�1 WðuÞdu
ðE1Þ

but can be written as

hðu� huiÞ2i ¼ hu2i � hui2 ðE2aÞ

¼ � A00ð0Þ
4�2Að0Þ þ

½A0ð0Þ�2

4�2½Að0Þ�2
; ðE2bÞ

using the moment theorem for Fourier transforms (see, e.g., Bracewell 1999). Since our signal is sinusoidal (see Appendix D),
application of the modulation theorem gives

hðu� huiÞ2isðuÞ ¼ � A00ðr0Þ
4�2Aðr0Þ

þ ½A0ðr0Þ�2

4�2½Aðr0Þ�2
ðE3aÞ

¼ � A00ðr0Þ
4�2Aðr0Þ

� ĈC2 : ðE3bÞ

UsingA(r) = a(r)ei�(r) and remembering that @a(r0)/@r = 0, the second derivative of the Fourier amplitude is

A00ðr0Þ ¼ iAðr0Þ
@2�ðr0Þ
@r2

� Aðr0Þ
�
@�ðr0Þ
@r

�2
þ Aðr0Þ

aðr0Þ
@2aðr0Þ
@r2

: ðE4Þ

FromAppendix D, we know that @�(r0)/@r = �2�ĈC, which makes the first term of equation (E4) equal to zero, since @2�(r0)/
@r2 = 0, and the second term equal to�4�2A(r0)ĈC

2. The second derivative of power at the peak response can be written as

@2Pðr0Þ
@r2

¼ @2

@r2
½A�ðr0ÞAðr0Þ� ¼ 2aðr0Þ

@2aðr0Þ
@r2

; ðE5Þ

making the third term equal toA(r0)/2[a(r0)]
2@2P(r0)/@r

2. Substituting into equation (E3a) and simplifying gives

hðu� huiÞ2isðuÞ ¼ � 1

8�2Pðr0Þ
@2Pðr0Þ
@r2

: ðE6Þ

If we normalize the variance using the value obtained for a signal present throughout the observation [i.e., a square window,
whereW(u) = 1 in the range 0 � u � 1 and zero elsewhere—which we will call a pure signal], where

hðu� huiÞ2ipure ¼ hu2i � hui2 ¼ 1
3 � ð12 Þ

2 ¼ 1
12 ; ðE7Þ
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and then take the square root, we are left with

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðu� huiÞ2isðuÞ
hðu� huiÞ2ipure

vuut ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

2Pðr0Þ
@2Pðr0Þ
@r2

s
; ðE8Þ

which is equivalent to equation (50).
In order to estimate the uncertainty in the measurement of �, we note that, by squaring equation (E8) and substituting the

finite difference approximation of

@2Pðr0Þ
@r2

’ Pðr0 þ DrÞ þ Pðr0 � DrÞ � 2Pðr0Þ
D2
r

¼ Pþ þ P� � 2Pðr0Þ
D2
r

; ðE9Þ

where Dr corresponds to a small frequency offset from the measured peak power P(r0), we obtain

�2 ’ � 3

2�2Pðr0Þ
Pþ þ P� � 2P r0ð Þ

D2
r

: ðE10Þ

This means that

	� ’ 3

4�2�D2
rPðr0Þ

	DP
; ðE11Þ

where DP = P+ + P� � 2P( r0) and the extra factor of 2� comes from converting 	�2 to 	�.
We can then expand the Fourier amplitude around the peak of the signal as in equation (B10), where we see that the ampli-

tude fluctuations from the sine term (which is antisymmetric about r0) will cancel after the addition of P(r0 + Dr) and
P(r0 � Dr) in the finite difference approximation shown above. Conversely, the fluctuations due to the cosine term (which is
symmetric about r0) will add. These fluctuations can be computed by taking the variance of the first nonconstant term in the
expansion of cos (�j), which is �2j /2 = 2�2 D2

r

�
u � 1

2

�
2. The computation gives

hð�2j =2� h�2j =2iÞ2i ¼ hð�2j =2Þ2i � h�2j =2i2 ðE12aÞ

¼ 4�4D4
r

�Z 1

0

�
u� 1

2

�4

du�
� Z 1

0

�
u� 1

2

�2

du

�2�
ðE12bÞ

¼ �4D4
r

�
1

20
�
�
1

6

�2�
ðE12cÞ

¼ �4D4
r

45
; ðE12dÞ

and since the variations in the cos (�j) term average to 1/2, just like the sin (�j) term did in equation (B13), the standard devia-
tion of [P(r0 + Dr)]

1/2 is equal to

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðr0þDrÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðr0 þ DrÞ

p �2D2
rffiffiffiffiffi

90
p ’ �2D2

r

ffiffiffiffiffiffiffiffiffiffiffi
Pðr0Þ
90

r
: ðE13Þ

Doubling the error when converting from amplitudes to powers and then doubling it again because of the addition of the
errors from the power offsets in equation (E9) gives

	DP
¼ 4�2D2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðr0Þ=90

p
: ðE14Þ

Finally, by substituting into equation (E11), we get

	� ¼ 3

4�2�D2
rPðr0Þ

4�2D2
r

ffiffiffiffiffiffiffiffiffiffiffi
Pðr0Þ
90

r
¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10Pðr0Þ

p : ðE15Þ

APPENDIX F

CENTROID, PURITY, AND FOURIER RESPONSE

In order to consider the effects of centroid and purity on the Fourier response to a sinusoidal signal as described by equation
(D1), we initially assume a Fourier response equal to equation (18c) of

Ar ¼ A0e
�i�ðr�r0Þ sinc ½�ðr� r0Þ� ; ðF1Þ
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where A0 = Na/2ei�0 , �0 is the intrinsic phase of the signal, and r0 is the true signal frequency (in FFT bins). This response is
correct only for signals with a square window function [i.e.,W(u) = 1 in the range 0 � u � 1 and zero elsewhere].

From equation (F1) we see that a change in Fourier frequency of a single Fourier bin causes a change in the measured
Fourier phase of � radians. This phase change is also visible from the centroid equation for a pure signal with ĈC = 1

2, where
d�(r) = �� for every dr = 1. Rewriting the centroid equation and integrating, we see that the Fourier phase near the peak
response goes as

�ðrÞ ¼ �2�rĈC þ c : ðF2Þ

When r = r0, � = �0, allowing us to solve for the constant of integration, c = �0 + 2�r0ĈC. Substituting into equation (F2), we
see that the phase of the Fourier response is equal to

�ðr0Þ ¼ �0 � 2�ĈCðr� r0Þ : ðF3Þ

Therefore, for signals that have centroids different from 1
2, the phase change across a single Fourier bin is different from the

usual � rad.
The purity, as described in x 5 and Appendix E, is the effective duration of a square window, which reproduces the measured

rms dispersion of the signal in time about the centroid. Since the Fourier response to a square window varies as sinc (�fT ),
where fT = r, we can see that replacing the window of length T with one of effective duration �T causes the Fourier response
to go as sinc (��fT ). This fact is also approximately true for more complicated window functions as long as |r � r0|5 1. The
Fourier response to a windowed sinusoid is therefore

Ar ’ A0e
�2�iĈCðr�r0Þ sinc ½��ðr� r0Þ� : ðF4Þ

Numerical simulations show that this approximation is valid for purity values � d 1.5.
These same ‘‘ effective duration ’’ arguments also apply to the shape of the response in the _ff direction of the f- _ff plane. A

change in the effective duration of a signal causes a change in the _ff response, since _ff T 2! _ff�2T 2, or equivalently, _rr! _rr�2. The
results of this change can be calculated by directly substituting _rr�2 for _rr in equation (38), as was done in Appendix C.
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